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Abstract

Knowledge Graph Embedding (KGE) aims to learn repre-
sentations for entities and relations. Most KGE models have
gained great success, especially on extrapolation scenarios.
Specifically, given an unseen triple (h, r, t), a trained model
can still correctly predict t from (h, r, ?), or h from (?, r, t),
such extrapolation ability is impressive. However, most exist-
ing KGE works focus on the design of delicate triple model-
ing function, which mainly tells us how to measure the plau-
sibility of observed triples, but offers limited explanation of
why the methods can extrapolate to unseen data, and what
are the important factors to help KGE extrapolate. There-
fore in this work, we attempt to study the KGE extrapolation
of two problems: 1. How does KGE extrapolate to unseen
data? 2. How to design the KGE model with better extrapo-
lation ability? For the problem 1, we first discuss the impact
factors for extrapolation and from relation, entity and triple
level respectively, propose three Semantic Evidences (SEs),
which can be observed from train set and provide important
semantic information for extrapolation. Then we verify the
effectiveness of SEs through extensive experiments on sev-
eral typical KGE methods. For the problem 2, to make bet-
ter use of the three levels of SE, we propose a novel GNN-
based KGE model, called Semantic Evidence aware Graph
Neural Network (SE-GNN). In SE-GNN, each level of SE
is modeled explicitly by the corresponding neighbor pattern,
and merged sufficiently by the multi-layer aggregation, which
contributes to obtaining more extrapolative knowledge repre-
sentation. Finally, through extensive experiments on FB15k-
237 and WN18RR datasets, we show that SE-GNN achieves
state-of-the-art performance on Knowledge Graph Comple-
tion task and performs a better extrapolation ability. Our code
is available at https://github.com/renli1024/SE-GNN.

1 Introduction
Knowledge Graphs (KGs) like Freebase (Bollacker et al.
2008) and WordNet (Miller 1995) are significant resources
to support numerous artificial intelligence applications, such
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as recommendation system (Wang et al. 2018), question an-
swering (Yasunaga et al. 2021) and text generation (Zhang
et al. 2020), etc. KGs store graph-structured knowledge
in triple form (h, r, t). To integrate symbolic knowledge
into numerical down-stream applications, Knowledge Graph
Embedding (KGE) technique that attempts to encode the re-
lations and entities into low-dimensional embeddings, has
attracted increasing attention. The core idea of KGE is to de-
sign triple modeling function f(h, r, t), that can predict cor-
rect tail entity t from (h, r, ?), or head entity h from (?, r, t),
by scoring high for positive triple (h, r, t), and low for neg-
ative triples (h′, r, t) and (h, r, t′)1.

Many KGE models have been proposed and can be cate-
gorized into three families (Wang et al. 2017; Arora 2020),
which are Translational Distance Models like TransE (Bor-
des et al. 2013), RotatE (Sun et al. 2019); Semantic Match-
ing Models like DistMult (Yang et al. 2015), ComplEx
(Trouillon et al. 2016), ConvE (Dettmers et al. 2018); and
GNN-based Models like R-GCN (Schlichtkrull et al. 2018),
CompGCN (Vashishth et al. 2020b). Most of these KGE
models have gained great success, especially on extrap-
olation scenarios, which is that given an unseen triple
(h, r, t), a well trained model can still correctly predict t
from (h, r, ?) or h from (?, r, t), such ability is impressive.
However, most existing KGE works focus on the design of
delicate triple modeling function, but explains little about
why the methods can extrapolate to unseen data, and what
are the important factors to help KGE extrapolate. Therefore
in this work, we attempt to, from a data relevant view, study
KGE extrapolation of two problems: 1. How does KGE ex-
trapolate to unseen data? 2. How to design the KGE model
with better extrapolation ability?

For the problem 1, for an unseen triple (h, r, t), we treat
the prediction from (h, r, ?) to t with a semantic matching
idea. For a good extrapolative matching, (h, r, ?) and t must
have obtained some semantic relatedness during training,
and we consider the relatedness may come from three lev-

1This prediction process is also called Knowledge Graph Com-
pletion task, which shares many common concepts with Knowl-
edge Graph Embedding.
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Figure 1: The demonstration of three levels of Semantic Ev-
idence.

els: the individual r part with t (relation level), the individ-
ual h part with t (entity level), and the combination (h, r, ?)
part with t (triple level). We name such three factors as Se-
mantic Evidence (SE), to indicate the supporting semantic
information they provide for extrapolation. Then, we quan-
tify the SEs with three corresponding metrics respectively.
For relation level, it is measured by the co-occurrence of r
and t in train set; for entity level, it is the path connections
from h to t in train set; for triple level, it is the similarity
between existed ground truth entities of (h, r, ?) and t. The
demonstration of three levels of SE can be seen in figure 1.
Furthermore, we verify the effectiveness of SEs through ex-
tensive experiments on several typical KGE methods, and
demonstrate that SEs serve as an important role for under-
standing the extrapolation ability of KGE.

