
Tractable Abstract Argumentation via Backdoor-Treewidth

Wolfgang Dvořák, Markus Hecher, Matthias König,
André Schidler, Stefan Szeider, Stefan Woltran

TU Wien, Institute of Logic and Computation
{dvorak, hecher, mkoenig, woltran}@dbai.tuwien.ac.at, {aschidler, sz}@ac.tuwien.ac.at

Abstract

Argumentation frameworks (AFs) are a core formalism in the
field of formal argumentation. As most standard computa-
tional tasks regarding AFs are hard for the first or second
level of the Polynomial Hierarchy, a variety of algorithmic
approaches to achieve manageable runtimes have been con-
sidered in the past. Among them, the backdoor-approach and
the treewidth-approach turned out to yield fixed-parameter
tractable fragments. However, many applications yield high
parameter values for these methods, often rendering them in-
feasible in practice. We introduce the backdoor-treewidth ap-
proach for abstract argumentation, combining the best of both
worlds with a guaranteed parameter value that does not ex-
ceed the minimum of the backdoor- and treewidth-parameter.
In particular, we formally define backdoor-treewidth and es-
tablish fixed-parameter tractability for standard reasoning
tasks of abstract argumentation. Moreover, we provide sys-
tems to find and exploit backdoors of small width, and con-
duct systematic experiments evaluating the new parameter.

Introduction
Argumentation is used to resolve conflicts in poten-
tially inconsistent or incomplete knowledge. Argumentation
frameworks (AFs), introduced in his influential paper by
Dung (1995), turned out to be a versatile system for reason-
ing tasks in an intuitive setting. In AFs we view arguments
just as abstract entities, represented by nodes in a directed
graph, independent from their internal structure. Conflicts
are modelled in form of attacks between these arguments,
constituting the edges of said graph representation. The se-
mantics are defined via so called extensions—sets of argu-
ments that can be jointly accepted.

Evaluating AFs w.r.t. these semantics is a central task in
argumentation (Cerutti et al. 2018). However, many com-
mon reasoning and counting problems regarding extensions
turned out to be computationally hard by classical no-
tions (Dvořák and Dunne 2017; Fichte, Hecher, and Meier
2019; Baroni, Dunne, and Giacomin 2010). For this rea-
son, various approaches utilizing structural parameters have
been introduced (Dunne 2007) and shown to be fruitful for
AFs, in particular treewidth (Dvořák, Pichler, and Woltran

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

x y z

B

Figure 1: Illustration of the backdoor-treewidth approach

2012) and backdoor-distance (Dvořák, Ordyniak, and Szei-
der 2012). These concepts support efficient (i.e., polynomial
time) reasoning, provided the respective parameter is small.
In this paper, we combine these two approaches to achieve
a smaller parameter while still maintaining polynomial run-
time in the size of the framework.

To illustrate the usefulness of this concept consider the
following example scenario, where two parties argue about
a general agreement, where diverging opinions on several
subtopics have to be resolved. The discussions about the
subtopics might be located in easy fragments of AFs (e.g.,
symmetric or acyclic frameworks). Then there is a meta-
discussion that goes along the lines “if we agree on argu-
ment a in subtopic x, we shall have in turn argument b in
subtopic y accepted”, etc. One can expect that the meta-
discussion, while not being in an easy fragment itself, ex-
hibits certain structural features. A high-level illustration of
this concept is given in Figure 1, where we have subtopics
x, y, z and the meta-discussion B. Here, B indicates the
backdoor functioning of this part, i.e. removing B yields
an AF composed of easy fragments. In order to employ
the backdoor-treewidth approach, we have to use the torso
graph of B, where any pair of nodes a, b ∈ B adjacent to
same component (x, y, or z) needs to be connected; it is this
graph for which we require small treewidth.

Our main contributions can be summarised as follows.
• We define the concept of backdoor-treewidth (Ganian,

Ramanujan, and Szeider 2017b) for AFs. Specifically, we
present two backdoor-types that allow us to exploit small
treewidth, and two backdoor-types that do not.

• Moreover, we argue that given such a backdoor of
small treewidth, the reasoning tasks on AFs are fixed-
parameter tractable (FPT) parameterized by the back-
door’s treewidth in complete and stable semantics, ex-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5608

tending the known FPT results for the classical notion of
treewidth. Fixed-parameter tractability for a problem of
input size n and parameter k refers to solvability in time
f(k)nc where f is a (possibly exponential) function of k
and c is a constant (Gottlob and Szeider 2008).

• We utilize SAT-solvers both to compute a suitable back-
door set of small treewidth and to solve the instance.
The latter is done via a tree decomposition-guided re-
duction (Fichte et al. 2021) from the argumentation-
specific problems to propositional satisfiability. The re-
sulting propositional formula is then evaluated with an
adaptation of the NestHdb system for dynamic program-
ming (Hecher, Thier, and Woltran 2020).

• Our experimental results indicate that backdoor-
treewidth for argumentation is promising compared to
existing techniques based on the measures treewidth and
backdoor-size. In particular, it turns out that in practice,
backdoor-treewidth can solve many additional instances,
where both treewidth and backdoor-size is insufficient.

