
Answering Queries with Negation over Existential Rules

Stefan Ellmauthaler, Markus Krötzsch, Stephan Mennicke
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Abstract

Ontology-based query answering with existential rules is well
understood and implemented for positive queries, in particu-
lar conjunctive queries. For queries with negation, however,
there is no agreed-upon semantics or standard implementa-
tion. This problem is unknown for simpler rule languages,
such as Datalog, where it is intuitive and practical to evaluate
negative queries over the least model. This fails for existen-
tial rules, which instead of a single least model have multiple
universal models that may not lead to the same results for
negative queries. We therefore propose universal core mod-
els as a basis for a meaningful (non-monotonic) semantics
for queries with negation. Since cores are hard to compute,
we identify syntactic conditions (on rules and queries) under
which our core-based semantics can equivalently be obtained
for other universal models, such as those produced by practi-
cal chase algorithms. Finally, we use our findings to propose a
semantics for a broad class of existential rules with negation.

Introduction
Existential rules are a prominent approach in knowledge
representation, due to theoretical and practical advances in
ontology-based query answering (Baget et al. 2009; Calı̀,
Gottlob, and Lukasiewicz 2009), but also because of ap-
plications in many other domains, such as data exchange
and integration (Fagin et al. 2005). Answering conjunctive
queries (CQs) over sets of existential rules is often the main
goal, where a CQ is entailed if it is satisfied by all models
of the given rules. This is often implemented using univer-
sal models, which is a class of models each representing all
positive query answers, such that one such model suffices to
answer CQs (Deutsch, Nash, and Remmel 2008).

However, for queries that ask for the absence of facts (i.e.,
queries incorporating negated atoms), universal models can-
not be used because different universal models may yield
different query answers. This is a major problem, since nega-
tion is an important feature in real-world queries, and a se-
mantic prerequisite for supporting negation in rule bodies,
which can be viewed as a recursive generalisation of neg-
ative queries. The severity of this limitation is further ag-
gravated by the fact that no such problems exist for Dat-
alog, where negative queries can safely be evaluated over
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the unique least model. This can be further generalised by
considering stratified negation in rule bodies, which yields
an intuitive and implementable non-monotonic semantics
(Abiteboul, Hull, and Vianu 1994). But even this basic form
of negation is not safe to use with existential rules.

What makes this problem challenging is that we are look-
ing for a non-monotonic form of negation, where the ab-
sence of positive evidence is sufficient to entail negative in-
formation. Indeed, under the classical first-order semantics
of negation, no negated queries are ever entailed by a set
of existential rules. However, it is not immediate when a
non-monotonic semantics should allow for additional, non-
classical consequences, and several distinct approaches have
been proposed for existential rules (Magka, Krötzsch, and
Horrocks 2013; Baget et al. 2014; Gottlob et al. 2014; Al-
viano, Morak, and Pieris 2017; Krötzsch 2020). Our goal
for this paper is to provide a semantics that agrees with
the widely used and generally accepted semantics of Dat-
alog with stratified negation for rules without existentials,
but which also respects the classical reading of existential
quantifiers as mere statements of existence of certain ele-
ments without any commitment to their identity (in contrast
to logic programming approaches that use function terms for
referring to distinguished objects).

We therefore propose to evaluate negations with respect to
universal models that are cores, an algebraic property that,
intuitively speaking, ensures that they contain no redundant
structures. Many good practical and theoretical results have
been obtained for core models (Fagin, Kolaitis, and Popa
2005; Deutsch, Nash, and Remmel 2008; Carral et al. 2018;
Krötzsch 2020), but computing cores from arbitrary struc-
tures is expensive (Hell and Nešetřil 1992).

We therefore ask if our core-based semantics for negation
can also be computed using other kinds of universal mod-
els, which are easier to compute in practice. It turns out
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that this is possible if we restrict the shape of the queries
that we want to answer, and we define several classes of
“safe” queries that can be evaluated over broader classes of
models. Our results are summarised in Figure 1, which il-
lustrates the inverse relationship between the generality of
the query language and the specificity of the models that
one can use to compute them. The (restricted) chase refers
to a widely implemented type of reasoning algorithm, such
that the respective query classes could be evaluated in prac-
tice (Nenov et al. 2015; Benedikt et al. 2017; Bellomarini,
Sallinger, and Gottlob 2018; Carral et al. 2019). The symbol
v expresses that core models can be embedded into every
restricted chase, although no such chase is necessarily equal
to the core (hence no ⊆). For any of the given query frag-
ments, we provide concrete syntactic definitions that can be
decided in practice.

Our final contribution is the extension of our approach to
existential rules with negation in their bodies. This is tech-
nically more challenging than mere query answering, and
even the eager computation of cores during reasoning can-
not guarantee a unique semantics (Krötzsch 2020). We focus
on cases where rules can be stratified in a certain sense, but
our conditions significantly generalise classical stratification
(Abiteboul, Hull, and Vianu 1994) and the recent full strat-
ification for existential rules (Krötzsch 2020). Nevertheless,
we can still find a unique “perfect” model that can be used
in query answering, making our approach a valid generali-
sation of the perfect core model semantics (Krötzsch 2020).