For the problem 2, based on the conclusion of problem
1, Semantic Evidences are important for designing KGE
models with powerful extrapolation ability. However, cur-
rent works capture the SE information mainly through an
implicit and insufficient way, which limits their extrapo-
lation performance. Hence in this work, to make better
use of the three levels of SE, we propose a novel GNN-
based KGE model, called Semantic Evidence aware Graph
Neural Network (SE-GNN). In SE-GNN, each level of SE is
modeled explicitly by corresponding neighbor pattern, and
merged sufficiently by the multi-layer aggregation mecha-
nism of GNNs, which contributes to obtaining more extrap-
olative knowledge representation. The model architecture is
demonstrated in figure 3.

In summary, our main contributions are as follows:
• We are the first to explore KGE extrapolation problem,

from a data relevant and model independent view, and
further introduce three levels of Semantic Evidence to
understand the extrapolation ability of KGE. We also
conduct extensive experiments on various typical KGE
models to verify our assumption.

• We dive into the way of designing the KGE model with
better extrapolation ability, through explicitly and suf-
ficiently modeling the Semantic Evidences into knowl-
edge embedding. We propose a novel GNN-based KGE

method called SE-GNN, which helps the learned knowl-
edge representation achieve more improved extrapolation
performance.

• Through extensive experiments on FB15k-237 and
WN18RR datasets of Knowledge Graph Completion
task, we demonstrate the validity of our introduced Se-
mantic Evidence concept and SE-GNN method.

2 Related Work
Knowledge Graph Embedding Knowledge Graph Em-
bedding is an active research area. Based on the scoring
function and whether global graph structure is utilized, liter-
ature works can be divided into three families (Wang et al.
2017; Arora 2020). (i) Translational Distance Models ap-
ply distance-based scoring functions and model relations as
some operation, like addition operation in TransE (Bordes
et al. 2013), hyper-plane addition in TransH (Wang et al.
2014), complex field rotation in RotatE (Sun et al. 2019),
etc. (ii) Semantic Matching Models utilize similarity-based
scoring function. DistMult (Yang et al. 2015) proposes a
multiplication model to represent the likelihood of a fact.
ComplEx (Trouillon et al. 2016) models the triple matching
function in complex domain. ConvE (Dettmers et al. 2018),
InteractE (Vashishth et al. 2020a) apply neural network for
similarity modeling. (iii) GNN-based Models tend to cap-
ture the structure characteristics of KGs through Graph Neu-
ral Networks. R-GCN (Schlichtkrull et al. 2018) introduces
a relation-specific transformation to merge the relation infor-
mation when neighbor aggregating. CompGCN (Vashishth
et al. 2020b) proposes various composition operations for
neighbor aggregation to model the structure pattern of multi-
relational graph.

Extrapolation Ability Study In Machine Learning The-
ory field, there are many works that attempt to study the gen-
eralization and extrapolation ability of Neural Networks or
Multilayer perceptrons (MLPs) (Haley and Soloway 1992;
Barnard and Wessels 1992; Bietti and Mairal 2019; Ba et al.
2020; Xu et al. 2021). Like in (Xu et al. 2021), it is proved
that ReLU MLPs can not extrapolate most nonlinear func-
tions, but can extrapolate linear function when the training
distribution is sufficiently diverse. And for Graph Neural
Networks, it is showed that they can encode non-linearity in
architecture and features to help extrapolation. However, the
conclusions of above works cannot directly apply to KGE
field. Because the analysis of Neural Networks mostly con-
centrates on classification or regression task, with only one
single object or distribution. For Graph Neural Networks,
the study is also mainly about node classification or graph
classification task. While for KGE task, there are three tar-
gets (h, r, t) mutually influencing and serving as a match-
ing task between (h, r, ?) and t, which makes the extrapola-
tion analysis of KGE differs from the correspondence in ML
field. In addition, in Knowledge Graphs there are abundant
data pattern and fact interdependency that can be mined,
which is very important to understand the extrapolation per-
formance of KGE. Therefore, in this work we focus on a
data relevant and model independent view to study the KGE
extrapolation problem.
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3 Knowledge Graph Embedding
Extrapolation

In this section, we firstly give the definition of KGE extrap-
olation problem. Then we introduce three levels of Semantic
Evidence to explain the extrapolation ability of KGE mod-
els. Finally we conduct experiments on various typical KGE
models to verify our assumption.