Some proofs are only given in full length in the appendix.1

Background
Argumentation. An argumentation framework (AF) due
to Dung (1995) is a pair F = (A,R) where A is a non-
empty and finite set of arguments, and R ⊆ A × A is the
attack relation. We write S 7→R b if there is some a ∈ S
such that (a, b) ∈ R. Likewise, S 7→R S′ denotes S 7→R b
for some b ∈ S′. Given an AF F = (A,R), a set S ⊆ A
is conflicting in F if S 7→R a for some a ∈ S. A set S ⊆
A is conflict-free in F , if S is not conflicting in F , i.e. if
{a, b} ̸⊆ S for each (a, b) ∈ R. An argument a ∈ A is
defended (in F) by S ⊆ A if for each B ⊆ A, B 7→R a
implies S 7→R B. A set T of arguments is defended (in F)
by S if each a ∈ T is defended by S (in F). Let S ⊆ A be a
conflict-free set in F . Then, S is admissible in F , denoted by
S ∈ adm(F), if S defends itself in F ; S is stable in F (S ∈
stb(F)), if S attacks every argument in A \S; S is complete
for F (S ∈ com(F)), if S ∈ adm(F) and contains every
argument it defends; S is preferred in F (S ∈ pref(F)),
if S ∈ adm(F) and there is no T ∈ adm(F) with T ⊃ S.
Standard reasoning tasks are credulous/skeptical acceptance
(is an argument in one/all extensions?).

Backdoors to Tractability. Reasoning on AFs turned out
to be NP/coNP-hard for most cases (we assume the reader
to be familiar with complexity classes P, NP, coNP, and ΠP

2 ;
see the work of Dvořák and Dunne (2017) for an introduc-
tion to complexity theory in the context of argumentation).
Hence, work has been done to identify means of achieving
computational speedups (Coste-Marquis, Devred, and Mar-
quis 2005; Dunne 2007; Dunne and Bench-Capon 2001),
which lead to the discovery of tractable fragments of argu-
mentation. We consider here acyclicity, even-cycle-freeness,
bipartiteness, and symmetry, denoted by ACYC, NOEVEN,
BIP, and SYM, respectively, and defined in a standard way
for directed graphs (Dvořák and Dunne 2017). As these frag-
ments restrict the possible argumentation structures, to ex-

1Find appendix at github.com/mk-tu/argBTW.

ploit their computational advantages while retaining expres-
siveness we consider arbitrary (fixed) distances.

We use the backdoor-approach by Dvořák, Ordyniak, and
Szeider (2012): let F = (A,R) be an AF and let C be a
tractable fragment. We call a set S ⊆ A a C-backdoor if
(A′, R ∩ (A′ × A′)) for A′ = A \ S belongs to C. We de-
note the size of a smallest C-backdoor by bd C(F). If it is
clear what fragment C is meant, we shall drop the subscript.
Reasoning w.r.t. stable, complete, and preferred semantics is
tractable for the fragments ACYC and NOEVEN if bd C(F)
is fixed (Dvořák, Ordyniak, and Szeider 2012).

Treewidth. We recall the notion of treewidth (Robertson
and Seymour 1986). Let F = (A,R) be an AF. Let UF =
(V,E) be the corresponding undirected graph, i.e., V = A
and there is an edge between two vertices a, b ∈ V iff a ̸= b
and there is an attack (a, b) in R. A tree decomposition (TD)
of F is a pair (T ,X), where T = (VT , ET) is a tree and
X = (Xt)t∈VT is a set of bags (a bag is a subset of A) such
that (1)

⋃
t∈VT

Xt = V ; (2) for each v ∈ V , the subgraph
induced by v in T is connected; and (3) for each {v, w} ∈
E, {v, w} ⊆ Xt for some t ∈ VT . The width of a TD is
max{|Xt| | t ∈ VT } − 1, the treewidth of F , denoted by
tw(F), is the minimum width of all TDs for F . Reasoning
on an AF F is fixed-parameter tractable parameterized by its
treewidth tw(F) (Dvořák, Pichler, and Woltran 2012). For
utilizing these results, weaker notions of extensions exist:
Definition 1 (Restricted Extensions). Let F = (A,R) be
an AF and C, S ⊆ A be sets of arguments. We call S a C-
restricted stable set, if S is conflict-free in F and S attacks
all arguments a ∈ C. Then, S is a C-restricted complete set
if S is conflict-free in F , defends all arguments in C ∩S and
contains every argument in C that is defended by S.

Towards Backdoor-Treewidth
In this section, we formally define backdoor-treewidth for
abstract argumentation. Intuitively, this notion allows us to
“hide” subframeworks (that belong to tractable fragments)
and decompose the graph, called torso graph, containing
“remaining” arguments (i.e., backdoor arguments). Ulti-
mately, we utilize a tree decomposition of this torso graph
to perform dynamic programming (DP). To ensure cor-
rect interaction between these backdoor arguments and the
tractable fragments, the whole neighborhood of such a sub-
framework is completely connected in the torso graph. This
forces that neighboring arguments of subframeworks appear
in a common bag of the TD and enables solving.

