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Abstract
Answer Set Programming (ASP) is a framework in artificial
intelligence and knowledge representation for declarative mod-
eling and problem solving. Modern ASP solvers focus on the
computation or enumeration of answer sets. However, a variety
of probabilistic applications in reasoning or logic program-
ming require counting answer sets. While counting can be
done by enumeration, simple enumeration becomes immedi-
ately infeasible if the number of solutions is high. On the other
hand, approaches to exact counting are of high worst-case
complexity. In fact, in propositional model counting, exact
counting becomes impractical. In this work, we present a scal-
able approach to approximate counting for ASP. Our approach
is based on systematically adding parity (XOR) constraints to
ASP programs, which divide the search space. We prove that
adding random XOR constraints partitions the answer sets of
an ASP program. In practice, we use a Gaussian elimination-
based approach by lifting ideas from SAT to ASP and integrate
it into a state of the art ASP solver, which we call ApproxASP.
Finally, our experimental evaluation shows the scalability of
our approach over existing ASP systems.

Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011; Gebser et al. 2012) is a form of declar-
ative programming, which is based on the stable model se-
mantics of logic programming (Gelfond and Lifschitz 1991).
Two decades of progress in the theory and practice of solving
ASP offers rich modeling and solving framework that has
well-known applications (Balduccini, Gelfond, and Nogueira
2006; Niemelä, Simons, and Soininen 1999; Guziolowski
et al. 2013; Schaub and Woltran 2018) in the area of knowl-
edge representation and reasoning, and artificial intelligence.

The problem of counting the number of solutions to a given
ASP program, known as #ASP, is a computationally intrigu-
ing problem that has applications in probabilistic reason-
ing (Lee, Talsania, and Wang 2017), planning (Fichte, Gaggl,
and Rusovac 2022). The computational complexity of #ASP
for disjunctive programs is # · coNP-complete (Fichte et al.
2017), which further increases to # · ΣP2 -complete (Fichte
and Hecher 2019) if counting with respect to a projection.

Counting solutions is a well-studied theoretical problem
in mathematics and computer science since its introduction
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in the late 1970s (Durand, Hermann, and Kolaitis 2005;
Hemaspaandra and Vollmer 1995; Valiant 1979). For the
propositional model counting problem, #SAT for short,
#·P-completeness was established quite early (Valiant 1979).
Later Toda (1991) showed that polynomially many calls to
a #SAT oracle can be used to capture the entire polynomial
hierarchy. Recently, there has been growing interest in the ap-
plication side of counting solutions to problems (Chakraborty,
Meel, and Vardi 2016; Domshlak and Hoffmann 2007;
Gomes, Sabharwal, and Selman 2009; Chavira and Darwiche
2008; Darwiche 2020).

Approximate counting (ApproxMC) (Chakraborty, Meel,
and Vardi 2016; Soos and Meel 2019; Soos, Gocht, and Meel
2020) showed to be particularly successful in the recent com-
petition (Fichte, Hecher, and Hamiti 2021). The core idea is
hashing-based frameworks, which partition the solution space
into roughly equal small cells of solutions by employing pair-
wise independent hashing functions using XOR-constraints,
and then the count is obtained by enumerating solutions in
one of the randomly chosen cells. Motivated by the develop-
ment of scalable techniques for propositional model counting,
there has been a surge of interest in designing scalable count-
ing techniques for problems whose decision problem lies
beyond NP (Bendı́k and Meel 2020, 2021). Inspired by the
success of the aforementioned efforts, we investigate the
design of scalable techniques for #ASP. Of particular inter-
esting to us are hashing-based frameworks developed in the
context of approximate model counting. In this context, one
may wonder whether #ASP can be reduced to #SAT, since
then invoking a counter such as ApproxMC suffices. How-
ever, it is well-known (and observed in practice) that such a
reduction might result in exponential blow-up (Lifschitz and
Razborov 2006).

In this paper, we present an approach to approximate ASP
counting and establish a scalable solver, which is based on an
incremental implementation for Gauss-Jordan elimination.

Contributions. The primary contribution of this work is
the design of, to the best of our knowledge, the first scalable
technique for #ASP that provides rigorous (ε, δ) guaran-
tees. From the technical perspective, we lift the XOR-based
hashing framework developed in the context of propositional
model counting to ASP. As is witnessed in the development of
ApproxMC, designing a scalable counter requires engineer-
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ing of the underlying ASP solver to handle XOR constraints.
To this end, we present the first ASP solver that can na-
tively handle XOR constraints via Gauss-Jordan elimination
(GJE). Our experimental study illustrates that for disjunc-
tive logic programs, ApproxASP performs well. ApproxASP
solved 185 instances among 200 instances, while the best
ASP solver clingo solved a total of 177 instances. In addi-
tion, on normal logic programs ApproxASP performs on par
with state-of-the-art approximate model counter ApproxMC,
thereby positioning ApproxASP as the tool of choice in the
context of counting for ASP programs.