3.1 Problem Definition
A knowledge graph is denoted as G = (E ,R,F), where
E and R represent the set of entities and relations, and
F = {(h, r, t)} ⊆ E × R × E is the set of triple facts.
For the KGE learning process, firstly F will be partitioned
into train, valid and test set, denoted as Ftr, Fva, Fte re-
spectively. The model will be trained on Ftr and the best
parameters will be selected according to Fva, then the ex-
trapolation performance will be evaluated on unseen dataset
Fte.

KGE task aims to predict t given (h, r, ?), or h given
(?, r, t). Here we treat the prediction task with the idea
of semantic matching between query and answer, and
without loss of generality, we denote both directions as
query(h, r) → t. Under such denotation, the extrapolation
problem we want to study is that why the KGE model is only
trained for high scoring of query(h, r)→ t, (h, r, t) ∈ Ftr,
but can still perform well for unseen data query(h, r) →
t, (h, r, t) ∈ Fte

2.

3.2 Extrapolate with Semantic Evidences
For a good extrapolative matching query(h, r) → t,
query(h, r) and t must have obtained some semantic re-
latedness during training. We consider the relatedness may
come from three levels: the individual r part with t (relation
level), the individual h part with t (entity level) and the com-
bination query(h, r) part with t (triple level), demonstrated
as follows:

• Relation level relatedness between r and t: In train set if
t frequently occur with queries containing r, i.e. there
are many query(hi, r) → t in Ftr, the r will con-
tain information to predict t. From intuition this can
be regarded as entity type information. Instantly, for
query(hi, born in), the probability of predicting loca-
tion Florida should be higher than predicting movie
Iron Man, no matter what the specific hi is.

• Entity level relatedness between h and t: In train
set if there are observed queries or indirect queries
from h to t, this will close their semantic relevancy
and provide evidences for other queries between h
and t. For example, query(h, is mother) → e1 and
query(e1, is father) → t will bring confidence for
predicting query(h, is grandmother) → t. Under the
graph view, this can be regarded as the path from h to t.

2The unseen data does not mean the new entity or relation, but
the new triple combination. In fact all the entities and relations in
Fte should occur in Ftr , in order to learn their embeddings.

• Triple level relatedness between query(h, r) and t:
For query(h, r), it may exist other ground truth en-
tities t′ in train set. If the model has been trained for
query(h, r) → t′, meanwhile t and t′ share much
similarity, it will be natural for the model to extrap-
olate to query(h, r) → t. For example, if we have
known query(James Cameron, profession)
→ film director and screen writer, it is
not difficult to predict query(James Cameron,
profession)→ film producer.

All above relatednesses are from train set and can be ob-
served, so for a KGE model, though it does not train for
the unseen data query(h, r) → t, it has gained enough in-
formation from observed triples to make the prediction. We
name such relatedness as Semantic Evidence (SE), to in-
dicate the supporting semantic information they provide for
extrapolation. We demonstrate the three levels of SE in fig-
ure 1. In addition, we also do the extensive case study for
the three levels of SE, to provide an intuitive demonstration
about how the Semantic Evidence helps extrapolate. The
case study content is placed in appendix A because of the
space limitation.

3.3 Experiment Verification
In this section, we attempt to verify the effectiveness of the
proposed SE concept through experiments. Firstly, for an
unseen prediction query(h, r) → t, we propose three cor-
responding metrics to quantify the evidence strength of each
SE as follows:

• Srel for relation level SE: It is the number of triples in
train set that satisfy (hi, r, t), which can be formulated
as:

Srel = |{(hi, r, t)|(hi, r, t) ∈ Ftr}|
where |set| denotes the element number of a set.

