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Abstract

Consider a bank that uses an AI system to decide which loan
applications to approve. We want to ensure that the system is
fair, that is, it does not discriminate against applicants based
on a predefined list of sensitive attributes, such as gender and
ethnicity. We expect there to be a regulator whose job it is
to certify the bank’s system as fair or unfair. We consider is-
sues that the regulator will have to confront when making
such a decision, including the precise definition of fairness,
dealing with proxy variables, and dealing with what we call
allowed variables, that is, variables such as salary on which
the decision is allowed to depend, despite being correlated
with sensitive variables. We show (among other things) that
the problem of deciding fairness as we have defined it is co-
NP-complete, but then argue that, despite that, in practice the
problem should be manageable.

Introduction
AI systems are playing a larger and larger role in decision
making these days, in applications like deciding who to in-
terview and hire, deciding who gets paroled, and deciding
who gets credit. Moreover, AI systems can often make these
decisions better than people (Kleinberg et al. 2018a). How-
ever, as many have noted, this raises the concern that deci-
sions are made based on sensitive attributes, such as race,
gender, or religion.

Given the laws and regulations governing discrimination
(i.e., making decisions based on the values of sensitive vari-
ables), we consider what we suspect will be an important
use case in the future. We assume that there is a regulator
that regulates financial institutions, for example, banks, and
in particular the decisions made by the banks on whether to
grant loans to applicants. (For definiteness, we assume that
the system being regulated is a bank’s system for determin-
ing who gets a loan. But the points that we make apply with-
out change to all decision-making systems where there are
discrimination concerns.) The bank wants to make this de-
cision based on their (possibly proprietary) causal/machine
learning model. (We do not distinguish causal models from
machine learning models, for reasons that will be come clear
shortly.) The bank comes to the regulator seeking approval.
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The regulator has some variables that she considers sensi-
tive. Intuitively, the bank is not supposed to use these in
making its decision (although some uses may be permitted,
as we shall see). The bank may view its model as propri-
etary, so wants to keep as many of the details regarding its
model private, while still convincing the regulator that it is
not discriminating.

We take the bank’s algorithm to be a “grey box”, where
some of its features must be disclosed, but the bank can still
keep many of its features proprietary. Specifically, we as-
sume that the bank will need to disclose only which features
are inputs and how they are computed from data obtained
about the applicant, and provide the regulator with black
box access to the system, so she can see the decision made
given certain inputs. The bank will also request the regulator
to have certain input variables be explicitly allowed. Intu-
itively, allowed variables are inputs that are correlated with
sensitive variables but can be used by the bank’s algorithm
to make decisions. For example, gender may be considered a
sensitive variable, but salary may be an allowed variable, al-
though it is correlated with gender. (Allowed variables have
been called resolving variables; see, e.g., (Kilbertus et al.
2017).) The regulator will have to decide whether to agree
with the bank’s request regarding allowed variables. This is
not an easy decision, and is one that ethicists and society
at large may have to resolve. Nevertheless, we believe that
there are necessary conditions that must be met for a variable
to be allowed. The issues that arise here are essentially those
that determine whether disparate impact has taken place, ac-
cording to American law (Primus 2003).

Given the sensitive and allowed variables, our notion of
fairness then says, roughly speaking, that the bank’s soft-
ware is fair (i.e., acceptable to the regulator) provided that
changing the values of the sensitive variables has no im-
pact on the outcome, if all the allowed inputs are kept fixed.
While our definition is very much in the spirit of earlier def-
initions of fairness that use causal models (in particular, the
notion of counterfactual fairness introduced by Kusner et
al. (2017), path-dependent notions of fairness considered in
(Chiappa 2019; Nabi and Shpitser 2018), and the notion im-
plicitly used by Kilbertus et al. (2017)), it differs in one sig-
nificant way. Whereas the earlier definitions are all statisti-
cal, ours is not: it requires that outcomes are the same, not
that their probabilities are equal. We argue that for our set-
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ting, this is appropriate. Roughly speaking, we view a sys-
tem as fair if it is fair for each applicant.

In this setting, we also examine the effect of proxy vari-
ables. It is often not difficult for an AI system to find a proxy
for a sensitive variable and use that instead. For example, if
gender is a sensitive variable, an AI system may use a highly
correlated variable like favorite clothes as a proxy for gen-
der. Indeed, not only can an AI system find proxy variables,
if it is told that it cannot use sensitive variables in its deci-
sion, it will actively seek out proxies. Prince and Schwarcz
(2020) point out that while the use of proxy variables is in-
compatible with (American) anti-discrimination laws, it is
likely to increase substantially as more AI systems are used.