Related Work. Fichte et al. (2017) established an imple-
mentation, called dynasp, for counting the number of answer
sets. It is based on dynamic programming on tree decom-
positions and theoretically performs well if the treewidth
is low. In practice, a decomposition heuristic is required
that can find a tree decomposition of low width fast. Due
to theoretical restrictions, an instance can easily have high
treewidth simply if it contains a large rule. Since most en-
codings are not treewidth aware (Hecher 2022), the approach
has certain theoretical limitations. Janhunen (2006), Jan-
hunen and Niemelä (2011), and Bomanson, Gebser, and Jan-
hunen (2016) established compilation techniques that trans-
form ASP programs into SAT instances. Most of these tech-
niques preserve the number of answer sets. However, unless
the considered program is tight (Kanchanasut and Stuckey
1992; Ben-Eliyahu and Dechter 1994), there can be an ex-
ponential overhead (Lee and Lifschitz 2003; Lifschitz and
Razborov 2006). Nonetheless, the compilation can be used
to transform an input instance and use the existing model
counter, e.g., (Chakraborty, Meel, and Vardi 2013). A recent
extension to the ASP solver clingo (Everardo et al. 2019),
called xorro, introduces a variety of parity constraints into
ASP solving, relying on ASP encodings of parity constraints
or theory propagators (Gebser et al. 2016). In contrast, our
implementation relies on a dedicated high performant imple-
mentation of Gauss-Jordan elimination (GJE).

Preliminaries
We assume familiarity with graph theory (Bondy and Murty
2008) and propositional satisfiability (SAT) (Kleine Büning
and Lettman 1999; Biere et al. 2009). Let U be a set of
propositional atoms. Sometimes we use variable instead of
atom in the context of propositional satisfiability.

Propositional Satisfiability. A literal is an atom or its
negation. A clause is a finite set of literals, a (CNF) formula
is a finite set of clauses. An assignment is a mapping τ :
X → {0, 1} defined for a set X ⊆ U of atoms. For x ∈ X
we put τ(¬x) = 1 − τ(x). By 2X we denote the set of all
truth assignments τ : X → {0, 1}. By default, we assume
that τ(>) = 1 and τ(⊥) = 0 for the constants > and ⊥. The
reduct of a formula F with respect to τ ∈ 2X is the formula
Fτ := {c \ τ−1(0) | c ∈ F, c ∩ τ−1(1) = ∅}. τ satisfies F
if Fτ = ∅ and dissatisfies F if ∅ ∈ Fτ .

Answer Set Programs
We follow standard definitions of propositional ASP (Brewka,
Eiter, and Truszczyński 2011). A literal is an atom a ∈ U or

its negation ¬a. A program P is a set of rules of the form
a1 ∨ . . .∨ al ← b1, . . . , bn,∼ c1, . . . ,∼ cm (1)

where a1, . . . , al, b1, . . . , bn, c1, . . . , cm are atoms and
l, n,m are non-negative integers. We write H(r) =
{a1, . . . , al}, called head of r, B+(r) = {b1, . . . , bn},
called positive body r, and B−(r) = {c1, . . . , cm}, called
negative body of r. We denote the sets of atoms occurring in a
rule r or in a program P by at(r) = H(r)∪B+(r)∪B−(r)
and at(P ) =

⋃
r∈P at(r), respectively. A rule r is disjunc-

tive if it is of the form as given in Equation 1, r is normal if
|H(r)| ≤ 1, and r is an (integrity) constraint if |H(r)| = 0.
We naturally extend properties of rules to programs. In ad-
dition, we need definitions of certain cycles of programs. A
set L ⊆ at(P ) is a loop in P , if it is a directed cycle in
the digraph D of a given program P which has as vertices
the atoms at(P ) and a directed edge (x, y) between any two
atoms x, y ∈ at(P ) for which there is a rule r ∈ P with
x ∈ H(r) and y ∈ B+(r) (Kanchanasut and Stuckey 1992).
A normal program P is tight if it does not contain a loop. Mul-
tiple definitions of stable models form the basis for answer
set programs (Lifschitz 2010). In the following, we state two
common definitions, where the second one is more complex,
but commonly used in solvers.

Minimal Model Characterization. A set M of atoms sat-
isfies a rule r if (H(r) ∪ B−(r)) ∩M 6= ∅ orB+(r)\M 6=
∅. M is a model of P if it satisfies all rules of P , we write
M |= P for short. The Gelfond-Lifschitz (GL) reduct of a
program P under a set M of atoms is the program PM :=
{H(r)← B+(r) | r ∈ P,M ∩B−(r) = ∅ } (Gelfond and
Lifschitz 1991). M is an answer set, sometimes also just
called stable model, of a program P if M is a minimal model
of PM . We denote by AS(P ) the set of all answer sets of P .

It is folklore that we cannot obtain new answer sets from
introducing integrity constraints.

Observation 1. Let P be a program, X be a set of integrity
constraint rules, and M ⊆ at(P ). Moreover, let M satisfy P ,
but there is a set N (M such that N satisfies PM . Then, if
M satisfies P ∪X , there is also a set N ′ (M such that N ′
satisfies (P ∪X)M .

Proof. Let P , X , and M be as given above, in particular,
assume that M satisfies both P and P ∪X , but N (M is a
model of PM . Since M also satisfies P ∪X by assumption,
for every rule r ∈ (P ∪ X) either (i) B−(r) ∩ M 6= ∅
and hence r /∈ (P ∪ X)M or (ii) B−(r) ∩ M = ∅ and
r ∈ (P ∪ X)M . In Case (i) the rule is not relevant when
considering whether N satisfies (P ∪ X)M , hence we can
ignore that case. In Case (ii), if (iia) r ∈ PM , we have that
N satisfies such r by assumption. If (iib) r ∈ XM , clearly it
is true that H(r) = B−(r) = ∅ as r is a constraint. Since M
satisfies (P ∪X) and in particular the rule r ∈ X , we have
that B+(r) \M 6= ∅. Since N ( M , we have in particular
that B+(r) \ N 6= ∅. Hence, N also satisfies r ∈ PM .
As we have considered all cases, we can conclude that the
observation is true.