All proofs are included in the technical report of the pa-
per (Ellmauthaler, Krötzsch, and Mennicke 2021).

Preliminaries
We consider a first-order signature with disjoint sets of con-
stants C, (labelled) nulls N, variables V, and predicates P.
A term t is an element of C ∪ N ∪ V. Lists of terms are
denoted t = t1, t2, . . . , tn with n = |t|, and treated as sets
when order is irrelevant. Each predicate p ∈ P has an arity
ar(p) ∈ N. An atom is an expression p(t) with p ∈ P and
ar(p) = |t|. An atom p(t) is ground if t ⊆ C. An interpre-
tation I is a set of atoms without variables. A database D is
a finite set of ground atoms.

Rules and Queries An (existential) rule r is a formula

r = ∀x,y. ϕ[x,y]→ ∃z. ψ[y, z], (1)

where ϕ and ψ are conjunctions of atoms using only terms
from C or from the mutually disjoint lists of variables
x,y, z ⊆ V. We call ϕ the body (denoted body(r)), ψ the
head (denoted head(r)), and y the frontier of r. For ease of
notation we may treat conjunctions of atoms as sets, and we
omit universal quantifiers in rules. We require that all vari-
ables in y actually occur in ϕ (safety).1 A rule is Datalog if
it has no existential quantifiers.

A normal Boolean conjunctive query (BNCQ) is a for-
mula q = ∃x.ϕ∧ψ, where ϕ is a conjunction of atoms with
variables from x, and ψ is a conjunction of negated atoms
not p(t) using only variables that occur in ϕ (safety). We

1This requirement can be relaxed, but it simplifies presentation.

write q+ (q−) for the set of all non-negated atoms in ϕ (ψ).
If q− = ∅, then q is a boolean conjunctive query (BCQ).

Models and Entailment Given a set of atoms A and an
interpretation I, a homomorphism h : A → I is a func-
tion that maps the terms occurring inA to (the variable-free)
terms occurring in I, such that: (i) for all c ∈ C, h(c) = c;
(ii) for all p ∈ P, p(t) ∈ A only if p(h(t)) ∈ I , where h(t)
is the list of h-images of the terms t. If h satisfies (ii) with
“only if” strengthened to “iff”, h is a strong homomorphism.
An embedding is an injective strong homomorphism, and an
isomorphism is a bijective strong homomorphism (i.e., sur-
jective embedding). We apply homomorphisms to a formula
by applying them individually to all of its atoms.

A match of a rule r in an interpretation I is a homomor-
phism h : body(r) → I. A match h of r in I is satisfied
if there is a homomorphism h′ : head(r) → I, such that
h ⊆ h′. We call h′ an extension of h. Rule r is satisfied by
I, written I |= r, if every match of r in I is satisfied. A set
of rules Σ is satisfied by I, written I |= Σ, if I |= r for all
r ∈ Σ. We call I a model of Σ and databaseD if I |= Σ and
D ⊆ I . A BNCQ q is satisfied by I, written I |= q, if there
is a homomorphism h : q+ → I with h(q−) ∩ I = ∅. Note,
a BNCQ q with q+ ∩ q− 6= ∅ can never be satisfied. Herein
we consider only BNCQs q that are non-trivial in this sense.

Universal Models and the Chase A model U of D and Σ
is universal if there is a homomorphism U → M for every
model M of D and Σ. Universal models can be computed
with the chase (Deutsch, Nash, and Remmel 2008). In this
paper, we will mainly deal with the restricted chase (also
known as standard chase).
Definition 1. Let D be a database and Σ a set of rules. A
sequence D0,D1, . . . is called a (restricted) chase sequence
of D and Σ iff
1. D0 = D,
2. for every Di+1 (i ≥ 0) there is a rule r ∈ Σ of the form

(1) and a match h for r in Di with
(a) h is an unsatisfied match for r in Di and
(b) there is an extension h? : head(r) → Di+1 of h, such

that h?(z) is a fresh null for each z ∈ z, and
3. if h is a match for some rule r ∈ Σ in Di (i ≥ 0), then h

is satisfied in some Dj with j ≥ i (fairness).
r is applicable in Di if it has an unsatisfied match in Di.
Chase sequence D0,D1, . . . ,Dk is called terminating if Dk
is a model of Σ and D. We call D∞ :=

⋃
i≥0Di a chase of

Σ and D.
Other chase variants, like the Skolem/semi-oblivious or

the oblivious chase, mainly differ in the respective defini-
tions of rule applicability (2. (a) in Definition 1).

Influence of Existential Quantifiers For some of the up-
coming notions, it is useful to have rule sets Σ where each
rule makes use of a distinct set of variables from all the other
rules. We say that Σ is renamed-apart. Every rule set can be
rewritten to an equivalent renamed-apart rule set.

The positions in a predicate p ∈ P are the pairs
〈p, 1〉, . . . , 〈p, ar(p)〉, and we will refer to terms at a cer-
tain position in an atom, set of atoms, or other formula.
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Var(X) (Var∃(X)/Var∀(X)) denotes the set of all (existen-
tially quantified/universally quantified) variables in a rule
or rule set X . We reproduce the following definition from
Krötzsch and Rudolph (2011) to obtain a structure allowing
for syntactic reasoning of the influence of existential quanti-
fiers within the chase.