Kilbertus et al. (2017) take proxy variables to be nothing
more than descendants of sensitive variables in the causal
graph. If this were always the case, then dealing with them
would be easy. Changing the value of a sensitive variable
should change the value of its proxies, and hence the out-
come. Our approach would call this unfair.

Unfortunately, it is not the case that proxy variables are
always descendants of sensitive variables, for (at least) two
reasons. The first is that a proxy variable can be correlated
with a senstive variable if it is a descendant of an ancestor of
the sensitive variable. For example, if religious affiliation is
a sensitive variable, one of its parents in the causal graph
might be religious affiliation of parents. This is clearly a
good proxy for religious affiliation even though it is not a
descendant of it. However, there is another, arguably more
serious reason that a proxy variable might not be a descen-
dant of a sensitive variable. Suppose that an AI system is
able to determine (perhaps by checking social media) which
religious holidays an applicant celebrates (if any). Moreover,
it treats this as an input variable. Of course, in an actual
causal model of the world, religious holidays celebrated is
clearly a descendant of religious affiliation. However, in the
bank’s model, it is not. It is just a variable whose value is
determined from social media. The bank’s system will not
“understand” that it should be a descendant of religious af-
filiation, and the bank’s system designers might not even be
aware of it being used. While the connection between re-
ligious affiliation and religious holidays celebrated is bla-
tantly clear, the connection beween other variables may not
be at all clear, and not recognized by the system designers.
In any case, religious holidays celebrated is not a descen-
dant of religious affiliation; changing the value of religious
affiliation will not affect the media posts observed. We dis-
cuss how the regulator can deal with both of these concerns
in Section .

To summarize, the main contribution of this paper lies in
creating a framework that clearly delineates what a regulator
will have to do in order to certify an AI system for fairness.
In doing so, we highlight the subtleties involved in deal-
ing with allowed variables and proxy variables, and make
the case for a non-statistical definition of fairness. We also
examine the complexity of determining whether a system
is fair, and show that it is co-NP-complete in the size (i.e.,
number of variables) of the system, but then argue that this
should not be a problem in practice.

Causal Models

In this section, we review the definition of causal models
introduced by Halpern and Pearl (2005). The material in this
section is largely taken from (Halpern 2016).

We assume that the world is described in terms of vari-
ables and their values. Some variables may have a causal
influence on others. This influence is modeled by a set of
structural equations. It is conceptually useful to split the
variables into two sets: the exogenous variables, whose val-
ues are determined by factors outside the model, and the en-
dogenous variables, whose values are ultimately determined
by the exogenous variables. The structural equations de-
scribe how these values are determined.

Formally, a causal model M is a pair (S,F), where S is
a signature, which explicitly lists the endogenous and ex-
ogenous variables and characterizes their possible values,
and F defines a set of (modifiable) structural equations, re-
lating the values of the variables. A signature S is a tuple
(U ,V,R), where U is a set of exogenous variables, V is
a set of endogenous variables, and R associates with ev-
ery variable Y ∈ U ∪ V a nonempty set R(Y ) of pos-
sible values for Y (i.e., the set of values over which Y
ranges). For simplicity, we assume here that V is finite, as is
R(Y ) for every endogenous variable Y ∈ V . F associates
with each endogenous variable X ∈ V a function denoted
FX (i.e., FX = F(X)) such that FX : (×U∈UR(U)) ×
(×Y ∈V−{X}R(Y )) → R(X). This mathematical notation
just makes precise the fact that FX determines the value of
X , given the values of all the other variables in U ∪ V .

The structural equations define what happens in the pres-
ence of external interventions. Setting the value of some
variable X to x in a causal model M = (S,F) results in a
new causal model, denotedMX←x, which is identical toM ,
except that the equation for X in F is replaced by X = x.

We can also consider probabilistic causal models if we
want to talk about the probability of causality (and, for our
purposes, the probability of discrimination). A probabilistic
causal model is a tuple M = (S,F ,Pr), where (S,F) is a
causal model, and Pr is a probability on contexts.