Corollary 2. Let P be a program, X be a set of constraint
rules, and M ⊆ at(P ). Then, AS(P ∪X) ⊆ AS(P ).
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Proof. Since for every model was not minimal with respect
to the GF-reduct of the program, we can still construct a
set that prohibits M from being a minimal model of the
GF-reduct.

Unfounded Set Characterization. An alternative charac-
terization of answer sets is based on so called unfounded
sets (Van Gelder, Ross, and Schlipf 1988), which is widely
used in state-of-the-art ASP solvers (Alviano et al. 2013;
Gebser, Kaufmann, and Schaub 2013). Therefore, let P be
a program and def(P ) := { a | a ∈ H(r), r ∈ P } the set
of atoms that occur in any head of the program. The comple-
tion formula of a program P is defined as CNF-formula as
follows: compl(P ) := { {a} ∪ ¬B+(r) ∪ B−(r) | r ∈
P } ∪ {¬a, b | b ∈ B+(r), r ∈ P } ∪ {¬a,¬c | c ∈
B−(r), r ∈ P } (Clark 1978; Fages 1994). Moreover, let
I ⊆ lit(P ). A setU ⊆ at(P ) is an unfounded set wrt. I if, for
each rule r ∈ P , we have (i) H(r) /∈ U (ii) B+(r)∩ I− 6= ∅
or B−(r) ∩ I+ 6= ∅, or (iii) B+(r) ∩ U 6= ∅. Then, M is
an answer set of a program P if (U1) M satisfies compl(P )
and (U2) no loop contained in M is unfounded. ASP solvers
use a slightly varying characterization based on no-goods
of unfounded sets; that express (ii) as a no-good (Gebser,
Kaufmann, and Schaub 2013).

Answer Set Counting. Given program P , the problem
of counting answer sets, #ASP for short, asks to com-
pute the number of answer sets of P . In general, #ASP is
#·co-NP-complete (Fichte et al. 2017). If we restrict the
problem #ASP to normal programs, the complexity drops
to #·P-complete, which is easy to see from standard reduc-
tions (Janhunen 2006).

Universal Hashing

For basics on hashing function, we refer to introductory liter-
ature, e.g., on randomized algorithms (Motwani and Ragha-
van 1995). An approximate counting tries to compute the
number of solutions using a probabilistic algorithm approxi-
mately (Karp, Luby, and Madras 1989; Chakraborty, Meel,
and Vardi 2013). Therefore, assume that Sol(I) consists of
the set of solutions for a problem instance I . The approxima-
tion algorithm takes instance I , a real ε > 0 called tolerance,
and a real δ with 0 < δ ≤ 1 called confidence as input. The
output is a real cnt, which estimates the cardinality of Sol(I)
based on the parameters ε and δ following the inequality

Pr

[
| Sol(I)|
(1 + ε)

≤ cnt ≤ (1 + ε) · | Sol(I)|
]
≥ 1− δ. (2)

Intuitively, a random hash function h is k-wise indepen-
dent if for all distinct elements x1, . . . , xk, the values
h(x1), . . . , h(xk) are independent. Formally, letH(n,m) =
{h : {0, 1}n → {0, 1}m} be a family of hash functions.
We call H k-wise independent if for any distinct x1, . . . ,
xk ∈ {0, 1}n, and any y1, . . . , yk ∈ {0, 1}m, we have

Pr
h∈H

[h(x1) = y1 ∧ ... ∧ h(xk) = yk] = (
1

2m
)
k

(3)

XOR Hash function. A 3-wise independent hash family
Hxor(n,m) is based on random XOR constraints (Gomes,
Sabharwal, and Selman 2007). The hash functionHxor(n,m)
can be defined as Ax + B, where x is one-dimensional
matrix representation of at(P ), |at(P )| = n, A ∈
{0, 1}m×n,B ∈ {0, 1}m×1, each entry of A and B are gen-
erated according to Bernoulli distribution with a probability
of 0.5.

Independent Support. Approximate counting and sam-
pling widely use independent support (Ivrii et al. 2016) of
a theory. For an ASP program P , we say a set I ⊆ at(P )
of atoms is an independent support if for any answer sets
M1, M2 ∈ AS(P ) we have that M1 ∩ I = M2 ∩ I , then
M1 = M2. Intuitively, assigning atoms of independent sup-
port I uniquely defines an answer set. Moreover, at(P ) is
an independent support, which is called trivial independent
support.

Example 3. Consider the program P = {ai ∨ āi. bi ←
ai. ci ←∼ ai.}, where i = 1, . . . , 10. Observe that
some independent supports of program P are {a1, . . . , a10},
{ā1, . . . , ā10}, {b1, . . . , b10}, and {c1, . . . , c10}.