Definition 2. Let Σ be a renamed-apart rule set. For x ∈
Var(Σ), let ΠB

x (ΠH
x ) be the sets of all positions at which x

occurs in the body (head) of a (necessarily unique) rule in Σ.
If x ∈ Var∃(Σ), then Ωx is the smallest set of positions such
that (1) ΠH

x ⊆ Ωx and (2) for all y ∈ Var∀(Σ), ΠB
y ⊆ Ωx

implies ΠH
y ⊆ Ωx. The set of jointly affected positions is⋃

x∈Var∃(Σ) Ωx. For x, y ∈ Var∃(Σ), we write x  y if the
(unique) rule of y has a frontier variable z with ΠB

z ⊆ Ωx.

The relation x  y states that nulls created for x po-
tentially enable rule applications that create nulls for y. Of
particular interest is the transitive and reflexive closure ∗.
Starting from a set of existentially quantified variables, we
seek all positions at which a null might occur that is directly
or indirectly influenced by a variable in this set.

Definition 3. Let Σ be a renamed-apart rule set and let V ⊆
Var∃(Σ). A position π is V -influenced if there are x ∈ V and
y with x ∗ y such that π ∈ Ωy .

Note that jointly affected is the same as Var∃(Σ)-
influenced. Virtually any chase variant (restricted, Skolem,
and oblivious) is compatible with jointly affected positions,
meaning that nulls in chases D∞ only occur in Var∃(Σ)-
influenced positions.

Proposition 1. For renamed-apart rule set Σ and
database D with (Skolem/oblivious/restricted) chase D∞, if
p(t1, . . . , tar(p)) ∈ D∞ and ti ∈ N (1 ≤ i ≤ ar(p)), then
〈p, i〉 is Var∃(Σ)-influenced.

The proof uses an over-approximation of the chase proce-
dure (Ellmauthaler, Krötzsch, and Mennicke 2021).

Answering BNCQs on Core Models
A BCQ is entailed by rule set Σ and database D if it is sat-
isfied by all models of Σ and D. Moreover, every univer-
sal model of Σ and D satisfies exactly the BCQs that are
entailed in this sense. Neither condition is appropriate to de-
fine entailment of BNCQs that may use negation. On the one
hand, no such query is satisfied in all models since there is
always a model where every BCQ is true. On the other hand,
different universal models do not satisfy the same BNCQs.

Example 1. Take for instance the database D =
{a(1, 2), b(2, 2)} together with an empty rule set. Of course,
D is a universal model, but so is U := D ∪ {a(1, n)}
(where n ∈ N). As mentioned above, all BCQs evalu-
ate with the same result on D or U . However, for BNCQ
q = ∃x, y. a(x, y) ∧ ¬b(y, y) we get U |= q while D 6|= q.

Models that are cores have been suggested as the appro-
priate model for defining the semantics of queries that may
depend on negative information (Deutsch, Nash, and Rem-
mel 2008; Baget et al. 2014). This suggestion is substanti-
ated by the fact that cores are unique up to isomorphism and

that isomorphic structures cannot be distinguished by first-
order (FO) queries (see, e.g., the Isomorphism Lemma by
Ebbinghaus, Flum, and Thomas (1994)). Indeed, if a univer-
sal model is a core, then it satisfies fewer BNCQs than any
other model (see also Theorem 1 below), resulting in the
most “cautious” notion of non-monotonic entailment.

Definition 4. A finite interpretation I is a core if every ho-
momorphism h : I → I is an isomorphism. A core model of
a rule set Σ and a database D is a finite universal model of
Σ and D that is a core.

If Σ and D have any finite universal model, then
they admit a finite core, which is unique up to isomor-
phism (Deutsch, Nash, and Remmel 2008). The situation is
more complicated on infinite structures, which admit sev-
eral non-equivalent definitions of core (Bauslaugh 1995) and
where core models might fail to exist altogether (Carral et al.
2018). We therefore focus on cases with finite models M
and their unique cores, which we denote core(M). Many
conditions have been studied to recognise cases where finite
universal models are guaranteed to exist (Cuenca Grau et al.
2013). In the rest of the paper we study the notion of core
entailments for BNCQs, being those entailments we obtain
when evaluating the query on the core model.

Definition 5. A rule set Σ and database D core-entail a
BNCQ q, written Σ,D |=c q, if Σ and D have a core model
C satisfying q.

Important Assumption Throughout this paper, we only
consider pairs of rule sets Σ and databases D that have a (fi-
nite) core model. Definition 5 does not apply to other cases.

Reconsidering Example 1, D is not just any universal
model, but the core model. Hence, Σ,D 6|=c q for the query
q in the example, as one might intuitively expect. As shown
in Example 1, such non-entailments are not preserved in ar-
bitrary (universal) models, but it turns out that entailments
are. This is a consequence of the fact that core models are
embedded in all universal models in the following sense.

Lemma 1. Let Σ be a rule set and D a database with core
model C and arbitrary universal model U . (1) If h : C → U is
a homomorphism, it is an embedding. We call h(C) the core
instance of U and denote it by Uc. (2) Every homomorphism
h : Uc → Uc is an isomorphism.