• Sent for entity level SE: It is the number of path from h
to t in train set, indicating the semantic relevancy of h
and t. For simplification, we limit the path length ≤ 2.
Sent is formulated as:

Sent =|{(h, ri, t)|(h, ri, t) ∈ Ftr}|+
|{(h, ri, ek, rj , t)|(h, ri, ek), (ek, rj , t) ∈ Ftr}|

• Stri for triple level SE: It is the similarity measurement
between t and query(h, r)’s ground truth entity t′ in train
set:

Stri =
∑
t′

Sim(t, t′), (h, r, t′) ∈ Ftr

For similarity function Sim(t, t′), though there have been
proposed many entity similarity computing methods for
KGs (Choudhury et al. 2015; Zhu and Iglesias 2017; Sun
et al. 2018), most of them need external information like
entity category, description text, etc. Here we hope for
a method that only relates to KG itself, so we take the
idea of Distributional Semantic Hypothesis: words that
are used and occur in the same contexts tend to purport
similar meanings (Harris 1954), and measure the entity
similarity according to its neighbor structure (context).
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Figure 2: KGE extrapolation performance on different SE ranges. The test data of FB15k-237 is divided into three ranges based
on evidence metric. Bottom x-axis denotes the metric value, top x-axis denotes the data portion of each range and y-axis denotes
the Mean Rank of model prediction result (low value indicates good performance, and 1 is the best).

This can be formulated as the number of common neigh-
bor entity-relation pairs that t and t′ share:

Sim(t, t′) = |{(hi, ri)|(hi, ri, t) ∈ Ftr}∩
{(hi, ri)|(hi, ri, t′) ∈ Ftr}|

Then we reproduce several typical KGE models and
analyze their extrapolation performance under different
SE configurations. Specifically, we use FB15k-237 dataset
(Toutanova and Chen 2015), a frequently used public KG
dataset, and compute the above three SE metrics for each
data query(h, r)→ t in test set. For each SE, we divide the
data evenly into three ranges with ascending order of met-
ric value. Hence the three ranges represent the low, medium
and high evidence strength respectively. One exception is for
entity level SE, that because the range [0, 1) cannot be di-
vided further, the proportion of three ranges is about 6:2:2.
Then we select six typical KGE models of different types,
which are TransE, RotatE (Translational Distance Models),
DistMult, ComplEx, ConvE (Semantic Matching Models),
CompGCN (GNN-based Models), and evaluate their predic-
tion results on each SE range. The results are demonstrated
in figure 2.

We can see that for all models it exists a consistent better
prediction result with evidence strength increasing. When
there is abundant SE, all the KGE models can perform a
good extrapolation result, like the rightmost range of each
SE in figure 2. And if the SE is lacked, the models’ extrapo-
lation ability will also be limited, like the leftmost range. In
addition, we also conduct the similar experiment verification
on WN18RR dataset (Dettmers et al. 2018), and the results
are placed in figure 6 of appendix B. It can be seen that there
is the same phenomenon on WN18RR dataset. This further
verifies the strong correlation between SE and extrapola-
tion performance. That is to say, regardless of the specific
method selected, the models always extrapolate well to data

with high SE evidence, which verifies that the proposed SE
is a reasonable data view explanation to understand the im-
pressive extrapolation ability of KGE.

4 Semantic Evidence aware GNN
In this section, to make better use of the Semantic Evi-
dence information for more extrapolative knowledge rep-
resentation, we propose a novel GNN-based KGE model
called Semantic Evidence aware Graph Neural Network
(SE-GNN), which is designed to model the three levels of
SE explicitly and sufficiently.

4.1 Modeling SEs with Neighbor Pattern
Knowing from previous section, Semantic Evidences are im-
portant to design KGE models with powerful extrapolation
ability. However, for most current KGE works, there is no
awareness of such extrapolation factors and they capture the
SE information mainly through an implicit and insufficient
way, which limits their extrapolation performance. Hence in
this work, we explicitly treat each SE as different neighbor
pattern and model them sufficiently through multi-layer ag-
gregation mechanism of GNNs, for obtaining more extrap-
olative knowledge representations.

Specifically, for relation level SE, it describes the overall
relation-entity interactions, which can be captured through
neighbor relation pattern of an entity. By aggregating all the
connected relations, we can get the representation as:

sreli = σ

 ∑
(ej ,rj)∈Ni

αrel
ij W rel rj

 (1)

sreli ∈ Rn denotes the relation level SE representation of
entity ei, where n is hidden dimension. rj ∈ Rn is the em-
bedding of relation rj . Ni = {(ej , rj)|(ej , rj , ei) ∈ Ftr}
denotes ei’s neighbor entities, associated with connecting
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Figure 3: The model architecture of SE-GNN. The blue,
green and orange graph represents relation, entity and triple
level SE aggregation process respectively. The yellow node
is the example center node of neighbor aggregation. By
layer-wise iteration, SE-GNN can access a wide range of
graph structure and model the deep interaction of SEs. Fi-
nally, the output entity and relation embedding are fed into
a Knowledge Graph Completion decoder to perform the ex-
trapolation.

relation in train set. W rel ∈ Rn×n is linear transformation
matrix and σ is non-linear activation function. αrel

ij is aggre-
gation attention, which is computed as:

αrel
ij =

exp
(
rTj ei

)∑
(ek,rk)∈Ni

exp
(
rTk ei

) (2)

ei ∈ Rn is the embedding of entity ei. We use dot product to
dynamically compute the attention importance of neighbor
relation rj to center entity ei.