Torso Graphs and their Width. We start with the notion
of S-components, i.e., components that stay connected (ig-
noring directions of attacks) after deleting a set S of argu-
ments. Let F = (A,R) be an AF, S ⊆ A be a set of ar-
guments and let UF = (V,E) be the corresponding undi-
rected graph. An S-component is a connected component
(maximal connected subgraph) of the graph UF ′, which we
obtain from UF by deleting the vertices S and their incident
edges. The torso graph is an aggregated representation of F .
Definition 2 (Torso Graph). Let F = (A,R) be an AF and
S ⊆ A a set of arguments. The S-torso graph GS

F is defined

5609

as the (undirected) graph with S as vertices, where two ver-
tices s, t are adjacent iff there is an S-component that s and
t are adjacent to in UF , or an attack (s, t) or (t, s) in R.

This definition allows us to define backdoor-treewidth in
terms of TDs over all possible torso graphs.

Definition 3 (Backdoor-Treewidth). The C-backdoor-
treewidth btwC(F) of an AF F is the minimal width of all
tree decompositions of the torso graphs GS

F for all C-back-
doors S of F .

For the ease of presentation, in this work we assume TDs,
where each subset-maximal bag appears (also) in the bag of
a leaf of the TD. Indeed, this is not a hard restriction and any
TD of the torso graph can be transformed such that this prop-
erty holds, without increasing its width. The arguments of
tractable subframeworks not contained in the torso graph are
then considered in leaf node bags containing relevant back-
door arguments (i.e., those adjacent to the S-component). To
this end, let F = (A,R) be an AF, S ⊆ A be a backdoor
and (T ,X) be a tree decomposition of GF

S . Then, for a leaf
node t ∈ T , we denote by components(t) the union of all
arguments in S-components, where all adjacent vertices that
are in S are also in Xt. As the neighborhood of every S-
component s is a clique, there is at least one such leaf node t
such that Xt contains the arguments in s.

Example 1. Consider the following AF F = (A,R), con-
sisting of an acyclic 4-clique c1, c2, c3, c4 connected to a star
s1, s2, s3, s4 with self-attacking leaves.

c1 c2

c3 c4

s1 s2

s3 s4

Because of the self-attacks, the minimum ACYC-backdoor
has size at least 3. In fact, one can verify B = {s2, s3, s4}
is such an ACYC-backdoor. As F contains a 4-clique, the
treewidth of F is at least 3. Indeed, the following tree de-
composition (a) of width 3 assures tw(F) = 3.

2: s1, s3, c2

1: s1, s2, s4

3: s3, c2, c4

4: c1, c2, c3, c4

(b)(a) (c)
s1 s2

s3 s4

1′: s1, s2

2′: s1, s4

3′: s1, s3

Now consider B′ = {s1, s2, s3, s4}. Obviously, B′ is an
ACYC-backdoor (but not minimal, as B′ ⊃ B). The torso
graph w.r.t. B′ is exactly the star graph with s1, s2, s3, s4
as its vertices, i.e., it has backdoor-treewidth 1 (see (b), (c)
above). We have components(3′) = {c1, c2, c3, c4}.

Observe that we could add arbitrarily many new argu-
ments to the clique and by doing so increasing the treewidth,
while still remaining btwACYC(F) = 1. Likewise, we can
add self-attacking arguments as leaves to the star, increas-
ing the minimum backdoor size of F , while, again, the
backdoor-treewidth stays the same. Moreover, we want to

highlight that the backdoor B′ is not minimal - in fact, the
cardinality-minimal backdoor B has a higher width.

We achieve this lower width by hiding easy acyclic sub-
frameworks. In (b), the acyclic B′-component is adjacent
only to s1 and s3, which assures a small width in the torso
graph GB′

F (see illustration below).

s1 s2

s3 s4

Moreover, the backdoor-treewidth btwC(F) of an AF
F = (A,R) is bounded by min(bd C(F), tw(F)): as A as
a whole is a backdoor to any tractable fragment, UF is the
torso GA

F . Moreover, the tree decomposition of GB
F (for B

being a minimum size backdoor) with only one bag contain-
ing all of B has width |B| − 1. From this it follows:
Proposition 1. For an AF F and a tractable class C,
1. bd C(F) and tw(F) can be arbitrarily large even while
btwC(F) remains constant,
2. btwC(F) < bd C(F), and
3. btwC(F) ≤ tw(F).

In the following, we use chordal AFs: an AF F = (A,R)
is chordal if each set C ⊆ A of arguments inducing a di-
rected cycle of F contains a set of arguments C ′, |C ′| ≤ 3,
that induces a directed cycle of F as well. Hence Proposi-
tion 1 also applies in the special case of chordal AFs.

Finding Backdoors of Minimum Width
Unfortunately, computing backdoor-treewidth exactly is a
nontrivial task since it is insufficient to restrict to sets of size
at most k. The non-parameterized version of this problem
for ACYC-backdoors is NP-hard.
Proposition 2. Deciding whether a given AF F has an
ACYC-backdoor of width ≤ k is NP-complete (if k is part of
the input).

However, it is known that finding the minimum
backdoor-treewidth for backdoors in other contexts such
as SAT or CSP is fixed-parameter tractable parameterized
by backdoor-treewidth (Ganian, Ramanujan, and Szeider
2017a,b). We utilize this result to obtain fixed-parameter
tractability results for SYM in the general case and for ACYC
for chordal AFs. The proofs for these theorems are given in
the appendix and utilize respective results for CSP (Ganian,
Ramanujan, and Szeider 2017b).
Theorem 1. Given an AF F and a parameter k, it is fixed-
parameter tractable to either return a SYM-backdoor of
width ≤ k or correctly conclude that the SYM-backdoor-
treewidth of F exceeds k.