Proof. On (1), since U is a universal model and C a (core)
model of Σ and D, there is a homomorphism h′ : U → C.
Note, h′ ◦ h : C → C is an isomorphism as C is a core. We
show that h is an embedding, i.e., h is injective and strong.
For injectivity, let u and t be distinct terms occurring in C.
If h(u) = h(t), it follows that h′ ◦ h(u) = h′ ◦ h(t), which
contradicts the assumption that h′ ◦ h is an isomorphism.
For showing that h is strong, let u be a list of terms in C and
p(h(u)) ∈ U . We need to show that p(u) ∈ C. As h′ ◦ h
is an isomorphism on C, its inverse is also an isomorphism.
Hence, p(h′ ◦h(u)) ∈ C and p((h′ ◦h)−1 ◦ (h′ ◦h)(u)) ∈ C
allow for the conclusion p(u) ∈ C.

Towards (2), there is an isomorphism i : C → Uc by the
argumentation above. Let h : Uc → Uc be a homomorphism.
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Define j := i−1◦(h◦i) (i.e., j : C → C). Since C is a core, j
is an isomorphism. Hence, h must be an isomorphism.

Based on the core instance, we can now show that core
entailments of BNCQs carry over to all universal models.

Theorem 1. For every rule set Σ, database D, and BNCQ
q, if Σ,D |=c q, then U |= q for all universal models U of Σ
and D.

Proof. Let C be a core model of Σ and D. The core instance
Uc ⊆ U preserves all FO-queries, including BNCQs. We
conclude that for all BNCQ q, C |= q implies U |= q.

In fact, up to minor variations, the core model is the only
model with this property: the only other models for which
BNCQ satisfaction is preserved in all universal models are
those that can be covered by embeddings from the core
model (i.e., all facts occur in the image of some embedding
from the core). However, it turns out that some BNCQs al-
low us to consider broader classes of models for checking
core entailment, as we will see in the following sections.

Affection-Safe BNCQs
In spite of its appealing semantics, core entailment has the
practical disadvantage that core models are difficult to com-
pute. This difficulty seems unavoidable if we want mini-
mality in the sense of Theorem 1. However, this does not
mean that core entailment of BNCQs does always require
us to compute the core model. For example, BNCQs with-
out negation can equivalently be answered in any universal
model. We show that similar results can also be obtained for
more interesting classes of BNCQs, and how these classes
can be effectively recognised.

This requires us to look at more specific classes of mod-
els. Indeed, we can readily see that entailment over all uni-
versal models does often not coincide with core entailment
since core-non-entailments are not preserved across univer-
sal models: every BNCQ q whose positive part is entailed is
also true in some universal model, unless its negative part is
a logical consequence (in this case, the non-entailment of q
is a first-order logical consequence). This can be shown by
adding redundant structures where q is satisfied, as in Exam-
ple 1, but taking arbitrary rule sets into account.

Proposition 2. Consider a rule set Σ and database D. For
every BNCQ q such that (a) Σ,D |= q+ and (b) Σ,D 6|=
q+ ∧ a(t) for all a(t) ∈ q−, there is a universal model U of
Σ and D with U |= q.

Proof. Define D+ := D ∪ {p(ν(u)) | p(u) ∈ q+} with
ν(t) = t for all t ∈ C and ν(t) a fresh null for all t ∈ V.
Now let U be a chase over Σ and D+ (e.g., some restricted
chase). By construction, U is a model of Σ and D, and ν is
a match ν : q+ → U . By safety, ν is defined for Var(q−).

Now for any α = a(t) ∈ q−, let Uα be a universal model
of Σ and D such that Uα 6|= q+ ∧ α, which exists due to
(b). Due to (a), there is a match ν′ : q+ → Uα such that
ν′(α) /∈ Uα (using (b)). Since, moreover, D ⊆ Uα, we
find that there is a homomorphism h : D+ → ν′(q+) ∪ D.
By soundness of the chase, h extends to a homomorphism

h′ : U → Uα. Since Uα is universal, this shows that U is uni-
versal. By construction, h′(ν(α)) = ν′(α) /∈ Uα, and hence
ν(α) /∈ U . Applying the same reasoning to all α ∈ q−, we
find that ν shows U |= q.

Hence, only limited classes of BNCQs can be evaluated
over arbitrary universal models. This, however, is due to
some universal models containing unmotivated clutter that
users might intuitively not expect. In particular, the univer-
sal models that are computed by chase procedures are not
of this form, and can only produce nulls in jointly affected
positions (Proposition 1). Therefore, if all variables in q−
are bound to some position in q+ that is not jointly affected,
then these variables can only match constants.
Definition 6. Let Σ be a rule set. A BNCQ q is affection-
safe w.r.t. Σ if every variable in q− occurs at a position in
q+ that is not jointly affected.

Since all common (e.g., restricted, Skolem, oblivious)
chases are compatible with joint affection, we can use their
outputs to answer affection-safe BNCQs.
Theorem 2. For every rule set Σ, database D, and
affection-safe BNCQ q, we have Σ,D |=c q iffM |= q for
some2 chaseM computed for Σ andD by a chase procedure
compatible with jointly affected positions (Proposition 1).