For entity level SE, it describes the path connection in-
formation between entities, and can be captured from neigh-
bor entity pattern. With aggregating neighbor entities once,
we can capture all the 1 length paths, and we can access to
longer paths by iterative multi-layer aggregation. Here we
only introduce a single layer formulation and we will intro-
duce the whole model architecture in section 4.2:

senti = σ

 ∑
(ej ,rj)∈Ni

αent
ij W ent ej

 (3)

senti ∈ Rn is the entity level SE representation of ei. αent
ij is

aggregated attention and computed as follows:

αent
ij =

exp
(
eTj ei

)∑
(ek,rk)∈Ni

exp
(
eTk ei

) (4)

For triple level SE, it describes the triple similarity charac-
teristics from the neighbor structure view, where both neigh-
bor entities and relations should be considered. We design
the aggregation function as:

strii = σ

 ∑
(ej ,rj)∈Ni

αtri
ij W tri ϕ(ej , rj)

 (5)

where ϕ(e, r) is the composition function to fuse the en-
tity and relation information. The selection includes addition
function: ϕ(e, r) = e+r; multiplication function: ϕ(e, r) =
e ∗ r; Multilayer Perceptron: ϕ(e, r) = MLP([e||r]), where
|| is vector concatenation operation. The attention weights
αtri
ij is computed similarly as:

αtri
ij =

exp
(
ϕ(ej , rj)

T ei
)∑

(ek,rk)∈Ni
exp (ϕ(ek, rk)T ei)

(6)

4.2 Model Architecture
In section 4.1, we introduce the neighbor aggregation
method to model each SE and obtain the corresponding rep-
resentation of sreli , senti and strii . The three embeddings pro-
vide important evidences to help the model extrapolate. We
merge them with original knowledge embedding as:

e′i = ei + sreli + senti + strii (7)

This can be seen as one single aggregation layer of GNN,
which only captures the SE information in 1-hop neighbor-
hood. To acquire the multi-hop neighbor information and
model the deeper interaction of SE components, we intro-
duce a multi-layer version for SE aggregation, which is
demonstrated in figure 3. We take the output e′i as the next
layer’s input, and aggregate iteratively as:

el+1
i = eli + (sreli )l + (senti )l + (strii )l (8)

el+1
i denotes the embedding of ei in (l + 1)-th layer. (strii )l

is the triple level SE embedding in l-th layer, which is com-
puted from eli and rli:

(strii )l = σ

 ∑
(ej ,rj)∈Ni

(αtri
ij )l (W tri)l ϕ(elj , r

l
j)

 (9)

where (αtri
ij )l is computed in the same way as equation 6.

The layer-wise embedding of (sreli )l and (senti )l can be ob-
tained in the similar way. In first layer, e1 is the initialized
embedding, and after K layers’ aggregation, we take eK as
the output entity embedding.

With regard to relation embedding, we initialize different
rl for each layer, in the consideration that relations may play
a different role in different layer. For output relation embed-
ding, we concat all the rl used and merge them together by
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a transform matrix W out. Hence the output of SE-GNN is
formulated as:

eout = eK

rout =W out Concat({rl|l = 1, ...,K})
(10)

Then we utilize the output embedding to perform the pre-
diction from (h, r, ?) to t or from (?, r, t) to h. To align with
the terminology in previous work, here we also denote this
process as Knowledge Graph Completion (KGC) task. We
choose ConvE (Dettmers et al. 2018) as our decoder, which
uses 2D convolutional neural network to match query(h, r)
and answer t. We refer readers to original paper for more
details, and here we directly denote the model function as:

q = ConvE(h, r) (11)

q ∈ Rn is the computed query embedding. h and r are taken
from eout and rout. Note that in fact any KGC decoder can
be considered here, while this is not the focus of this paper.
We leave the more explorations to the future work.

Then we use binary cross entropy loss to measure the
matching between q and potential answer entities t:

L = − 1

N

∑
t

1(t) · log (m(q, t))+

(1− 1(t)) · log(1−m(q, t))

(12)

where N is the total number of candidate entities, and
m(q, t) ∈ [0, 1] is the matching function of query q and
entity t. We use dot product in this work:

m(q, t) = Sigmoid(qTt) (13)

1(t) ∈ {0, 1} is the denotation function that outputs 1 for
positive entity and 0 for negative entity.