Partitioning and Sampling Counts
In the course of approximate model counting, we divide the
search space by so-called parity constraints. Intuitively, a
parity constraint makes sure that atoms occurring in it oc-
cur only in an even or odd number in an answer set of the
program. Corollary 2 shows that adding simple constraints
to a program will not introduce new answer sets, which is
crucial to split the search space. We could use this property
and include a counter for each of the model and integrity
constraints. The integrity constraints ensure that the counter
is even (resp. odd) for even (resp. odd) parity. In fact, the
ASP-Core-2 language already allows for representing parity
constraints using aggregate rules (Faber et al. 2008)1. Un-
fortunately, such a construction is quite impractical for two
reasons. First, it would require us to add far too many aux-
iliary variables for each new parity constraint, and second,
we would suffer from the known inadequacy to scale due to
grounding (Everardo et al. 2019). Hence, we aim for an in-
cremental “propagator”-based implementation when solving
parity constraints (Gebser et al. 2016).

First, we formally define parity constraints and show ba-
sic properties needed for partitioning the search space. The
meaning of parity constraints follows previous works on the
topic (Everardo et al. 2019). For atoms a1 and a2, we de-
note the exclusive-or between these two atoms by a1⊕ a2.
Let M be a set of atoms. Then, M satisfies a1⊕ a2 if
M ∩ {a1} ∪M ∩ {a2} 6= ∅ and M ∩ {a1, a2} 6= {a1, a2},
i.e., either a1 or a2 is in M ; but not both. Generalizing to
n distinct atoms a1, . . . , an, we obtain an exclusive-or con-
straint r of the form (((a1⊕ a2) . . . )⊕ an) by applying ⊕

1The ASP-Core-2 language would allow to represent it in the
form of:
:-#count{1: p(1)} = N, N\2 !=1. and
:-#count{X: p(X), X>1} = N, N\ 2 !=0. resp. Note
that N\ 2 is N modulo 2
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consecutively. Then, r is satisfied if and only if |M ∩ at(r)|
is odd and we refer to r as odd parity constraint. Due to as-
sociativity, we simply write a1⊕a2⊕ . . .⊕an. Analogously,
an even parity constraint, XOR constraint for short, is of the
form a1⊕ . . .⊕ an⊕> and satisfied if and only ifM ∩at(r)
is even. Parity constraints can in principle contain literals.
But since we can easily rewrite them, we omit such defi-
nitions. For example, constraint ¬a1⊕ a2 is equivalent to
a1⊕ a2⊕> and ¬a1⊕¬a2 is equivalent to a1⊕ a2, i.e.,
pairs of negated literals cancel parity inversion. We extend
the definitions on answer set programs from the preliminar-
ies above to include parity constraints. Following standard
ASP syntax, one would expect that parity constraint rules
are of the form← a1⊕ . . .⊕ an⊕> and← a1⊕ . . .⊕ an,
respectively. However, to simplify the presentation, we write
parity constraint rules as above and call them simply parity
constraint. We let a parity-constrained program P be a set of
rules or parity constraints and we denote by R(P ) the rules
and by C(P ) the parity constraints of P .

Semantics for Search Space Partitioning. A straight-
forward approach to include parity constraints in ASP would
be to extend the GL-reduct as follows. The reduct of a parity-
constrained program P under a set M of atoms is the pro-
gram PM := {H(r)← B+(r) | r ∈ R(P ), B−(r) ∩M =
∅ }∪C(P ). However, our next example shows that extending
the popular ASP-definition and including parity constraints
into the GL-reduct from above is not enough.

Example 4. Consider the program P = {a ← ∼ b; b ←
∼ c; c← ∼ a; a⊕ b⊕ c}, which contains an odd constraint.
Furthermore, take the set M = {a, b, c}. It is easy to see
that M satisfies each rule of PM , in particular, the parity
constraint. Now, whileN = ∅ satisfies each rule r ∈ R(P )M ,
the set N does not satisfy the parity constraints. Hence, M
would be an answer set of the parity-constrained program P .
In other words, adding a parity constraint to a program might
yield a new, counterintuitive answer set.

From the previous example, we can conclude that simply
extending the GL-reduct is not enough when introducing
parity-constraints into answer set programming (for approxi-
mate counting). Hence, we suggest the following definition:

Definition 5 (Answer Sets of Parity-Constrained Programs).
A set M ⊆ at(P ) is an answer set of P if (i) M satisfies each
rule r ∈ P (in particular, also the parity constraints) and (ii)
M is the minimal model of (R(P ))M . Again, we denote by
AS(P ) the set of all answer sets of P .

In the following observation, we show that parity-
constraints according to our definition do not introduce new
answer sets, which is crucial to search space partitioning.

Observation 6. Let P be a program and X a set of parity
constraints. Then, AS(P ∪X) ⊆ AS(P ).

Proof. Assume that M ⊆ at(P ) is an answer set of P ∪X .
Since M satisfies every non-parity rule in P ∪X , M satisfies
every rule r ∈ P . Since parity constraints do not occur in the
program (R(P ))M by Definition 5, for every M ⊆ at(P )
satisfying P and N (M we have that N satisfies (R(P ))M .
In other words, a set N that shows that M is not minimal

with respect to the program (R(P ))M , still shows that M is
not minimal when parity constraints are added. In turn, we
cannot accidentally introduce new answer sets by adding the
constraints, which establishes the observation.