Proof. The “only if” direction follows from Theorem 1. For
the “if” direction, let M be as in the claim. By Proposi-
tion 1, terms t at positions 〈a, i〉 in M that are not jointly
affected are constants. Let C be the core model of Σ and D.
By universality, there are homomorphisms h1 :M→ C and
h2 : C → M. SupposeM |= q by a match h : q+ → M
with h(q−)∩M = ∅, but Σ,D 6|=c q. Since h1◦h(q+) ⊆ C,
this means h1 ◦ h(q−) 6= ∅. Hence there is p(t) ∈ q− with
p(h1 ◦h(t)) ∈ C \M, and therefore p(h2 ◦h1 ◦h(t)) ∈M.
As h(t) contains only constants, this implies p(h(t)) ∈ M,
contradicting our assumption thatM |= q.

Core-Safe BNCQs
Affection safety ensures that chase-based models only en-
tail negative BNCQ atoms if they match null-free facts,
which always agree across all universal models. We now re-
lax this requirement based on the recent notion of restraints
(Krötzsch 2020), which allow us to identify a larger set of
“safe” positions to bind to. The next example, adopted from
Alviano, Morak, and Pieris (2017), illustrates the problem:
Example 2. Take as database D = {p(A), f(B,A)}
(mnemonics: parent, father-of, equal) and rules

f(x, y)→ e(x, x) (2)
p(x)→ ∃y. f(y, x) ∧ e(y, y) (3)

We can obtain two restricted chases on Σ = {(2), (3)}
and D: U1 = D ∪ {e(B,B)} and U2 = D ∪
{f(n,A), e(n, n), e(B,B)}. For U1, we only apply (2) for
match h1 = {x 7→ B, y 7→ A}; then (3) is satisfied. For U2,
we apply (3) for match h2 = {x 7→ A}, and then rule (2) for

2The restricted chase, e.g., can yield distinct chase results de-
pending on rule application order. Any of them can be used here.
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match h1. The BNCQ q = ∃x1, x2, y. f(x1, y) ∧ f(x2, y) ∧
¬e(x1, x2) is such that U1 6|= q and U2 |= q. Since U1 is the
core model of Σ and D, we obtain Σ,D 6|=c q.

Arguably, the construction of U2 should not have applied
(3) with the extended match h?2 = {x 7→ A, y 7→ n}, be-
cause U2 eventually does not need n to satisfy (3). Indeed,
h+

2 = {x 7→ A, y 7→ B} would be another way to extend
h2 to satisfy (3). Functions that remap heads of prior rule
applications to alternative structures in a chase are called al-
ternative matches, and they can be shown to occur whenever
a restricted chase fails to produce a core (Krötzsch 2020).

Definition 7. Let Ia ⊆ Ib be interpretations such that Ia
is obtained from applying rule r for extended match h?. A
homomorphism h′ : h?(head(r)) → Ib is an alternative
match of h if

• h′(t) = t for all terms t in h?(body(r)), and
• there is a null n in h?(head(r)) that does not occur in
h′(h?(head(r))).

The occurrence of alternative matches in a restricted
chase is associated with structures that do not occur in the
core (Krötzsch 2020). Such structures could lead to addi-
tional BNCQ matches. Since alternative matches involve
nulls, affection safety can mitigate this by forcing variables
in negative atoms to match constants. However, it is more
general and still safe if we merely restrict to elements that
are not directly or indirectly related to potential alterna-
tive matches. The existence of alternative matches in a real
chase is undecidable, but we can (over)approximate such
matches by considering chase-like interactions of pairs of
rules. Based on this approach of defining restraints between
rules (Krötzsch 2020), we can identify existential variables
that are at risk of producing redundant structures:

Definition 8. A rule r1 restrains rule r2, written r1 ≺� r2,
if there are interpretations Ia ⊆ Ib and a function h2 where

1. Ib is obtained by applying r1 for match h1,
2. Ia is obtained by applying r2 for match h2,
3. h2 has an alternative match h′: h?2(head(r2))→Ib, and
4. h2 has no alternative match h?2(head(r2)) → Ib \
h?1(head(r1)).

In this situation, a variable x ∈ Var∃(r2) is restrained if
h?2(x) does not occur in h′(h?2(head(r2))). We write RΣ for
the set of all restrained variables of a rule set Σ.

Variables in RΣ may produce nulls that are not repre-
sented in the core model. Moreover, such nulls may be
involved in further rule applications that derive additional
structures that deviate from the core. To find positions of el-
ements that are certain to agree with the core, we therefore
consider all positions that are influenced by restrained vari-
ables in the sense of Definition 3.

Definition 9. Let Σ be a rule set. A position π is core-safe
(w.r.t. Σ) if it is not RΣ-influenced. A BNCQ q is core-safe
w.r.t. Σ if every variable in q− occurs at a core-safe position
in q+.

Reconsidering query q of Example 2, we find that
q is not core-safe w.r.t. the given rule set. Positions

〈e, 1〉, 〈e, 2〉, 〈f, 1〉 are not core-safe and variables x1 and x2

both occur at 〈f, 1〉 in q+. This explains why this example
admits restricted chase sequences on which the entailment
of q disagrees with the core model. Indeed, for core-safe
BNCQs, this problem can never occur:
Theorem 3. For every rule set Σ, database D, core-safe
BNCQ q, and restricted chaseM of Σ and D, we find that
Σ,D |=c q iffM |= q.