The dependencies between variables in a causal model
M = ((U ,V,R),F) can be described using a causal net-
work (or causal graph), whose nodes are labeled by the en-
dogenous and exogenous variables in M , with one node for
each variable in U ∪ V . The roots of the graph are (labeled
by) the exogenous variables. There is a directed edge from
variable X to Y if Y depends on X; this is the case if there
is some setting of all the variables in U ∪ V other than X
and Y such that varying the value ofX in that setting results
in a variation in the value of Y ; that is, there is a setting ~z
of the variables other than X and Y and values x and x′ of
X such that FY (x, ~z) 6= FY (x

′, ~z). A causal model M is
recursive (or acyclic) if its causal graph is acyclic. It should
be clear that if M is an acyclic causal model, then given a
context, that is, a setting ~u for the exogenous variables in
U , the values of all the other variables are determined (i.e.,
there is a unique solution to all the equations). In this paper,
following the literature, we restrict to recursive models.
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A Regulatory Framework
In this section we provide more detail about how we expect
the regulatory framework to work.

Sensitive variables: We assume that, for each application,
the regulator has a set of variables that are taken to be sen-
stive (such as race, gender, and so on), typically determined
by the law.

The bank’s network: Knowing the sensitive variables,
the bank can build its AI software. We assume that the bank
collects data for each of its applicants. That data is described
by a collection of variables that we call the data variables.
The data variables will likely include the answers given by
an applicant on an application form; they may also include,
for example, data scraped off the web. The bank would be
required to ask for the values of all sensitive variables, so
the sensitive variables form a subset of the data variables.
(Presumably the bank would tell applicants something like
“We will not use this data to determine the outcome of your
application, but we are required by law to collect it.”)

We assume that the bank uses a (possibly proprietary) net-
work to determine its decision. The bank would use the data
that it collects about an applicant to determine the value of
the input variables of its network, so it can compute a de-
cision for that applicant. Some of the data variables might
themselves be input variables; other input variables might
be determined by the data variables according to some rule.
We call this rule the input rule. The bank would be required
to reveal to the regulator what data it collects, how it collects
it (Does it come from an application form? Is it scraped off
the web? If so, from where?), what the input variables to
its network are, and the input rule. We take the “bank’s sys-
tem” to consist of all this information, together with the set
of allowed variables, discussed next. Formally, a system is
tuple (D, ~X,M, ~A, f), where D is a set of data variables,
~X ⊆ D is a set of sensitive variables, M = ((U ,V,R),F)
is a causal model, except that we extend R so that it also
associates with each variable D ∈ D a set R(D) of val-
ues (as well as associating a set of values with each vari-
able in U ∪ V), ~A ⊆ U is a set of allowed variables, and
f : R(D) → R(U) is the data rule (we are treating the
exogenous variables of M as the input variables).

Note that here we are viewing the bank’s network as a
causal graph, where the inputs are the exogenous variables.
(It may actually be even more appropriate to think of the
data variables as the exogenous variables, and then view the
input layer of the neural network as being determined from
the data variables using the input rule.) The internal nodes
of the bank’s network are endogenous variables, whose val-
ues are determined from the values of its parents using some
function (e.g., a softmax). It seems reasonable to view the
bank’s network as a causal graph; after all, the bank’s deci-
sion as to whether to approve the loan is caused by the values
of the inputs to the network. We assume that among the out-
put values (i.e., leaves) of the bank’s causal network is the
decision. All our definitions are with respect to a particular
decision. The network can have several decision variables,
and it can be fair with respect to some of them and unfair

with respect to others.

Allowed variables: After the software is built, the bank
may ask the regulator to consider certain input variables as
allowed. The bank will have to make a a case for this; as
we suggested in the introduction, we expect the case to have
the same form as that currently made to justify a practice
having disparate impact in American law. Namely, the bank
would have to show that considering these variables is jus-
tified by “business necessity”. For example, the bank might
argue that, if it is not allowed to take salary into account,
the decisions made would be so bad that the bank would just
stop making loans altogether. The bank will have to collect
data to back this up. But we should note that what counts as
appropriate justification of the disparate impact standard is
widely disputed. It may be far from obvious what the “right”
thing is to do. Consider an example taken from Kleinberg et
al. (2018b):

A state government is hiring entry-level budget
analysts. It gives a preference to applicants from the
prestigious colleges and unversities, because these ap-
plicants have done best in the past. This has a dispro-
portionate adverse effect on African-American appli-
cants.

Should the variable university rank be allowed? A strong
business case would have to be presented. This observation
suggests that if a system with certain allowed variables is
judged to be fair, and some groups feel that it is nonetheless
discriminatory, the regulator’s choice of allowed variables
might serve as the basis for a legal challenge.1 Despite the
difficulty of doing this, and the potential for lawsuits, we be-
lieve that the regulator will ultimately need to decide which
variables to treat as allowed (perhaps with inputs from vari-
ous interested parties).