5 Experiments
5.1 Experiment Setup
We conduct experiments of Knowledge Graph Completion
task on two commonly used public datasets: FB15k-237
(Toutanova and Chen 2015) and WN18RR (Dettmers et al.
2018). The detailed introduction of two dataset are provided
in appendix C.

We measure the model performance by five frequently
used metrics: MRR (the Mean Reciprocal Rank of correct
entities), MR (the Mean Rank of correct entities), Hits@1,
Hits@3, Hits@10 (the accuracy of correct entities ranking
in top 1/3/10). We follow the filtered setting protocol (Bor-
des et al. 2013) for evaluation, i.e. all the other true enti-
ties appearing in train, valid and test set are excluded when
ranking. In addition, based on the observation of (Sun et al.
2020), to eliminate the influence of abnormal score distribu-
tion, if prediction targets have the same score with multiple
other entities, we take the average of upper bound and lower
bound rank as the result. Additional experimental details are
provided in the appendix D.

5.2 Results of Knowledge Graph Completion task
Our baselines are selected from three categories which
are Translational Distance Models: TransE (Bordes et al.
2013), RotatE (Sun et al. 2019), PaiRE (Chao et al.
2021); Semantic Matching Models: DistMult (Yang et al.
2015), ComplEx (Trouillon et al. 2016), TuckER (Balaze-
vic and Allen 2019), ConvE (Dettmers et al. 2018), Inter-
actE (Vashishth et al. 2020a), PROCRUSTES (Peng et al.
2021); GNN-based Models: R-GCN (Schlichtkrull et al.
2018), KBGAT (Nathani et al. 2019), SACN (Shang et al.
2019), A2N (Bansal et al. 2019), CompGCN (Vashishth
et al. 2020b). The results are demonstrated in table 1, from
which we can know that:

• In view of the five metrics on two datasets, SE-GNN
achieves 9 of 10 SOTAs, which is an overall best per-
formance compared to baselines. And for the exception
of MR report on WN18RR, SE-GNN still gets the com-
petitive result with regard to the most baselines.

• SE-GNN obtains obvious improvement compared to
CompGCN, which is a typical GNN-based KGE model.
This shows that the aggregation function in SE-GNN for
modeling three levels of SE information is a more suffi-
cient way and performs a better extrapolation ability.

• In addition, we can see that the improvement of SE-GNN
is more evident on FB15k-237 dataset. We think this is
because in FB15k-237 there are more than 200 types of
relation (table 3 in appendix C) and the data interactions
are very complex, which makes the extrapolation sce-
nario more challenging. In this case, the explicit mod-
eling of SEs will play a more important role to help ex-
trapolation.

In the overall consideration across metrics on two datasets,
SE-GNN obtains the best extrapolation performance on un-
seen test data, which indicates the effectiveness of our pro-
posed method.

5.3 Effective Modeling of Semantic Evidences
In this section, we tend to verify that SE-GNN is capable of
effectively modeling the Semantic Evidences. Like in sec-
tion 3.3, we evaluate the extrapolation performance of SE-
GNN in different SE ranges. To control the variables, we
compare the results with ConvE, which is our selected de-
coder in SE-GNN. So the only difference here is that in
SE-GNN, explicit modeling of three levels of Semantic Ev-
idence is introduced before decoder (equation 10), while in
ConvE, entity and relation embedding are directly fed into
the decoder, with implicit modeling of SE information. The
results are demonstrated in figure 4. We can see that SE-
GNN performs better for all levels of SE across all ranges,
which shows SE-GNN can capture the SE information more
effectively and possess better extrapolation ability.

5.4 Ablation Study of each Semantic Evidence
To evaluate the effect of each SE part, we do the ablation
study of only removing one SE modeling part and simulta-
neously removing two of them. The results are demonstrated
in table 2. We can observe that the performance degrades for