The “only if” direction is again clear from Theorem 1.
The proof for the “if” direction is given below. The key in-
sight is that terms at core-safe positions in a chaseM must
belong to the core instanceMc ofM (cf. Lemma 1). This is
a similar situation as for affection-safety, where we showed
that variables at affection-safe positions must be instantiated
with constants, which therefore occur in the core.
Lemma 2. For a restricted chase M of rule set Σ and
database D (with finite core model), and core instanceMc

ofM, if a term t occurs at a core-safe position inM, then t
occurs inMc.

Proof Sketch. Let C be the core model of Σ and D, h1 :
M → C a homomorphism (existence by M being univer-
sal), and h2 : C → Mc the isomorphism for which h−1

2

agrees with h1, i.e., h−1
2 (t) = u if h1(t) = u. The ex-

istence of an isomorphism i is ensured by Lemma 1. Fur-
thermore, consider the restriction h′1 : Mc → C of h1 to
Mc. By Lemma 1 (2), i ◦ h′1 : Mc → Mc is an isomor-
phism. Set h2 := (h′1)−1, which is an isomorphism since
(i−1 ◦ i ◦ h′1) = h′1 is an isomorphism.

We subsequently analyse the homomorphism h′ := h2 ◦
h1. With respect to the choice of h2, we show that if t occurs
at a core-safe position in M, then h′(t) = t. The rest of
the proof is an induction on the chase sequence of M and
is included in our technical report (Ellmauthaler, Krötzsch,
and Mennicke 2021).

Proof of Theorem 3. For the remaining “if” direction, sup-
poseM |= q. Then there is a homomorphism h : q+ →M
with h(q−)∩M = ∅. For core model C of Σ andD and core
instanceMc ofM, let h1 :M→ C / h2 : C → Mc be the
respective homomorphism/isomorphism (by Lemma 1).

Let r(t) ∈ q−. We show that r(h(t)) /∈ M implies
r(h1(h(t))) /∈ C. Every variable in t occurs in at least
one core-safe position in q+ (by core-safety of q). Thus, ev-
ery term in u = h(t) occurs in Mc by Lemma 2. Since
r(u) /∈ M (and r(u) /∈ Mc), r(h1(u)) /∈ C because, oth-
erwise, r(h2(h1(u))) ∈Mc, which contradicts r(u) /∈Mc

(therefore, /∈M) because h2 ◦h1 is an isomorphism onMc

(by Lemma 1 (2)).

Core-safe BNCQs therefore are a significant generalisa-
tion of affection-safe BNCQs, at the cost of requiring the use
of the restricted chase – or any other correct chase procedure
that ensures that its results are subsets of some restricted
chase. In practice, this includes chase implementations that
use specific strategies to decide the order in which rules are
applied, e.g., by prioritising Datalog rules (which never in-
troduce unnecessary nulls) (Urbani et al. 2018). Since Defi-
nition 8 identifies restrained variables under the assumption
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that rule r1 might be applied before rule r2, the fact that
some rule application orders are generally impossible (or
simply did not happen in a specific run) allows us to con-
sider more variables effectively core-safe.

Definition 10. Let Σ be a rule set, D a database, and
S = D0,D1,D2, . . . a restricted chase sequence with

Di−1 ri,hi−−−→ Di for i ≥ 1, ri ∈ Σ and (unsatisfied) match
hi. A variable x ∈ RΣ is effectively restrained in S if there
are j < k, such that x occurs in rule rj and rk ≺� rj . The
set of all effectively restrained variables in S is denoted RS .

A position 〈a, i〉 is effectively core-safe w.r.t. S if it is not
RS-influenced. A BNCQ q is effectively core-safe w.r.t. S
if every variable x in q− occurs at an effectively core-safe
position in q+.

Effective core safety marks even more positions as safe
for BNCQs to query for.

Theorem 4. For every rule set Σ, database D, restricted
chase sequence S = D0,D1,D2, . . . over Σ and D with
chaseM =

⋃
i≥0Di, and BNCQ q that is effectively core-

safe for S, it holds that Σ,D |=c q iffM |= q.

Proof sketch. Similar argumentation as for the proof of The-
orem 3. In particular, terms at effectively core-safe positions
do occur in the core instanceMc ofM (cf. Lemma 2).

Our results put BNCQ answering under core entailment
semantics into reach for practical implementations. Indeed,
chase procedures, including the restricted chase, are sup-
ported by efficient implementations, and the computation
of restraints is of the same complexity as the application
of a single rule, namely ΣP

2 -complete (Krötzsch 2020). This
may at first seem harder than computing the core, which is
known to be DP-complete (Fagin, Kolaitis, and Popa 2005),
but the crucial difference is that the worst-case complexity
of core computation refers to the size of the whole chase
(often millions of facts), whereas for rule applications and
restraint checking, it is about the size of a single rule (typ-
ically dozens of facts). This may explain why no general
implementation of the core chase is available today.