Proxy variables: As we said, we expect the regulator to
treat the bank’s software as a “grey box”. But she will need
to be told all the input variables and how they are obtained.
The main reason for needing to know the input variables is
to test for proxy variables. We do not see any way of check-
ing this other than by checking, for each subset of sensitive
variables, whether some subset of input variables gives in-
appropriate information about the variables in the set.

We formalize this below, but before going on, we should
stress that the concern about proxy variables used by a sys-
tem being correlated with sensitive variables is a real one,
that has been shown to arise in practice. For example, Datta
et al. (2015) showed that the AI system used by Google to
decide which job ads to show users makes some discrimi-
natory decisions. When users provided gender information
on the Ad Settings page, Datta et al. showed that simulated
users who indicated that they were male received ads that

1To give just one real-world example of the difficulty of de-
ciding what should be allowed, as pointed out by Kleinberg et al.
(2018b), there are ongoing debates and studies regarding whether,
in our language, it is reasonable to take the variable prior incarcer-
ation record to be allowed. Does it help or hurt willingness to hire
black applicants? (See, e.g., (Agan and Starr 2018).)
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promised large salaries more frequently than simulated fe-
male users. But Google clearly used as input more than just
the Ad Settings to decide which ads to show to each user.
The kind of ads shown depended in large part on the web
pages visited by the user. Clearly, the web pages visited can
be a proxy for gender. For example, the bloggers that the
user follows, use of particular keywords in the user’s posts
on social media, and the user’s shopping activity can all be
used to infer gender. Each variable separately might not have
a high correlation with gender, but together they might indi-
cate with a high degree of certainty that the user is female.

In addition to gender, which is clearly a sensitive attribute
and should not influence the job ads shown, Datta et al. also
found that ads shown depend on whether the user visits cer-
tain webpages associated with substance abuse. Here it is
less clear whether this should be illegal, as Google might ar-
gue that substance abuse is highly correlated with inability
to keep a high-responsibility (and high-paying) job. In the
language of this paper, Google might argue that substance
abuse should be an allowed variable; it is then up to the reg-
ulator to approve or deny this request.

There are a number of plausible definitions of what it
means for the bank’s input variables to give inappropriate
information about sensitive variables. We consider the fol-
lowing requirement, which we believe captures the intuition:

• For some subset ~X of sensitive variables, some setting ~x
of the variables in ~X , some subset ~Y of disallowed in-
put variables, some setting ~y of the variables in ~Y , some
subset ~A of allowed input variables, and some setting ~a
of the variables in ~A, the event ~X = ~x is independent of
~Y = ~y given ~A = ~a.

This condition says that knowing the values of some disal-
lowed variables and some allowed variables does not give
any information about sensitive variables beyond what is
given by the allowed variables alone. To understand this,
first consider the case that the set ~A of allowed variables
is empty. Then this just says that that disallowed input vari-
ables give no information about sensitive variables. Now, by
assumption, the allowed variables do give information about
the sensitive variables (e.g., knowing the salary of an appli-
cant gives some information about the applicant’s gender).
Thus, in the case that ~A is nonempty, this condition says that
knowing the values of disallowed variables does not give any
information about the values of sensitive variables beyond
what is given by the allowed variables. Note that information
is not “additive”. The fact that the bank cannot predict the
values of sensitive variables just from disallowed variables
does not mean that it cannot predict the values of sensitive
variables better using the allowed and disallowed variables
than it could from the allowed variables alone. For exam-
ple, if pet ownership (a disallowed variable) is distributed
equally between women and men, but is highly correlated
with salary (an allowed variable) for men and not at all for
women, then pet ownership alone does not give any informa-
tion about gender, but together with salary it can determine
gender with a higher degree of certainty than salary alone.

While this is the high-level intuition we want to enforce,

what does the regulator actually check? That is, what prob-
ability distribution is it going to use to determine indepen-
dence? We believe that, in practice, the regulator will have
to use the probability distribution determined by the bank’s
applicants. Of course, the distribution determined by this
sample may not be a completely accurate description of the
distribution of the actual population (e.g., there might be
some self-selection about who applies for a loan) and may
not have enough data to determine all the relevant indepen-
dencies. For example, for some setting ~y of ~Y , there may
not be enough applicants that have inputs ~Y = ~y to deter-
mine whether X = x is independent ~Y = ~y. In any case, it
seems unreasonable to expect complete independence in the
sample; the regulator should have a threshold of acceptabil-
ity. The following definition is a first pass at making precise
what we require, where Pr now represents the sample distri-
bution, sd( ~X) is the standard deviation of ~X , and ε is some
regulator-defined threshold. (The final definition is a slight
generalization.)