Well-Defined for Unfounded Set Characterization. Since
we have seen certain pitfalls above and we aim for using
parity constraints in an ASP solver such as clasp, we quickly
review the behavior of parity constraints under an unfounded
set characterization. Therefore, we extend the definitions for
programs: a set M ⊆ at(P ) is an answer set of a parity-
constrained program P under the unfounded set semantics if
(UP1) M satisfies compl(R(P )), (UP1a) M satisfies C(P ),
and (UP2) no loop contained in M is unfounded. We denote
by ASuf(P ) the set of all answer sets of P according to the
unfounded set definition from above. Since parity constrains
only apply to the model part, we observe that answer sets
remain the same for both definitions. So, parity constraints
only restrict answer sets, but never introduce new ones.
Observation 7. Let P be a program and X a set of parity
constraints. Then, ASuf(P ∪X) ⊆ ASuf(P ).

Proof. The main argument is that propositional logic is
monotonic and we conclude that Condition (UP1a) will only
remove models. However, we can also show the following
stronger statement ASuf(P ∪X) ⊆ ASuf(P ). Assume that
M is an answer set of P ∪X . By Condition (UP1) we have
that M satisfies compl(R(P )). Since P = R(P ∪ X), M
satisfies compl(P ) and Condition (U1) is trivially satisfied.
Since for every rule r ∈ C(X) we have that H(r) = ∅, we
can conclude that the positive dependency digraphs remains
the same, i.e., D+

P = D+
P∪X . Thus, the loops of P ∪ X

and P are the same. In consequence, since Condition (UP2)
holds for M , it allows us to conclude that Condition (U2)
is also satisfied. Finally, from the folkore that propositional
logic is monotonic and hence Condition (UP1a) will only
remove models from P ∪ X , we conclude that our claim
ASuf(P ∪X) ⊆ ASuf(P ), which in turn establishes the ob-
servation.

Approximate Counting
The central idea for approximate counting is to employ hash
functions for sampling the search space uniformly (Motwani
and Raghavan 1995). First, one partitions the set Sol(I) of
solutions of an input instance I into roughly equally small
cells. Then, one picks a random cell, counts the number s of
solutions in the cell, and scales s by the number c of cells to
obtain an ε-approximate estimate of the count c. A priori, we
do not know the distribution of the set Sol(I) of solutions.
Hence, we have to hash without knowledge of the distribution
of the solutions, i.e., partition Sol(I) into cells uniformly and
independently. Interestingly, this can be resolved by using a
k-wise independent hash function (Gomes, Sabharwal, and
Selman 2007), for which we refer to the preliminaries. In the
context of approximate sampling and counting techniques,
the most exploited hash family is Hxor (Soos, Gocht, and
Meel 2020). We use an already evolved algorithm from the
case of propositional satisfiability (Chakraborty, Meel, and
Vardi 2013, 2016) and lift it to ASP.
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Listing 1: Approximate Counting (ApproxASP)
Data: Program P , Independent support I ,

tolerance ε, confidence δ
Result: Approximate number of answer sets

1 C ← {} ; // Sampled counts
2 nc ← 2 ; // Number of Cells
3 p← 1 + d9.84 · ( ε

1+ε ) · (1 + 1
ε )2e ; // Pivot

/* Try to enumerate p+ 1 many
answer sets projected to I */

4 S = Enum-k-AS(P, p + 1, I);
/* Enumerated less answer sets? */

5 if |S| ≤ p then return |S| ;
6 for i← 0 to d17 · log2

3
δ e by 1 do

/* Divide search space and sample
at most p+ 1 solutions */

7 (nc, s)← DivideNSampleCell(P, I, p + 1, nc) ;
/* Keep estimate if search space

was actually divided */
8 if nc > 0 then C ← C ∪ {nc · s};
9 end

10 return median(C) ;

The algorithm is given in Listings 1 and 2. The Approx-
ASP algorithm takes as input an ASP program P , an indepen-
dent support I for P , a tolerance ε (0 < ε ≤ 1), and a confi-
dence δ with 0 < δ ≤ 1. Note that we can always use a trivial
independent support I consisting of all atoms of the program.
First, sampled counts and the number of cells are initialized.
Then, in Line 3, we compute a threshold pivot p that depends
on ε to determine the chosen value of the size of a small cell.
The seemingly magic constant originates in a probabilistic
analysis using Chernoff and Chebyshev inequalities for count-
ing sets (Chakraborty, Meel, and Vardi 2016). Then, it checks
if the input program P has at least a pivot number of answer
sets projected to I (Enum-k-AS); otherwise, we are trivially
done and return the answer set count |S|. Subsequently, the
algorithm continues and calculates a value r := 17 · log2

3/δ
that determines how often we need to sample for the re-
quested confidence δ. The value again originates in a proba-
bilistic analysis (Chakraborty, Meel, and Vardi 2013). Next,
we divide the search space and sample a cell at most r times
using the function DivideNSampleCell. If the attempt to
split into at least 2 cells worked, represented by a non-zero
number of cells, we store the count and estimate the total
count by taking the number of cells times the count of the
sampled cell. The final estimate of the count returned by
ApproxASP is the median of the estimates stored in C, com-
puted in Line 10.