To highlight the relevance of Theorem 2, recall Proposi-
tion 1 also holds for chordal AFs. In particular, in this frag-
ment, both treewidth and minimum ACYC-backdoor size can
be arbitrarily larger than the ACYC-backdoor-treewidth.
Theorem 2. Given a chordal AF F and a parame-
ter k, it is fixed-parameter tractable to either return an
ACYC-backdoor of width ≤ k or correctly conclude that the
ACYC-backdoor-treewidth of F exceeds k.

5610

Utilizing Small Backdoor-Treewidth
In the following we present FPT results for AFs parame-
terized by backdoor-treewidth. This is established by means
of dynamic programming (DP) algorithms for AFs that ex-
plicitly utilize backdoor-treewidth. In such DP algorithms,
extensions are often times captured by colorings that are
computed for each bag of a TD in post-order (bottom-up).
These colorings give rise to invariants that need to be ful-
filled for every node. Maintaining colorings is similar to ex-
isting DP algorithms (Dvořák, Pichler, and Woltran 2012)
for treewidth, but for backdoor-treewidth one also needs to
take care of tractable components induced by leaf nodes.

Next, we show that reasoning on AFs is fixed-parameter
tractable parameterized for backdoor-treewidth to ACYC or
NOEVEN, if a backdoor of minimum width is given.

Theorem 3. Reasoning and counting on AFs F in stable
and complete semantics is fixed-parameter tractable when
parameterized by btwC(F) for C ∈ {ACYC,NOEVEN} if a
respective backdoor is given.

This result is established by adapting the existing DP al-
gorithm in consideration of our torso graphs. In particular,
we consider the tractable S-components to be “attached” to
the sub-problems in the leaves of a torso tree decomposi-
tion. Then, tractability is preserved by applying the back-
door algorithm approach in the leaf nodes as in related
work (Dvořák, Ordyniak, and Szeider 2012). To this end,
for a set S ⊆ A, a tree decomposition (T ,X) of torso graph
GS

F , and t ∈ T , let X≥t be the union of all bags Xs ∈ X
and sets components(s) for every node s that occurs in the
subtree of T rooted at t. Further, X>t shall denote X≥t\Xt.

Observe that for leaf nodes t of T , we have X>t =
components(t). Consequently, in the leaf nodes of T , we
guess a coloring on the backdoor-arguments Xt in the bag
and check whether this coloring yields X>t-restricted sta-
ble/complete extensions, cf. Definition 1. Note that as Xt for
a leaf node t ∈ T is a backdoor set, this check can be per-
formed in polynomial time. This follows with slight adapta-
tions from the respective results by Dvořák, Ordyniak, and
Szeider (2012). The remainder of the adapted DP algorithms
proceeds as in the original algorithms for stable/complete
extensions. In particular, every node maintains those col-
orings yielding X>t-restricted stable/complete sets. Then,
one can extend the correctness proofs for the modified algo-
rithms returning valid colorings (see appendix for details).

Example 1 ctd. We evaluate the leaf node 3′ of the given
TD of the torso GB′

F for stable semantics on the AF F≥3

(see below). Following the backdoor approach (Dvořák, Or-
dyniak, and Szeider 2012), we guess colors on the backdoor
arguments B′ = {s1,s3} (gray background in illustration
below), such that the set of arguments colored in is conflict-
free in F≥3, and each argument that is attacked by an in-
argument is colored def (“defeated”).

c1 c2

c3 c4

s1

s3

F≥3 :

Then, for each such guessed coloring λ we compute the
propagation λ∗ on the remaining non-backdoor arguments
x ∈ components(3′) = {c1, c2, c3, c4} (white background
in illustration above): for stable semantics it suffices to guess
whether an argument is in or def. Assume we guess λ(s1) =
in, λ(s3) = def. Consequently, by applying the propagation
rules, we obtain λ∗(c2) = def, λ∗(c1) = in, and λ∗(c3) =
λ∗(c4) = def. This corresponds to the B′-restricted stable
set {s1, c1}. Now assume we guess λ(s1) = λ(s3) = def.
We obtain λ∗(c2) = in, and λ∗(c1) = λ∗(c3) = λ∗(c4) =
def. This corresponds to the B′-restricted stable set {c2}.

Limitations of Backdoor-Treewidth. The backdoor-
treewidth approach, however, does not always work. In the
following, we present several cases that do not admit fixed-
parameter tractability when parameterized by backdoor-
treewidth (under standard assumptions of complexity the-
ory). In particular, this holds for the tractable fragments BIP
and SYM (i.e., even though Theorem 1 guarantees us finding
SYM-backdoors is fixed-parameter tractable, reasoning on
an AF of constant SYM-backdoor-treewidth remains hard).
Proposition 3. Reasoning on AFs F with btwC(F) = 0
in σ ∈ {adm, com, pref, stb} and C ∈ {SYM,BIP} remains
NP/coNP-hard.

Several fragments have the property that the otherwise
ΠP

2 -hard skeptical acceptance problem becomes coNP-easy,
such as (a) odd-cycle-freeness (Dunne and Bench-Capon
2002), (b) no even-cycles of length ≥ 4 (Dvořák, König,
and Woltran 2021) (subsuming the class of AFs that have
no cycles longer than 3 arguments). We will denote these by
(a) ODDFREE and (b) EVENFREE-4, respectively.
Proposition 4. Skeptical acceptance for preferred seman-
tics is ΠP

2 -hard even for AFs F with btwC(F) = 0 for
C ∈ {ODDFREE,EVENFREE-4}.