Rules with Negation
We turn our attention to normal rules, which admit negated
atoms in their bodies and can naturally be viewed as a recur-
sive generalisation of BNCQ answering. Using our previous
insights, we first define a chase-based semantics for such
rules in cases where rule bodies are core-safe. We then gen-
eralise this by stratifying rule sets in a way that is compatible
with restraints, generalising the notion of full stratification
for normal existential rules (Krötzsch 2020). This yields a
unique and well-defined semantics that we call perfect core
semantics.

A normal existential rule is an expression r =
∀x,y. ϕ[x,y] ∧ χ[x,y] → ∃z. ψ[y, z], such that
∃x,y. ϕ[x,y] ∧ χ[x,y] is a BNCQ, and ψ[y, z] is a con-
junction of atoms. We use body+(r) and body−(r) for the
sets of all atoms in ϕ and χ. A match of r in an inter-
pretation I is a homomorphism h : body+(r) → I with

h(body−(r))∩I = ∅. Other notions are as defined for rules
without negation.

The restricted chase procedure of Definition 1 can then
directly be applied to normal rules. This does not in general
lead to a sound reasoning algorithm, since a rule might be
applicable due to the absence of a negated atom that is in-
ferred later on in the chase. Chase sequences where this does
not happen have been called generating and can be used to
define a kind of stable model semantics for normal existen-
tial rules (Baget et al. 2014).

A well-known approach to obtain generating chase se-
quences is stratification, where rules are partitioned into a
sequence of sets (“strata”) such that rules in higher strata
cannot derive facts that occur negatively in rules of lower
strata. For (normal) existential rules, stratifications have
been defined using three relations between rules: positive
reliances r1 ≺+ r2 express that r1 might derive facts that
allow r2 to be applied, negative reliances r1 ≺− r2 express
that r1 might derive facts that prevent a possible application
of r2 since they occur in body−(r2), and restraints r1 ≺� r2

are as in Definition 8 with the additional condition that h1

and h2 are also matches (for normal rules) with respect to
Ib. Full formal definitions of these notions are given in our
report (Ellmauthaler, Krötzsch, and Mennicke 2021).
Example 3. Consider the rules (mnemonics: parent, father-
of, male, child-of, adult, older-than-3, tired)

p(x)→ ∃v. f(x, v) ∧m(v) (4)
f(x, y)→ m(y) ∧ c(y, x) (5)

f(x, y) ∧ not a(x) ∧ not o(x)→ t(y) (6)
a(x)→ o(x) (7)

We have (5) ≺� (4), (4) ≺+ (5), and (4) ≺+ (6). There are
no other relations, in particular (7) 6≺− (6) since (7) is only
applicable in cases where (6) is not applicable anyway.

For a set of normal rules Σ, let RΣ denote the set of re-
strained variables as of Definition 8, modified for normal
rules as mentioned above. The set of RΣ-influenced and
core-safe positions is defined as before, ignoring negated
atoms in rules. Then a rule r ∈ Σ is core-safe if every vari-
able in body−(r) occurs on a core-safe position in body+(r).
A first simple observation highlights a case where the re-
stricted chase can safely be applied to normal rules:
Proposition 3. Let Σ be a set of normal rules such that (1)
all rules in Σ are core-safe and (2) there is no negative re-
liance r1 ≺− r2 between any rules r1, r2 ∈ Σ. Then ev-
ery restricted chase sequence over Σ and any database D is
generating and yields a model of Σ and D. Moreover, all of
these models are homomorphically equivalent.

The full proof is included in our technical report (Ellmau-
thaler, Krötzsch, and Mennicke 2021).
Example 4. Let Σ denote the set of rules in Example 3. We
find that RΣ = {v} because of (5) ≺� (4), such that RΣ-
influenced positions are 〈f, 2〉, 〈m, 1〉, 〈c, 1〉, 〈t, 1〉. Hence,
(6) is core-safe, and Proposition 3 applies.

For a database D = {p(A), f(A,B)}, we can obtain
the restricted chases U1 = D ∪ {m(B), c(B,A), t(B)}
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(by applying (5) before (4)) and U2 = U1 ∪
{f(A,n),m(n), c(n,A), t(n)} (by applying (4) before (5)).
Though distinct, they are homomorphically equivalent and
U1 is their unique core.

Example 4 also illustrates a case that is covered by Propo-
sition 3 but is not in scope of the previously defined full
stratification, which we recall and adapt next. As opposed to
traditional stratifications, the definition of Krötzsch (2020)
effectively allows some rules (esp. those that are not the tar-
get of any ≺− or ≺�) to appear in multiple strata.
Definition 11. For a set Σ of normal rules, a list S =
〈Σ1, . . . ,Σn〉 with Σ =

⋃n
i=1 Σn is a quasi stratification

if, for all rules r1 ∈ Σi and r2 ∈ Σj ,
1. if r1 ≺+ r2 then i ≤ j,
2. if r1 ≺− r2 then i < j,
3. if r1 ≺� r2 then i ≤ j.
A quasi stratification S is a full stratification if i < j holds
in case (3); it is a core-safe stratification if all rules in Σk
are core-safe for Σk for all k ∈ {1, . . . , n}.
Example 5. The rules of Example 3 do not admit a full strat-
ification due to the cycle (5) ≺� (4) ≺+ (5), but they can be
a stratum in a core-safe stratification. We add further rules

f(x, y)→ e(y, y) (8)
f(x, y1) ∧ f(x, y2) ∧ not e(y1, y2)→ d(y1, y2) (9)

Then (4) ≺+ (8) and (8) ≺− (9). Rule (9) is not core-safe
in the set of all rules. A possible core-safe stratification is
S = 〈{(4), (5), (6), (7)}, {(8)}, {(9)}〉.