Function DivideNSampleCell takes as input an ASP pro-
gram P , an independent support I , a pivot p, and the num-
ber n′c of cells from the previous round. It returns the number
of constructed cells from the chosen XOR constraints and
an ε-approximate estimate of the count of the answer sets
of program P . Then, we check (lower bound) whether the
program together with the XOR-constraint (P ∪ X) has at
most p answer sets by simply enumerating at most p an-

Listing 2: DivideNSampleCell
Data: Program P , Independent support I , pivot p,

number n′c of cells from the previous round
Result: Number nc of cells that where divided;

Count c for the sampled cell
/* Randomly choose |I| many

constraints X ∈ Hxor(|I|, |I| − 1) of
length |I − 1| over variables */

1 X ← ChooseXOR(I, |I|, |I| − 1);
/* Enumerate p answer sets */

2 S = Enum-k-AS(P ∪X, p, I) ;
/* Enumerated less answer sets? */

3 if |S| ≥ p then return (0, 0);
/* Estimate size of cells */

4 m← LogASPSearch(P, I,X, p, log2 n
′
c) ;

/* Pick k XOR constraints */
5 Y ← Choosek(X,m) ;
/* Enum answer sets for one cell */

6 S ← Enum-k-AS(P ∪ Y, p, I) ;
7 return (2m, |S|)

swer sets of P ∪ X . Intuitively, if the cell contains more
answer sets than the pivot, we have selected XOR-constraints
unfavorable as we cannot count the number of answer sets
in the considered cell. We proceed with finding the “right”
number of XOR-constraints to take from the chosen XOR-
constraints (LogASPSearch), which has an underlying idea
that the partitioned cell is large enough, but not too large;
using exponential search. The function is somewhat involved,
but follows previous work on propositional model count-
ing (Chakraborty, Meel, and Vardi 2016). Then, we pick k
of the XOR-constraints in Line 5. We enumerate at most p
solutions projected to I for the program P together with
the selected k XOR-constraints. Finally, we return the num-
ber of cells, which is 2m, and the number of answer sets of
the sampled cell. Overall, the number of satisfiability calls
is O(p · log |C|).

Interestingly, our algorithm relies only on the property that
adding constraints does not increase the number of solutions,
which is needed for Line 4 to 6. In fact, in Observation 6, we
already established the property and the remaining construc-
tion directly works due to results on propositional satisfiabil-
ity where the construction is based on basics of probability
theory that works for sets S ⊆ {0, 1}n (Chakraborty, Meel,
and Vardi 2016).

Implementation Details
Most of the computation of approximate model counting is
involved in satisfiability checking. Similar to ApproxMC,
the consistency checking of ApproxASP consists of two sub-
routines, the answer set solving and the XOR solving. For the
answer set solving, ApproxASP uses clingo as the underlying
solver. The ASP solver addresses the answer set computation
while invoking the XOR solving subroutine.

Everardo et al. (2019) discussed the impact of eagerly or
lazily translating XOR constraints into ASP encodings. An
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eager translation is practically infeasible due to an exponen-
tial blowup in the number of constraints. Alternatively, lazy
translation relies on non-trivial XOR solving techniques in
ASP using theory propagators. We go beyond this approach
and implement a dedicated, sophisticated theory propagator.
We use an implementation for Han and Jiang’s Gauss-Jordan
elimination (GJE) (Han and Jiang 2012) that has been inte-
grated into the state-of-the-art SAT solver Cryptominisat to
extend clingo by full XOR solving. There, clingo searches for
an answer set while providing the XOR subroutine a (partial)
assignment such that the GJE deduces its satisfiability. An
answer set is reached if both sub-routines are satisfied.

Gauss-Jordan Elimination. Han and Jiang (2012) pro-
posed a framework for Gauss-Jordan elimination represent-
ing a set of XOR constraints as matrix M = [A|b], where
A is an m × n matrix coupled with a parity constraint b.
Each row and column in A represents an XOR and a variable,
respectively. This method suits perfectly to remove linearly
dependent equations while incrementally updating M .

The framework uses the well-known two-watched literals
scheme per XOR constraint, where one watched literal is
called basic and the other one is non-basic. Basic variables
are on the diagonal of the matrix in reduced row-echelon
form. Instead of removing a column when the correspond-
ing variable is assigned, GJE computes the state of the XOR
constraint after one of the watched-literals is assigned. The
state of an XOR constraint is exactly one of the following:
(i) conflicted, (ii) propagated, (iii) satisfied, and (iv) new
watch variable assigned. An XOR constraint is propagating if
all except one literal are assigned. It is satisfied or conflicted,
respectively, if all of its variables are assigned, and the truth
value of the literals satisfies or dissatisfies, respectively, the
XOR-constraint. If an XOR constraint has more than one unas-
signed literal, it must watch a new literal, i.e., there is no
determination of the satisfiability of the XOR.