Proof. Dvořák et. al. (2014) showed ΠP
2 hardness for

Skeptpref for AFs F with bd ODDFREE(F) = 1 in a different
context. The same reduction FΦ (see example below) proves
hardness for EVENFREE-4 for bd EVENFREE-4(F) = 1.

φ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z1 z̄1 z2 z̄2

φ̄FΦ for
Φ = ∀Y ∃Zφ(Y, Z),
φ = {{ȳ1, ȳ2, z̄1},
{y1, y2, z2},
{y2, z1, z̄2}}.

It suffices to remove the highlighted argument φ̄, hence,
bd C(FΦ) = 1 and btwC(FΦ) = 0.

Systems and Benchmarks
We implemented both a system to find the exact (e.g., mini-
mal) width of all ACYC-backdoors, as well as an argumenta-
tion problem solver using the backdoor-treewidth approach.
In the latter, we solve the “Count Extensions”-problem in
semantics σ ∈ {stb, adm}, where given a framework F we
ask for the number of extensions |σ(F)|. This problem is
gaining importance in the community, and has recently been
added to the ICCMA competition (Mailly et al. 2021).

5611

Benchmark Hardware. All our solvers ran on a cluster
consisting of 12 servers. Each of these servers is equipped
with two Intel Xeon E5-2650 CPUs, consisting of 12 physi-
cal cores that run at 2.2 GHz clock speed and have access to
256 GB shared main memory (RAM). Results are gathered
on Ubuntu 16.04.1 LTS powered on kernel 4.4.0-139 with
hyperthreading disabled using version 3.7.6 of Python3.

Benchmark Instances. As we focused on extreme values
for backdoor size and treewidth, in addition to using in-
stances provided by the ICCMA competition, we generated
AFs to range from small to high backdoor sizes/treewidths.
Then, we performed our experiments on a variety of com-
posite frameworks. This is motivated by the modular nature
of many frameworks that arise from applications. In particu-
lar, we combined instances provided by the ICCMA compe-
tition with frameworks designed to range from small to large
backdoor-sizes and treewidths.

For scenario (A), we generated 960 instances that contain
dense, directed subgraphs (high treewidth) and sparse sub-
graphs with many cycles (high backdoor size). For scenario
(B), we combined small ICCMA instances with the gener-
ated frameworks from (A), resulting in 1134 instances:
(B1) 378 combinations of only ICCMA instances,
(B2) 378 combinations of only generated instances,
(B3) 378 combinations of ICCMA and generated instances.

Finding ACYC-Backdoors of Minimal Width
We propose a SAT encoding that, given an AF F and an inte-
ger k, produces a propositional formula E(F, k) that is sat-
isfiable if and only if btw(F) ≤ k. We construct the formula
in three steps: (i) we encode the definition of an ACYC-back-
door, (ii) we derive the corresponding torso graph, and
(iii) we restrict the treewidth of the torso graph (Samer and
Veith 2009). We then find the btw(F) of an instance by in-
crementally increasing k until the SAT solver finds the for-
mula satisfiable. For the 1134 instances of scenario B we
computed btw(F) using our SAT encoding. For 611 of the
1134 instances, that is more than half, btw(F) < tw(F),
and for most of them (519 out of 611), even btw(F) ≤
tw(F)/2. Details are given in the appendix.

Utilizing Small Backdoor-Treewidth in Practice
We refer to the implemented system by argBTW2. It can
easily be extended to the credulous/skeptical acceptance-
problem, the existence of extensions-problem, etc. Our
system argBTW uses decomposition-guided reductions to
propositional satisfiability (Fichte et al. 2021). Such a reduc-
tion for argumentation reduces the respective argumentation
problem to propositional logic such that the treewidth of the
argumentation problem is (linearly) preserved. This way, we
can adapt the existing NestHdb system (Hecher, Thier, and
Woltran 2020) for propositional logic in order to efficiently
implement dynamic programming for argumentation.

As an input, we get an AF in apx format. Then, four steps
are performed (illustrated in Figure 2): (1) Find a suitable
backdoor to ACYC. (2) Using this backdoor, compute the

2Find argBTW and benchmarks at github.com/mk-tu/argBTW.

(1) Find
backdoor

AF
*.apx

(2)
Decompose

torso

(T ,X)

(3) Perform
TD-guided
reduction

φ

(4) Dynamic
programming on
φ using (T ,X ′)

Figure 2: Flowchart of the implemented argBTW system.

torso graph and decompose it into a suitable TD (T ,X) of
small width. (3) Perform tree decomposition guided reduc-
tion and get a propositional formula φ characterizing exten-
sions of the AF. (4) Following the structure given by T , we
apply a dynamic programming algorithm on φ to determine
the number of models of φ, i.e., the number of extensions.

In the previous section, we discussed an approach for
computing the backdoor-treewidth exactly. For practical
purposes and in order solve reasonably-sized instances ef-
ficiently, we rely on heuristics, i.e., Steps (1) and (2) as de-
scribed above do not use exact methods. For (1) we apply an
Answer Set Programming (ASP) encoding: for (2) we em-
ploy the htd system (Abseher, Musliu, and Woltran 2017).