5786



Models FB15k-237 WN18RR
MRR MR H@1 H@3 H@10 MRR MR H@1 H@3 H@10

Translational Distance
TransE (Bordes et al. 2013)† .330 173 .231 .369 .528 .223 3380 .014 .401 .529
RotatE (Sun et al. 2019) .338 177 .241 .375 .533 .476 3340 .428 .492 .571
PaiRE (Chao et al. 2021) .351 160 .256 .387 .544 - - - - -
Semantic Matching
DistMult (Yang et al. 2015)† .308 173 .219 .336 .485 .439 4723 .394 .452 .533
ComplEx (Trouillon et al. 2016)† .323 165 .229 .353 .513 .468 5542 .427 .485 .554
TuckER(Balazevic and Allen 2019) .358 - .266 .394 .544 .470 - .443 .482 .526
ConvE (Dettmers et al. 2018) .325 244 .237 .356 .501 .430 4187 .400 .440 .520
InteractE (Vashishth et al. 2020a) .354 172 .263 - .535 .463 5202 .430 - .528
PROCRUSTES (Peng et al. 2021) .345 - .249 .379 .541 .474 - .421 .502 .569
GNN-based
R-GCN (Schlichtkrull et al. 2018) .248 - .151 - .417 - - - - -
KBGAT (Nathani et al. 2019)‡ .157 270 - - .331 .412 1921 - - .554
SACN (Shang et al. 2019) .350 - .260 .390 .540 .470 - .430 .480 .540
A2N (Bansal et al. 2019) .317 - .232 .348 .486 .450 - .420 .460 .510
CompGCN(Vashishth et al. 2020b) .355 197 .264 .390 .535 .479 3533 .443 .494 .546
SE-GNN (ours) .365 157 .271 .399 .549 .484 3211 .446 .509 .572

Table 1: Model reports on FB15k-237 and WN18RR test set. The best results are in bold. † denotes that we reproduce the results
using the code3. ‡ means that the results of KBGAT are from (Sun et al. 2020) because original results suffer from same score
evaluation problem, which is discussed in section 5.1. Other results are from the published paper.

Figure 4: The performance comparation of SE-GNN and
ConvE under the same Semantic Evidence range.

all six variants of SE-GNN, which shows the effectiveness
of each SE modeling part.

In addition, we consider that for most GNN-based KGE
works like R-GCN (Schlichtkrull et al. 2018), CompGCN
(Vashishth et al. 2020b), the core idea is to merge the re-
lation and entity together when neighbor aggregating. This
can be regarded as the w/o relation & entity SE variant of
SE-GNN, which only models the triple SE part. While both
our SE extrapolation analysis and the ablation experiments
show that it is insufficient, and separately modeling relation
and entity information are also beneficial for KGE task.

3https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding, commit ID: 2e440e0

Models FB15k-237
MRR MR H@1 H@10

SE-GNN .365 157 .271 .549
w/o relation SE .361 168 .264 .542
w/o triple SE .359 173 .262 .537
w/o entity SE .360 172 .265 .539
w/o relation & entity SE .357 179 .257 .532
w/o relation & triple SE .355 181 .254 .535
w/o entity & triple SE .352 185 .249 .525

Table 2: Ablation study of three SEs, where w/o means re-
moving the corresponding modeling part in SE-GNN.

6 Conclusion
In this paper, we make the attempt to study the KGE extrap-
olation problem from a data relevant and model independent
view. We show that there are three levels of Semantic Ev-
idence that play an important role when predicting unseen
data, which are the co-occurrence between relations and en-
tities, the path connection between entities, and the similar-
ity between observed entities and predicted entities. Then
we verify the effectiveness of SEs through extensive quanti-
tative experiments and qualitative case study. Based on such
observation, we design a novel SE-GNN model to obtain
more extrapolative knowledge representation and achieve
consistent improvement on different datasets. Some future
directions include exploiting more extrapolative evidences
and designing more elaborated SE modeling method.
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Figure 5: Case study of Semantic Evidence on FB15k-237 dataset. The symbol ∼ means that two entities are semantically
similar. The rank result is the prediction rank of correct entity in all entities. The best results are marked as bold.

Appendix
A Case study of Semantic Evidence

In this section, we tend to provide an intuitive demonstration
about how the Semantic Evidence helps extrapolate to un-
seen data and hence this information is important for KGE
task. For each Semantic Evidence, we select multiple ex-
ample cases from FB15k-237 test set, and list their corre-
sponding evidences and prediction results of different KGE
models. The cases are demonstrated in figure 5.

For relation SE, the idea is that the co-occurrence be-
tween relation and tail entity can help extrapolate. For
example, for the extrapolative prediction (San Diego,
travel month, ?)→ December, if the model has ob-
served large amounts of co-occurrences of travel month
and December in train set, it will be aware of the month
type of December and also know that December is a pop-
ular time for traveling, which is beneficial for the model to
perform a new travel month prediction on December
entity. Note that there are three levels of SE information that
can help extrapolate in the meantime, and in this case rela-
tion evidence just servers as one part.