To compute a conflict and propagation clause, we start
with an empty clause and scan forward the corresponding
row of the matrix. For all set bits, we insert the corresponding
variable into the clause with the negative or positive phase if
it is assigned false or true, respectively. In the case of propa-
gation, we insert the unassigned variable with the appropriate
phase, such that the number of positive phases is odd or even
if the parity of the XOR is even or odd, respectively.
Example 8. Let [10111] be the matrix representation
of an XOR where the columns correspond to variables
x1, x2, x3, x4, x5 and the parity is 1. If the assignment is
[?0110], then the XOR constraint is propagating, and the
clause is x1 ∨ ¬x3 ∨ ¬x4 ∨ x5. If the assignment is [00101],
then the XOR constraint is conflicting, and the conflict clause
is x1 ∨ ¬x3 ∨ x4 ∨ ¬x5.
The communication of clingo with the XOR sub-routing oc-
curs during the following two tasks:
1. Watch Literal Assigned/Reassigned: If the truth value of

one of the watch literals of an XOR is changed, XOR solver
computes the XOR constraint’s state. The state of the
XOR will be (exactly) one of the following: (i) conflicted,
(ii) propagated, (iii) satisfied, and (iv) has unassigned
variable. We refer to this procedure by propagate.

2. Propagation Fixpoint: The XOR solver computes the
state of all XOR constraints at the propagation fixpoint or
getting a new stable model. In this case, the state of the
XOR will be (exactly) one of the following: (i) conflicted,
(ii) propagated, (iii) satisfied, and (iv) undetermined. We
refer to this procedure by check.

Further Optimization of XOR Solving. We utilize some
heuristics further to speed up the XOR solving of ApproxASP.
Heuristic 9. If the state of an XOR is satisfied, the state will
be unchanged as long as the ASP solver does not backtrack.

For each XOR, we keep a separate bit to store whether
the XOR is satisfied or not. If the state of an XOR is satis-
fied, we set the bit. Later, we do not compute the state as
long as the corresponding bit is set. However, if the ASP
solver backtracks, we clear the corresponding bit. We use the
optimization in both propagate and check.
Heuristic 10. If both basic and non-basic variables of an
XOR are unassigned, then the state of the XOR is undeter-
mined.

The check function is invoked on each propagation fix-
point, which computes the state of each XOR constraint. If an
XOR is undetermined, it is unnecessary to compute its state.
To reduce the unnecessary computation, we skip computing
the state of an XOR if both of its basic and non-basic variables
are unassigned.
Heuristic 11. Constructing XOR constraints from indepen-
dent support.

Similar to the observations in the context of CNF-XOR
solving, the runtime of our implementation degrades with
an increase in the size of XOR. From the definition ofHxor,
each XOR is constructed by randomly choosing each variable
with a probability of 0.5. Thus the expected size of XOR is
half of the number of variables. Chakraborty et al. (2016)
observed that the construction of XORs over the independent
support of a formula suffices. As a result, the expected size
of XOR is half of the number of variables in the independent
support. Subsequently, Ivrii et al. (Ivrii et al. 2016) proposed
an efficient technique for computation of independent sup-
port for CNF formulas relying on the progress of Minimal
Unsatisfiable Subset (MUS) techniques.

Computing Independent Support. Since there is no off
the shelf independent support computation technique for gen-
eral ASP, we focus on the subset of ASP programs (namely,
normal programs2) for which we can rely on standard trans-
lations of ASP programs to SAT (Fages 1994; Janhunen and
Niemelä 2011; Bomanson 2017). We employ a tool for inde-
pendent support computation in the context of CNF formulas.

Experiments
We conducted a preliminary experimental evaluation to assess
the run-time performance of ApproxASP and the quality of
its approximation. We consider the following questions:
RQ1 How does ApproxASP compare to existing systems?

2Unless, we cannot compute independent support for disjunctive
programs, the heuristic is only taking effect on normal programs.
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Figure 1: Runtime of various tools for normal programs. The
x-axis refers to the number of instances; y-axis depicts the
runtime individually sorted in ascending order per solver.

RQ2 How does ApproxASP efficient for handling ASP pro-
grams with XOR constraints (ASP+XOR)?

RQ3 Does ApproxASP output approximate counts that are
indeed between (1+ε)−1 and (1+ε) of the exact counts?

Environment. All experiments were carried out on a high-
performance computer cluster, where each node consists of
an 2xE5-2690v3 CPUs running with 2x12 real cores and
96GB of RAM. The runtime was limited to 1000 and 5000
seconds, for ASP+XOR solving and approximate counting,
respectively. We follow standard guidelines for empirical
evaluations (van der Kouwe et al. 2018; Fichte et al. 2021)

Other tools. We selected four programs that allow for
counting answer sets, namely, DynASP v2.0 (Fichte et al.
2017), clingo v5.4.0 (Gebser et al. 2007), Ganak (Sharma
et al. 2019), ApproxMC4 (Soos, Gocht, and Meel 2020).
We compared the ASP+XOR solver of ApproxASP with
xorro (Everardo et al. 2019). clingo can count answer sets by
enumeration. While Ganak and ApproxMC are the state-of-
the-art exact and approximate propositional model counters,
respectively, they can be used to count answer sets using
translations to SAT for certain classes of programs (Fages
1994; Janhunen and Niemelä 2011; Bomanson 2017). We run
Ganak with cache size bounded to 2000 MB and compute the
sampling set of the SAT instance to run ApproxMC. In line
with previous works in approximate counting, we set ε = 0.8
and δ = 0.2 for both ApproxMC and ApproxASP.