For Step (1) we allotted at most 30 seconds and Step (2) is
finished within a second per instance, due to the decomposer
htd being reasonably fast. Step (4) also includes a simple
preprocessing phase, which aims at simplifying instances
quickly via, e.g., techniques like unit propagation.

Empirical Evaluation
The performed experiments aimed at identifying graph
structures where the backdoor-treewidth approach is partic-
ularly beneficial. To this end, we considered two scenarios:
(A) We compared the backdoor-treewidth approach to an

backdoor-only and a treewidth-only approach.
(B) As the backdoor-treewidth approach turned out to be the

fastest of the three, we conducted experiments where we
compared this method on counting extensions against an
ASP approach (ASPARTIX, Dvořák et al. 2020).

For Scenario (A), we are interested in comparing our tech-
nique based on backdoor-treewidth with the special (degen-
erated) cases of treewidth and backdoor size. Then, the con-
ducted experiments of Scenario (B) aim at examining the
runtime behavior of the “Count Extensions”-problem. This
problem is quite general and can very easily be adapted
to decide credulous/skeptical acceptance of an argument,
existence of a (non-empty) extension, and other well es-
tablished argumentation problems. In our experiments, we
mainly compare wall clock time and number of solved in-
stances over the best of two runs for every solver and in-
stance, where each run is allowed to use up to 1200s of wall
clock time and 16GB of main memory (RAM).

The goal of the two scenarios (A) and (B), is to empiri-
cally confirm the following hypotheses.
(H1A) There are instances where backdoor-treewidth based

solvers outperform (tree)width and backdoor approaches.
(H2A) In practice, the obtained backdoor-treewidths are of-

ten smaller than the computed widths and backdoor sizes.

5612

Figure 3: Performance comparison of argBTW, argTW and argBW for Scenario (A). The cactus plot (left) shows the number
of solved instances (x-axis) that is sorted in ascending order for each approach individually according to runtime. The scatter
plot (right) depicts a one-to-one comparison between the runtime (in seconds) of every instance for BTW and TW.

Figure 4: Measures among solved instances of Scenario (A). We compare (left) upper bounds of backdoor-treewidth (BTW)
against treewidth (TW) as well as (right) upper bounds of backdoor-treewidth (BTW) against backdoor-size (BW).

(HB) For counting extensions, the backdoor-treewidth
based solver and suitable portfolio configurations com-
bining argBTW and argTW often outperform existing ap-
proaches based on ASP.

Benchmarked Systems. In our experiments, we mainly
compare the performance of the following configurations.
• clingo3 (stable) and clingo (admissible): these configura-

tions are based on clingo version 5.4.0 and we used ar-
guments “-q” and “-n 0” when counting answer sets. On
top we used standard encodings for admissible and stable
semantics of ASPARTIX (Dvořák et al. 2020).

• argBTW (stable) and argBTW (admissible): see above.
• argBW (stable) and argBW (admissible): this is a special

case of argBTW, where instead of computing and decom-
posing a torso of an AF, after finding a backdoor B we
solve the instance via the backdoor-only approach.

• argTW (stable) and argTW (admissible): in this special
case of argBTW, we take all arguments A of an AF F as
a backdoor, obtaining the undirected graph UF as a torso,
which is then solved with the treewidth-only approach.

• argBTW+TW (stable) and argBTW+TW (admissible):
This is a portfolio that emerged from our study. First,
200s are used for solving via argTW and then if unsuc-
cessful, the remaining 1000s are put into argBTW.

3ASP solver, see https://potassco.org/

Results of Scenario (A). An overview of the results for
Scenario (A) is depicted in Figure 3. Figure 3 (left) shows
a cactus plot over the different configurations of our solver
for computing stable extensions. Such a cactus plot depicts
for each configuration the number of solved instances (x-
axis) according to their runtime (y-axis) in ascending order.
Consequently, one sees that overall the backdoor-treewidth
based approach argBTW outperforms the other configura-
tions. The picture is similar for admissible extensions (not
shown in the plot). To enable a one-to-one comparison, Fig-
ure 3 (right) depicts a scatter plot, where the runtime of
each instance is compared between argBTW (x-axis) and the
second best configuration of Figure 3 (left), namely argTW
(y-axis). The argBTW approach is often faster and solves
more instances, thereby confirming Hypothesis (H1A), how-
ever, there are also some instances below the dashed di-
agonal, which indicates instances, where argTW is faster.
This scatter plot gives rise to the portfolio configuration
argBTW+TW in order to further improve the performance,
since almost all of these dots can be solved by argTW in a
runtime below or even well below 200 seconds. While the
runtime benefits of argBTW are certainly interesting, in or-
der to evaluate Hypothesis (H2A), we analyze the obtained
upper bounds of backdoor-treewidths, treewidths and back-
door sizes. The values of these measures among all solved
instance are compared in Figure 4, where (left) compares

5613

Figure 5: Performance of compared solvers for Scenario (B). The cactus plot (left) shows the BTW approach for admissible
and stable semantics. The scatter plot (right) allows a one-to-one comparison of solved instances for BTW vs. TW approach.

the backdoor-treewidth upper bounds (x-axis) to the used
widths (y-axis) and (right) compares backdoor-treewidth up-
per bounds (x-axis) with used backdoor sizes (y-axis). These
scatter plots allow a one-to-one comparison of these mea-
sured values for each instance solved by the respective con-
figuration. Overall, one can observe that while there are
some instances where we obtain larger backdoor-treewidth
than treewidth upper bounds (cf. dots below the diagonal of
Figure 4 (left)), the obtained backdoor size is always domi-
nated by backdoor-treewidth upper bounds as shown in Fig-
ure 4 (right). Both observations confirm Hypothesis H2A.