Full stratifications have been used to define the perfect
core model, as the unique model obtained by conducting a
(necessarily generating) chase that proceeds stratum by stra-
tum. Core-safe stratification is strictly more general, since
the stricter condition i < j in case (3) implies that RΣk

is
empty for every stratum Σk, so that its rules are core-safe.
A suitable chase procedure for rule sets that are core-safe
stratified is given next.
Definition 12. Let Σ be a normal rule set with core-
safe stratification S = 〈Σ1, . . . ,Σn〉, and let D be a
database. The core-safe chase sequence for S and D is a
list C0, C1, . . . , Cn such that
• C0 = D, and
• for every i ∈ {1, . . . , n}, Ci is the core of a restricted

chase over Σi and Ci−1, provided that this core is finite.
If such a sequence exists, Cn is called the core-safe chase of
Σ and D w.r.t. S , and we denote it by S(D).

Note that each stratum Σi satisfies the conditions of
Proposition 3 since S is a core-safe stratification. Hence, the
required restricted chase exists and, since it is finite, has a
unique core. In practice, one can ensure the necessary finite-
ness by using acyclicity conditions that guarantee chase ter-
mination (Cuenca Grau et al. 2013).
Example 6. Consider the stratification S of Example 5 and
the database D = {p(A), f(A,B)}. The core C1 of the re-
stricted chase over the first stratum was computed as U1 in
Example 4. C2 then is simply C0 ∪ {e(B,B)}, and C3 = C2

is the resulting core-safe chase.

Example 6 admits other core-safe stratifications, leading
to different core-safe chase sequences, but the final result is
the same for all of them. The main result of this section is
that this is a general property of the core-safe chase, so that
we obtain a unique model that provides a semantics of the
underlying rule sets.
Theorem 5. For rule set Σ and database D with core-safe
stratifications S and S ′, S(D) is isomorphic to S ′(D).

In the proof in our technical report (Ellmauthaler,
Krötzsch, and Mennicke 2021), we compare core-safe strati-
fications up to simple transformations. In particular, we con-
sider splitting and merging of strata in a stratification to
show that the resulting core-safe chases are isomorphic. The
rest of the proof is concerned with showing that all pairs
of core-safe stratifications can be transformed into one an-
other by only sequences of splitting and merging operations.
Moreover, we find that core-safe models generalise the per-
fect core models that are based on full stratifications:
Proposition 4. If a rule set is fully stratified and has a finite
perfect core model, then the latter is isomorphic to its core-
safe model.

Together with Theorem 5, the previous result justifies
that we call our semantics for core-safe stratified rule sets
the perfect core semantics, since it generalises the epony-
mous semantics of Krötzsch (2020) without giving up on
the uniqueness of the model.

Discussion and Conclusion
We have investigated how to answer normal Boolean con-
junctive queries (BNCQs) on sets of existential rules, and
we proposed the use of core models as a semantic refer-
ence point for this task. Arguably, cores are both intuitive
and mathematically appealing for defining a non-monotonic
“negation as failure” semantics, since they satisfy existen-
tial rules but at the same time minimise the amount of in-
ferences and avoid redundancies. Approaches of truth min-
imisation are the basis for most non-monotonic semantics,
but are much less obvious when giving up the syntactic Her-
brand semantics of logic programming.

Nevertheless, our approach also has limitations. One of
them is the difficulty of computing cores in practice, which
we have addressed by identifying cases where this can be
avoided. This leads to practical procedures, which in fact
have already been implemented, though implementers are
often not aware that the method is not sound for arbitrary
negative queries or stratified negation in existential rules
(Carral et al. 2019). Our core-safe chase still requires certain
core constructions (after each stratum), which might not be
practical. A possible approach to address this would be to
investigate in more detail whether the intermediate non-core
structures are truly problematic for evaluating the following
rules and queries.

A more general limitation is that cores only behave well
if universal models are finite, whereas rule sets with infinite
models may have several distinct universal cores or no core
that is a universal model at all (Carral et al. 2018). In this
sense, the question which semantic reference point to choose
in general remains open.
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Carral, D.; Dragoste, I.; González, L.; Jacobs, C.; Krötzsch,
M.; and Urbani, J. 2019. VLog: A Rule Engine for Knowl-
edge Graphs. In Ghidini et al., C., ed., Proceedings of
the 18th International Semantic Web Conference (ISWC’19,
Part II), volume 11779 of LNCS, 19–35. Springer.
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Krötzsch, M.; and Rudolph, S. 2011. Extending Decidable
Existential Rules by Joining Acyclicity and Guardedness. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI’11), 963–968.
AAAI Press/IJCAI.
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