Instances. We follow a similar approach on selecting in-
stances as previous works (Aziz et al. 2015; Fichte et al.
2017). We divide the benchmarks into (i) normal programs
and (ii) disjunctive programs. For normal programs (i), we
chose from different well-known graph problems encoded
into ASP programs, where we selected counting variants
for the vertex cover, independent set, dominating set, graph
reachability, and r-arborescence problem. We randomly gen-
erated 1500 graphs, consisting of at most 50 vertices and
250 edges taken equally from each class. For disjunctive pro-
grams (ii), we use the projected model counting problem on
2QBFs, which is known to be #·co-NP-complete (Durand,
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Figure 2: Clingo vs ApproxASP on disjunctive instances. If a
point is below the diagonal, then ApproxASP solves it faster.
The timeouted instances are shown beyond the 5000s axis.

Hermann, and Kolaitis 2005). We generated 200 random in-
stances, where the number of variables and clauses are at
most 100 and 200, respectively. All the generated QBF in-
stances are 3-DNFs. To generate ASP+XOR programs, we
add as much XORs to the ASP program so that the number of
answer sets in a randomly chosen cell is at most pivot p.

Analysis of RQ1. The results of our experiments are shown
in Figure 1 for non-disjunctive programs. The plot shows the
runtimes for each counter, and a point (x, y) on the plot
indicates that x instances took less than or equal to y sec-
onds to solve. Out of the 1500 instances, ApproxMC man-
aged to solve 1325 instances, whereas ApproxASP solved
1323 instances. Figure 2 shows the scatter plot of Clingo
and ApproxASP for disjunctive problems. Although clingo
is faster on some instances, it is clear that ApproxASP solves
sufficient instances in a reasonable time, which takes a huge
time to enumerate.

Table 1 shows the performance evaluation of clingo, Dy-
nASP, Ganak, ApproxMC, and ApproxASP on all instances.
The first row shows the total number of instances, the second
row shows the number of instances solved by each counter,
and the third row presents the PAR-2 score 3.

The time spent in translating ASP to SAT and calculat-
ing the independent support is negligible, which is < 1s on
average. For normal programs, ApproxMC and ApproxASP
solved a similar number of instances. For disjunctive prob-
lems, ApproxASP solved 185 instances and clingo solved
177 instances. While ApproxASP solved more instances than
clingo, we observe slightly different behavior than on nor-
mal programs. The gap between the runtime performance
of ApproxASP and clingo is small. However, this is not en-
tirely surprising, since we use trivial independent support for
disjunctive problems.

3PAR-2 score is penalized average runtime that assigns a runtime
of two times the timeout (without “not solved” status) for each
benchmark not solved by a tool.
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Figure 3: xorro vs ApproxASP (XOR solver) on ASP+XOR
programs. If a point is below the diagonal, then ApproxASP
(XOR solver) solves it faster. The timeouted instances are
shown beyond the 1000s axis.

C D G AMC AAS

N
or

m
al #Instances 1500 1500 1500 1500 1500

#Solved 738 47 973 1325 1323

PAR-2 5172 9705 3606 1200 1218

D
is

j. #Instances 200 200 200 200 200

#Solved 177 0 0 0 185
PAR-2 1372 10000 10000 10000 795

Table 1: The runtime performance comparison of (C) clingo,
(D) DynASP, (G) Ganak, (AMC) ApproxMC, and (AAS)
ApproxASP on all considered instances.

Analysis of RQ2. The results on ASP+XOR programs are
shown in Figure 3. From the figure, it is clear that the XOR
solver of ApproxASP is significantly faster than xorro.

Analysis of RQ3. We compare the number of solutions
computed by ApproxASP with solutions returned by exact
counters to assess the quality of the approximation. The re-
sults of our comparison are shown in Figure 4. We observe
that ApproxASP outputs counts within the tolerance for all
the instances that are close to the output of clingo or Ganak.
Moreover, we compute the observed tolerance εobs, which is
defined as max(s/|AS(P )|− 1, |AS(P )|/s− 1), where s is the
output given by ApproxASP. We observe a maximum value
of εobs = 0.25 and the arithmetic mean of εobs = 0.037
across all instances, while the theoretical guarantee is 0.8.

Summary. Our experimental study illustrates that on
the selected benchmarks of disjunctive logic programs,
ApproxASP performs well. ApproxASP solved 185 instances
among 200 instances, while the best ASP solver clingo solved
a total of 177 instances. On normal programs, ApproxASP
performs on par with state-of-the-art approximate model
counter ApproxMC. In terms of the quality of approximation,
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Figure 4: Visualization of the tolerance, which is computed
from the estimate of ApproxASP.

ApproxASP outputs counts within [(1 + ε)−1, (1 + ε)] ratio
of the exact number of answer sets for all instances.

Conclusion
In this paper, we present ApproxASP, the first scalable ap-
proximate counter for ASP programs that employs pairwise
independent hash functions, represented as XOR constraints,
to partition the solution space, and then invokes an ASP solver
on a randomly chosen cell. To achieve practical efficiency, we
augment the state of the art ASP solver, clingo, with native
support for XORs. Our empirical evaluation clearly demon-
strates that ApproxASP is able to handle problems that lie
beyond the reach of existing counting techniques. Our em-
pirical evaluation shows that ApproxASP is competitive with
ApproxMC on the subset of instances that can be translated
to CNF without exponential blowup and can handle instances
disjunctive programs, which can not be solved via reduction
to #SAT without exponential blowup. The empirical analysis,
therefore, positions ApproxASP as the tool of choice in the
context of counting for ASP programs.
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