Results of Scenario (B). We took the best configurations
of Scenario (A) in order to count extensions over instances
of different kind. Figure 5 presents the overall results of this
experiment, where in (left) we show a cactus plot comparing
our approach with the treewidth-based technique as well as
solutions based on logic programming (ASP). Further, Fig-
ure 5 (right) completes this analysis by a one-to-one compar-
ison of argBTW vs. argTW and explains why the portfolio
argBTW+TW is promising. In particular, this plot also re-
veals that there is still further potential for improving our
heuristics on approximating decent backdoor-treewidth up-
per bounds. We provide detailed results in Table 1, revealing
that the portfolio argBTW+TW shows indeed a significant
performance increase compared to argBTW. Overall, we can
confirm Hypothesis HB for counting extensions.

Conclusion
We introduced the parameter backdoor-treewidth for argu-
mentation, which dominates the well established parameters
treewidth and minimum backdoor size. We gave algorithms
to compute backdoors of width ≤ k that establish fixed-
parameter tractability (w.r.t. k) for the fragment SYM in the
general case, and for the fragment ACYC for chordal AFs.
Moreover, we showed fixed-parameter tractability for solv-
ing several problems associated with AFs if a suitable back-
door to one of the fragments ACYC or NOEVEN is given. On
the other hand, we established computational hardness for
these problems in other fragments, effectively pointing out
limitations of the new backdoor-treewidth approach. Finally,
we conducted systematic experiments, empirically evalu-

ating the power of the newly introduced parameter. Here,
we presented systems for both finding the exact backdoor-
treewidth (as well as the associated backdoor set and a suit-
able tree decomposition of the torso), and a composite sys-
tem for solving argumentation problems. We found several
graph structures where backdoor-treewidth approach outper-
forms its “parent”-parameters treewidth and minimum back-
door size. However, as Figure 4 suggests, the hereby used
heuristics for finding adequate backdoor sets can still be im-
proved, i.e., there is further open potential for estimating
tree decompositions of decent backdoor-treewidth. Further
future work regards investigations for other semantics and
fragments, as well as relations to structured argumentation.

Solver
∑ Width Range Time[h]

max(width) 0-5 5-10 >10
B1

argTW (stable) 378 16.0 29 163 186 0.18
argBTW (stable) 279 15.0 29 158 92 43.45
argBTW (adm) 37 14.0 23 12 2 116.72
clingo (stable) 31 10.0 17 14 0 117.54
clingo (adm) 0 0 0 0 0 126.0

B2
argBTW (stable) 377 3.0 377 0 0 3.72
argBTW (adm) 377 3.0 377 0 0 4.71
argTW (stable) 184 3.0 184 0 0 94.5
clingo (stable) 129 3.0 129 0 0 91.03
clingo (adm) 0 0 0 0 0 126.0

B3
argTW (stable) 300 16.0 36 102 162 31.79
argBTW (stable) 252 15.0 46 133 73 52.19
clingo (stable) 60 16.0 28 23 9 109.33
argBTW (adm) 54 11.0 44 9 1 110.67
clingo (adm) 0 0 0 0 0 126.0

Σ
argBTW+TW (stable) 1110 16.0 452 296 362 19.99
argBTW (stable) 908 15.0 452 291 165 99.36
argTW (stable) 862 16.0 249 265 348 126.47
argBTW (adm) 468 14.0 444 21 3 232.1
clingo (stable) 220 16.0 174 37 9 317.9
clingo (adm) 0 0 0 0 0 378.0

Table 1: Detailed benchmark data for Scenario (B), where
we show for each configuration the number of solved in-
stances, grouped by respective width upper bounds, as well
as the overall runtime (timeouts account for 1200s).

5614

Acknowledgments
This research has been supported by the Vienna Science
and Technology Fund (WWTF) through project ICT19-065,
and by the Austrian Science Fund (FWF) through projects
P30168, P32441, P32830, W1255, and Y698. Part of the
project was carried out while Hecher, Schidler, and Szeider
were visiting the Simons Institute for the Theory of Comput-
ing. Hecher is also affiliated with the university of Potsdam.