Definition 1 (Preliminary version:) A system has no disal-
lowed proxy variables (at threshold ε) if for all subsets ~X

of sensitive variables, all settings ~x of ~X , all subsets ~Y of
disallowed input variables, all settings ~y of ~Y , all subsets
~A of allowed input variables, and all settings ~a of ~A such
that Pr(~Y = ~y ∧ ~A = ~a) is sufficiently large to determine
statistical independence,

|Pr( ~X = ~x | ~A = ~a)− Pr( ~X = ~x | ~Y = ~y ∩ ~A = ~a)|
sd( ~X)

< ε.

The standard deviation sd(X) serves as a normalizing factor
here; we are computing whether using the disallowed vari-
ables gives more than an ε fraction of a standard deviation
of extra information.

Definition 1 can be visualized as dividing the applicants
into “buckets”, where each bucket corresponds to a setting
of some disallowed variables, and then checking whether
there are buckets that are sufficiently large to be meaningful
and have a distribution of sensitive variables that is differ-
ent from the whole dataset. This check is meaningful only
if the bucket is large enough, which might not be the case
for very many buckets. We can get a somewhat more gen-
eral definition by allowing buckets to be combined. For-
mally, “combining two buckets” simply mean condition-
ing on their union. That is, rather than just conditioning on
~Y = ~y in Definition 1, we consider subsets ~Y 1, . . . , ~Y k

of input variables and values ~y1, . . . , ~yk, and condition on
(~Y 1 = ~y1 ∪ . . . ∪ ~Y k = ~yk); similarly, instead of just con-
ditioning on ~A = ~a, we can condition on ~A1 = ~a1 ∪ . . . ∪
~Am = ~am, for subsets ~A1, . . . , ~Am of allowed variables.
We take this to be the official definition of having no disal-
lowed proxy variables. Note that an important special case
of this is abstracting values. For example, if Y is the vari-
able age, rather than just conditioning on age = 37, we can
condition on the range age ∈ {30, . . . , 40} (which is just
age = 30 ∪ . . . ∪ age = 40).
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Certifying a system as fair: To certify a system as fair,
the regulator must conduct a number of checks. We already
discussed an important check above: checking that the sys-
tem has no disallowed proxy variables. The regulator must
also check that the values of the data variables are obtained
as the bank claimed that they were, and that the input vari-
ables were obtained from the data variables according to the
data rule. (Recall that we require the bank to reveal the data
variables used, how they are obtained, and the data rule used
to compute the values of the input variables variables.) The
regulator should be able to check the latter properties (i.e.,
the ones other than checking that there are no disallowed
proxy variables, to which we return below) by sampling ap-
plications. To understand why this is critical, consider the
following example.

Example 1 Since it gets salary information in many differ-
ent currencies, the bank convinces the regulator that, not
only should salary be allowed, but it should be able to con-
vert all information regarding salary to internal units of cur-
rency (according to agreed-upon conversion rates). But in
doing the conversion, the bank slightly modifies the salary,
replacing the low-order number by either 0 or 1, depending
on whether the applicant is male or female. For example, a
salary of 87,325 (in the bank’s internal units) would become
either 87,320 or 87,321, depending on whether the applicant
is male or female. This means that the bank can base its de-
cision completely on gender. This is precisely why the regu-
lator needs to know how all the input variables in the bank’s
system are calculated from data. If the regulator knows this,
she should be able to spot the discrepancy above. But this
will clearly require an alert regulator!

Finally, the regulator must check that there are no inputs
being used other than those listed by the bank. As we said,
we assume that the regulator has access to the input data
for all applicants. (It actually suffices that she can get data
for a reasonably large random subset of applications.) To
ensure that she is testing all the relevant variables in the tests
discussed above, the regulator can test that setting the inputs
appropriately gives the decision taken by the bank. The fact
that the bank will be monitored in this way should suffice to
prevent it from using undeclared inputs.