For entity SE, it is that the connection or path between
entities can help extrapolation. Like the case (Robert
Downey Jr, live in, ?) → New York City, in
the train set we know that Downey was born in New York
City, his wife lives in New York City, his friend
lives in New York City, etc. These connections between

Robert Downey Jr and New York City will en-
hance their semantic relevancy and help the model to predict
“some relation” between them, such as live in.

For triple SE, it follows the idea that if prediction holds
for one entity, it should also hold for a similar one. For
example, if we have known that Freshman Program
contains the major of Mathematics, Electrical
Engineering, Chemistry Science, it is natural to
infer that it also contains Computer Science, which is
a similar major of the observed ones.

Above three levels of SE are important to help the model
do extrapolating. For a further illustration, we reproduce
several typical KGE models and list their prediction in right-
most column. We can see that for these unseen cases with
abundant SE information, all the models can perform a good
extrapolative prediction, which verifies the effectiveness of
the proposed Semantic Evidence concept.

B Correlation between SE and Extrapolation
Performance on WN18RR Dataset

In this section, we compute the extrapolation performance
of various KGE models on different SE ranges on WN18RR
dataset. The results are demonstrated in figure 6. Because
there are much low evidence data in WN18RR dataset,
it is hard to evenly divide the test data into three ranges
like figure 2. Therefore we divide the data into [0, 1) and
[1,Max] two ranges instead, which can respectively repre-
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Figure 6: Extrapolation performance of KGE models on different SE ranges on WN18RR dataset. The bottom x-axis denotes
the range value, the top x-axis denotes the data portion of each range and y-axis denotes the Mean Rank of model prediction
result (low value indicates good performance, and 1 is the best).

sent the data with evidence and without evidence (Max
denotes the max value of corresponding evidence metric).
From the results, we can see that the correlation between ev-
idence strength and extrapolation performance also holds on
WN18RR dataset, for all models and across all evidences,
which further verifies the effectiveness of SE. Note that be-
cause of the various data characteristics, different dataset
may reveal a different focus on three levels of SE when
extrapolating. Like in WN18RR dataset, there are only 11
types of relation (demonstrated in table 3). Such simple pat-
tern makes relation level SE a less important role compared
to FB15k-237 dataset, which has an abundant relation set of
237 types. Hence in figure 6, there is a weaker downward
trend for relation level SE, and the entity and triple level SE
play a more important role when extrapolating.

C Dataset Statistics
In this section we provide the information of FB15k-237 and
WN18RR dataset used in our experiment.
• FB15k-237 (Toutanova and Chen 2015) contains entities

and relations from Freebase, which is a large common-
sense knowledge base. FB15k-237 is a pruned version of
FB15k (Bordes et al. 2013) dataset, with duplicate and
inverse relations being removed to prevent direct pre-
diction. Furthermore, FB15k-237 also ensures that every
triple (h, r, t) in valid and test set does not have any di-
rect connection (h, r′, t) in train set, to make the prdic-
tion more challenging.

• WN18RR (Dettmers et al. 2018) is derived from Word-
Net, a lexical database of semantic relations between
words. Similar to FB15k-237, WN18RR is pruned from
WN18 (Bordes et al. 2013) dataset by removing the du-
plicate and inverse relations, while there is no direct con-
nection restriction in WN18RR.

Statistics of two datasets are summarized in table 3.

Dataset FB15k-237 WN18RR
# entity 14,541 40,943
# relation 237 11
# train triple 272,115 86,835
# valid triple 17,535 3,034
# test triple 20,466 3,134

Table 3: Dataset statistics

D Experimental Details
In this section we discuss some more details of the ex-
periment implementation. Following CompGCN (Vashishth
et al. 2020b), we transform the knowledge graph to undi-
rected graph, by introducing an inverse edge (t, r−1, h) for
each edge (h, r, t), which aims to pass the information bidi-
rectionally and enhance graph connectivity. In addition, like
ConvE (Dettmers et al. 2018), we also introduce an inverse
version for each relation when predicting. For the two direc-
tions (h, r, ?)→ t and (?, r, t)→ h of a triple prediction, we
transform them as (h, r, ?) → t and (t, r−1, ?) → h, which
can unify the prediction format and improve computational
efficiency.

Furthermore, during the aggregation process of SE-GNN,
for each training batch, we randomly remove a proportion
of corresponding edges in the knowledge graph. This can
prevent the information leakage problem, i.e. the model
has seen the prediction edges when aggregating. This can
also guide the model to learn the interactions between ex-
isted edges and prediction missing edges when aggregating,
which is a closer scenario of extrapolation.
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