References
Abseher, M.; Musliu, N.; and Woltran, S. 2017. htd - A Free,
Open-Source Framework for (Customized) Tree Decompo-
sitions and Beyond. In Salvagnin, D.; and Lombardi, M.,
eds., Integration of AI and OR Techniques in Constraint Pro-
gramming - 14th International Conference, CPAIOR 2017,
Padua, Italy, June 5-8, 2017, Proceedings, volume 10335 of
LNCS, 376–386. Springer.
Baroni, P.; Dunne, P. E.; and Giacomin, M. 2010. On Exten-
sion Counting Problems in Argumentation Frameworks. In
Baroni, P.; Cerutti, F.; Giacomin, M.; and Simari, G. R., eds.,
Proceedings of the 3rd Conference on Computational Mod-
els of Argument (COMMA 2010), volume 216 of Frontiers in
Artificial Intelligence and Applications, 63–74. Desenzano
del Garda, Italy: IOS Press. ISBN 978-1-60750-618-8.
Cerutti, F.; Gaggl, S. A.; Thimm, M.; and Wallner, J. P. 2018.
Foundations of Implementations for Formal Argumentation.
In Baroni, P.; Gabbay, D.; Giacomin, M.; and van der Torre,
L., eds., Handbook of Formal Argumentation, chapter 14,
688–767. College Publications. Also appears in IfCoLog
Journal of Logics and their Applications 4(8):2623–2706.
Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005. Sym-
metric Argumentation Frameworks. In Godo, L., ed.,
Proceedings of the 8th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncer-
tainty (ECSQARU 2005), volume 3571 of LNCS, 317–328.
Springer. ISBN 3-540-27326-3.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artif. Intell., 77(2):
321–358.
Dunne, P. E. 2007. Computational properties of argument
systems satisfying graph-theoretic constraints. Artif. Intell.,
171(10-15): 701–729.
Dunne, P. E.; and Bench-Capon, T. J. M. 2001. Complexity
and Combinatorial Properties of Argument Systems. Tech-
nical report, Dept. of Computer Science, University of Liv-
erpool.
Dunne, P. E.; and Bench-Capon, T. J. M. 2002. Coherence in
Finite Argument Systems. Artif. Intell., 141(1/2): 187–203.
Dvořák, W.; and Dunne, P. E. 2017. Computational Prob-
lems in Formal Argumentation and their Complexity. FLAP,
4(8).
Dvořák, W.; Gaggl, S. A.; Rapberger, A.; Wallner, J. P.;
and Woltran, S. 2020. The ASPARTIX System Suite. In
COMMA, volume 326 of Frontiers in Artificial Intelligence
and Applications, 461–462. IOS Press.

Dvořák, W.; Järvisalo, M.; Wallner, J. P.; and Woltran, S.
2014. Complexity-sensitive decision procedures for abstract
argumentation. Artificial Intelligence, 206(0): 53 – 78.
Dvořák, W.; König, M.; and Woltran, S. 2021. On the Com-
plexity of Preferred Semantics in Argumentation Frame-
works with Bounded Cycle Length. In Bienvenu, M.; Lake-
meyer, G.; and Erdem, E., eds., Proceedings of the 18th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2021, Online event, November
3-12, 2021, 671–675.
Dvořák, W.; Ordyniak, S.; and Szeider, S. 2012. Augment-
ing tractable fragments of abstract argumentation. Artificial
Intelligence, 186(0): 157–173.
Dvořák, W.; Pichler, R.; and Woltran, S. 2012. Towards
fixed-parameter tractable algorithms for abstract argumen-
tation. Artif. Intell., 186: 1 – 37.
Fichte, J. K.; Hecher, M.; Mahmood, Y.; and Meier, A. 2021.
Decomposition-Guided Reductions for Argumentation and
Treewidth. In Zhou, Z., ed., Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2021, Virtual Event / Montreal, Canada, 19-27 August
2021, 1880–1886. ijcai.org.
Fichte, J. K.; Hecher, M.; and Meier, A. 2019. Counting
Complexity for Reasoning in Abstract Argumentation. In
Proceedings of the Thirty-Third AAAI Conference on Ar-
tificial Intelligence, AAAI 2019., 2827–2834. AAAI Press.
ISBN 978-1-57735-809-1.
Ganian, R.; Ramanujan, M. S.; and Szeider, S. 2017a. Back-
door Treewidth for SAT. In Gaspers, S.; and Walsh, T., eds.,
Theory and Applications of Satisfiability Testing - SAT 2017,
volume 10491 of LNCS, 20–37. Springer.
Ganian, R.; Ramanujan, M. S.; and Szeider, S. 2017b. Com-
bining Treewidth and Backdoors for CSP. In Vollmer, H.;
and Vallée, B., eds., 34th Symposium on Theoretical Aspects
of Computer Science, STACS 2017, March 8-11, 2017, Han-
nover, Germany, volume 66 of LIPIcs, 36:1–36:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Gottlob, G.; and Szeider, S. 2008. Fixed-parameter algo-
rithms for artificial intelligence, constraint satisfaction, and
database problems. The Computer Journal, 51(3): 303–325.
Hecher, M.; Thier, P.; and Woltran, S. 2020. Taming High
Treewidth with Abstraction, Nested Dynamic Programming,
and Database Technology. In Theory and Applications of
Satisfiability Testing - SAT 2020, volume 12178 of LNCS,
343–360. Springer.
Mailly, J.-G.; Lonca, E.; Lagniez, J.-M.; and Rossit, J. 2021.
International Competition on Computational Models of Ar-
gumentation (ICCMA) 2021. Available at: https://www.
argumentationcompetition.org/2021. Accessed: 2022-03-
17.
Robertson, N.; and Seymour, P. D. 1986. Graph minors. II.
Algorithmic aspects of tree-width. J. Algorithms, 7(3): 309–
322.
Samer, M.; and Veith, H. 2009. Encoding Treewidth into
SAT. In Theory and Applications of Satisfiability Testing
- SAT 2009. Proceedings, volume 5584 of LNCS, 45–50.
Springer.

5615