With all these tests of the input variables out of the way,
the regulator can check that there is no discrimination in the
more standard sense, namely, checking whether changing
the values of sensitive variables has any impact on the deci-
sion, once we fix the allowed inputs. This is a way of making
precise a claim like “gender has no impact on the decision,
beyond its impact on allowed variables (such as salary)”.
Making this precise in our setting is slightly more compli-
cated than it would be if we were just dealing with causal
models, since the sensitive variables are not necessarily part
of the causal model (i.e., they may not be in the bank’s net-
work), but are rather data variables that are collected from
the applicant. To make this precise, suppose that the data
rule for determining the values of input variables from the
values of data variables is given by the function f . Thus,
given a setting ~d of the data variables, f(~d) is a setting of
the input variables. Given a subset ~B of input variables, let

f ~B←f(~d)(
~d′) denote the setting of the input variables where

the values of all input variables other than those in ~B are
given by f(~d′), while the values of the input variables in ~B

are given by f(~d).

Definition 2 A bank’s system (D, ~X,M, ~A, f) is fair with
respect to decision variable D, where D is an endogenous
variable in M , if, for all settings ~d of the data variables D
and settings ~d′ that agree with ~d except for the values of
some sensitive variables, the value of D with the input (i.e.,
exogenous) variables set to f(~d) is the same as that with the
input variables set to f ~A←~f(~d)(

~d′).

Our definition differs from other causal definitions of fair-
ness (e.g., (Kilbertus et al. 2017; Kusner et al. 2017; Lof-
tus et al. 2018)) in one significant respect. Other definitions
of fairness are statistical. They require only that the proba-
bility of the decision D having a certain value is the same
for all settings of the sensitive variables. This difference is
mainly due to our application. We assume that the values
of all the exogenous variables are known (since they rep-
resent inputs to the bank’s system); in the other papers, it
is assumed that all that is known about the contexts is their
probability. Given that we take the values of exogenous vari-
ables to be known, we believe that our choice is appropriate
for our application.

Dealing with complaints: Suppose that the bank’s sys-
tem is certified as fair, yet someone brings a complaint of
discrimination. The bank should be able to provide all the
values of the data variables for that person. The regulator
can verify that all input variables were computed appropri-
ately and that the bank’s software really does produce the
result claimed by the bank for these values. If, despite this,
the regulator finds that the complaint has merit, she can then
check the effect of disallowing some allowed variables, to
try to pinpoint what is causing a perhaps undesirable result.
We anticipate that complaints may result in pressure to dis-
allow some allowed variables.

Changing the status of variables: While the AI system is
created and maintained by the bank, variables are defined as
sensitive or allowed by the regulator; their status may change
over time. For example, the Equal Credit Opportunity Act
(ECOA) of 1974 prohibited creditors from discrimination on
the basis of race, color, religion, national origin, sex, marital
status, or age, thus making these attributes sensitive vari-
ables. Not all cases of such changes require re-certification,
but some do. It is fairly straightforward to see that declar-
ing a previously non-sensitive variable sensitive can render
a previously fair system unfair. Indeed, this probably hap-
pened with many bank systems in 1974. It is also easy to
see that if a previously sensitive variable is declared non-
sensitive, then a system that was previously fair continues to
be fair (and a system that was unfair may become fair).

The effect of changing the status of allowed variables is
somewhat less obvious. In fact, both changing the status of a
previously disallowed variable to allowed and making a pre-
viously allowed variable disallowed can change the status of
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the system from fair to unfair or the other way around. Con-
sider a loan-application system with two data variables: a
sensitive variable gender, with values {M,F}, and a non-
sensitive variable (loan application) amount, with values
{low, high} (we make both variables binary for ease of ex-
position). The data variable amount is also an input variable,
along with salary, which, again, has two values: {low, high}.
The value of salary is low if gender=F and high otherwise.
Finally, the decision is “yes” if amount=low or salary=high.
If salary is not an allowed variable, then the system is clearly
unfair: Toggling the gender from F to M changes the deci-
sion from “no” to “yes”. Changing the status of the salary
variable to allowed, however, makes the system fair, as gen-
der affects the decision only via salary.

Perhaps a more surprising observation is that making a
previously disallowed variable allowed can make a previ-
ously fair system unfair. Suppose that we add a new input
variable impulsivity to the system above, which is low if
gender=F and high otherwise, and change the equation for
the decision to be “yes” if either salary=high or impulsiv-
ity=low. It is easy to see that the system approves all loan
applications, and if there are no allowed variables, it is fair.
If salary now becomes an allowed variable, the system stops
being fair: if gender=F and we toggle gender while keeping
salary fixed to low, impulsivity becomes high, and the loan
is not approved.

Complexity
Clearly, for the regulator to certify a system, she will have
to be able to carry out all the checks in a reasonable amount
of time. We assume that the regulator can run the bank’s
software on a specific input (i.e., for a particular applicant)
to see what the outcome would be, and do so in polynomial
time. The following result seems to suggest that checking for
fairness will be difficult. Importantly, it holds even if there
are relatively few sensitive variables (which is likely to be
the case in practice).

Theorem 1 Deciding if a system is fair is co-NP-complete.
More precisely, if Lfair is the language consisting of

all tuples (D, ~X,M, ~A, f,D) such that (D, ~X,M, ~A, f)
is a system, D is an endogenous variable in M , and
(D, ~X,M, ~A, f) is fair with respect to decision variable D,
thenLfair is co-NP-complete. This is true even if the number
of settings of exogenous sensitive variables is bounded.

Proof. To see that checking for fairness is in co-NP, it suf-
fices to check that the complementary problem is in NP. To
check for unfairness we simply have to guess a setting of the
input variables (which amounts to guessing the features of
an applicant), and guess two settings of the sensitive vari-
ables that give different values for D.

To show that checking fairness is co-NP hard, we re-
duce the problem of checking whether a propositional
formula φ is valid to the problem of checking fairness.
Given a propositional formula φ whose primitive proposi-
tions are X1, . . . , Xn, consider a system with data variables
X0, X1, . . . , Xn, all binary, such thatX0 is sensitive and the
remaining variables are not. Consider a causal model Mφ

where the exogeneous variables are X0, . . . , Xn, the data
rule is the identity, there is only one endogenous variable,
D, and no allowed variables. The equation forD isD = 1 if
X0 = 0, and D = φ if X0 = 1. Since there are no allowed
variables, this system is fair iff φ = 1 (i.e., φ is true) for ev-
ery setting of the variables X1, . . . , Xn. But this is the case
iff φ is valid.

As complaints would typically originate from one per-
ceived case of discrimination, the regulator might have an
easier task checking a complaint than certifying the whole
system. Checking fairness for a specific applicant can have
lower complexity than checking fairness of the system in
general. In order to reason about this complexity formally,
we introduce the following definition of fairness with respect
to a specific case.

Definition 3 [Case-specific fairness] (D, ~X,M, ~A, f) is
fair with respect to decision variable D and setting ~d of the
variables in D if, for all settings ~d′ that agree with ~d except
for the values of some sensitive variables, the value of D
with the exogenous variables set to f(~d) is the same as that
with the input variables set to f ~A←~f(~d)(

~d′).

Here there is some good news. Although the problem con-
tinues to be co-NP-complete, the co-NP-completeness stems
completely from the number of possible settings of the sen-
sitive variables (since we have to check that the value of the
decision variable is unaffected if we change the values of the
sensitive variables). If we assume, as will almost certainly
be the case in practice, that there are relatively few sensitive
variables and that they have relatively few values, we can do
a brute force check in polynomial time.
Theorem 2 Deciding if a system is fair with respect to a
setting of the data variables is co-NP-complete, but is poly-
nomial in the number of settings of the sensitive variables.
More precisely, if L~dfair is the language consisting of all tu-

ples (D, ~X,M, ~A, f,D, ~d) such that (D, ~X,M, ~A, f) is a
system, D is an endogenous variable in M , and ~d is a set-
ting of the variables in D, and (D, ~X,M, ~A, f) is fair with
respect to D and ~d, then the decision problem for L~dfair is
co-NP-complete, but is polynomial in the number of settings
of the exogenous variables.
Proof. Given a system, a decision variable D, and a set-
ting ~d of the data variables, we can check if D has the same
value for all settings ~d′ that agree with ~d except for the val-
ues of the sensitive variables. This is clearly polynomial in
the number of settings of the exogenous variables.

If there is no bound on the number of sensitive vari-
ables, then the problem is still clearly in co-NP (this is a
special case of Theorem ??). To show co-NP hardness, we
again reduce the validity problem to the problem of check-
ing fairness. Given a propositional formula φ whose primi-
tive propositions areX1, . . . , Xn, we consider a system with
data variables X0, X1, . . . , Xn, all of which are sensitive,
where X1, . . . , Xn are the variables of φ and X0 is a fresh
variable, the data rule is the identity, there is only one en-
dogenous variable, D, whose equation is X0 ∨ φ, and there
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are no allowed variables. This system is fair iff D has the
same value for all settings of the exogenous variables. If
X0 = 1, then D = 1, so we must also have D = 1 if
X0 = 0. But this means that for all settings of X1, . . . , Xn,
D = 1. This is the case iff φ is valid.

Theorem 0.1 already suggests why the co-NP-
completeness of checking fairness will not be a big
problem in practice, assuming that the number of settings
of sensitive variables is small. Checking fairness for a par-
ticular individual can be done quickly. Thus, the regulator
can easily sample a relatively large number of applicants
and verify that fairness holds for all of them. Why is this
compatible with Theorem ??? To verify that the formula is
valid, we must check all possible settings of the primitive
propositions in the formula. If the bank’s system uses, say,
1000 input variables, even if they are binary, there are 21000

settings of these variables, far more than the number of
applicants. We care only about the settings that actually
arise for applicants.

There is one check that the regulator must perform whose
complexity we have not yet considered: checking that there
are no disallowed proxy variables. Again, we believe that
this will not be a problem in practice. Note that whether
there are disallowed proxy variables depends on features of
the applicants; that is, it is not an intrinsic property of the
causal graph, but a property of the data. We believe that,
given n applicants, or, more precisely, given the settings of
the data variables for n applicants, the decision rule, and a
specification of which variables are sensitive), and a thresh-
old ε, we should be able to check in time polynomial in n
whether there are disallowed proxy variables by using ma-
chine learning techniques. However, we leave verifying this
to future work.

There is a concern that the bank might have a better ma-
chine learning program than the regulator, so that the regula-
tor might not detect any correlation between the disallowed
variables and the sensitive variables, but the bank’s program
can. This is clearly a topic that requires further investigation.

On what dataset should the regulator run the checks that
we have described? We expect there to be a wealth of histor-
ical data that is used by the bank to train its AI system. The
regulator can request the same training set as the bank uses
and run the initial checks on that set. The regulator should
then request all the applicant data after the bank starts run-
ning its system, and do periodic checks on (a sample of) that
data. Note that the bank can try to fool the regulator initially,
by omitting applicants from the dataset that would demon-
strate that there are disallowed proxy variables. But as long
as the regulator has access to all the applicants, that prob-
lem should be spotted relatively quickly. And if the bank
does not share all the applicant data, this will be discovered
when someone complains. We assume that there is a sys-
tem of fines and sanctions that would discourage this type
of “cheating”. Of course, it is possible that the bank’s ini-
tial dataset is not representative of later data for legitimate
reasons. For example, there may be changes in the legal pro-
cess for applying for a loan application. But then we would
expect the bank to have to (and be able to) justify why the
initial dataset is not representative.

As these results suggest, regulators should be able to cer-
tify a bank’s system in a reasonable amount of time, despite
the initially discouraging complexity results, although more
work needs to be done to develop algorithms for verifying
that a system has no proxy variables.

Conclusions
Assuring fairness of AI algorithms is a relatively recent topic
of interest, but it has already attracted a lot of attention,
due to the ever-increasing use of AI to make decisions. We
believe that there will be pressure to regulate this activity.
Companies may even welcome this regulation, to avoid get-
ting sued for their practices. Indeed, a number of large com-
panies recently released packages to detect certain types of
unfairness in the form of bias or under-representation (e.g.
IBM’s AI Fairness 360 (IBM 2018) and Facebook Fairness
Flow (Facebook 2021)). These packages are not a general
attempt to provide a regulatory framework; they have tailor-
made routines to check for particular types of discrimina-
tion. But this does demonstrate that industry is aware of
the problem and is taking preliminary steps. There has also
been work on discovering discrimination against individu-
als (Bonchi et al. 2017; Kilbertus et al. 2017; Zhang, Wu,
and Wu 2016, 2019). (Recall that in our setting, this can be
checked easily.)

In this paper, we make a first attempt to define such a
regulatory framework, with definitions and criteria that can
be verified and supported by evidence. While the worst-case
complexity of certifying fairness may appear high, in prac-
tice, we expect that the certification process will be quite
fast and efficient. Of course, not everyone will agree with
all the choices we have made here, and some may feel that
more (or less) regulation should be required. We welcome
discussion of these issues. We believe that it is important
for the AI community to take the lead here, and help guide
policy-makers in coming up with ways to certify software
as acceptable. We hope that our work provides a useful first
step in this direction.
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