
ASP-Based Declarative Process Mining

Francesco Chiariello1, Fabrizio Maria Maggi2, Fabio Patrizi1

1 DIAG - Sapienza University of Rome, Italy
2 KRDB - Free University of Bozen-Bolzano, Italy

chiariello@diag.uniroma1.it, maggi@inf.unibz.it, patrizi@diag.uniroma1.it

Abstract

We put forward Answer Set Programming (ASP) as a so-
lution approach for three classical problems in Declarative
Process Mining: Log Generation, Query Checking, and Con-
formance Checking. These problems correspond to different
ways of analyzing business processes under execution, start-
ing from sequences of recorded events, a.k.a. event logs. We
tackle them in their data-aware variant, i.e., by considering
events that carry a payload (set of attribute-value pairs), in ad-
dition to the performed activity, specifying processes declar-
atively with an extension of linear-time temporal logic over
finite traces (LTLf). The data-aware setting is significantly
more challenging than the control-flow one: Query Checking
is still open, while the existing approaches for the other two
problems do not scale well. The contributions of the work in-
clude an ASP encoding schema for the three problems, their
solution, and experiments showing the feasibility of the ap-
proach.

Introduction
Process Mining (PM) for Business Process Management
(BPM) is a research area aimed at discovering common
patters in Business Processes (BP) (van der Aalst 2016).
The analysis starts from event logs, i.e., sets of traces that
record the events associated with process instance execu-
tions, and typically assumes a process model, which may
be taken as input, manipulated as an intermediate structure,
or produced in output. Events describe process activities at
different levels of details. In the simplest perspective, here
referred to as control-flow-only, events model atomic activ-
ity performed by a process instance at some time point; in
the most complex scenario, typically referred to as multi-
perspective, events also carry a payload including a times-
tamp and activity data.

Processes can be specified prescriptively, i.e., as models,
such as Petri Nets, that generate traces, or declaratively, i.e.,
through logical formulas representing the constraints that
traces must satisfy in order to comply with the process. This
is the approach we adopt here. Specifically, we take a (un-
timed) data-aware perspective where events include the ac-
tivity and set of attribute-value pairs, the payload.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In Declarative PM, the de-facto standard for expressing
process properties is DECLARE (van der Aalst, Pesic, and
Schonenberg 2009), a temporal logic consisting in a set
of template formulas of the Linear-time Temporal Logic
over finite traces (LTLf) (De Giacomo and Vardi 2013);
here, we use a strictly more expressive extension, which
we call local LTLf , i.e., L-LTLf . This logic features a sim-
ple automata-based machinery that facilitates its manipula-
tion, while retaining the ability to express virtually all the
properties of interest in declarative PM. Specifically, L-LTLf

subsumes DECLARE and even its multi-perspective variant
MP-DECLARE (Burattin, Maggi, and Sperduti 2016) with-
out timestamps and correlation conditions (i.e., conditions
that relate the attributes of some event to those of other
events), but does not subsume full MP-DECLARE. Observe
that since MP-DECLARE does not subsume L-LTLf either,
the two logics are incomparable.

Our goal is to devise techniques for three classical
problems in Declarative PM: Event Log Generation (Sky-
danienko et al. 2018), i.e., generating an event log consis-
tent with a declarative model; Query Checking (Räim et al.
2014), i.e., discovering hidden temporal properties in an
event log; and Conformance Checking (Burattin, Maggi, and
Sperduti 2016), i.e., checking whether the traces of an event
log conform to a process model. The main challenge is deal-
ing with data: in the data-aware framework, Query Checking
is still open, while existing tools for the other two problems
do not scale well.

We put forward Answer Set Programming (ASP (Niemelä
1999)) as an effective solution approach. ASP natively pro-
vides data-manipulation functionalities which allow for for-
malizing data-aware constraints and has experienced over
the last years a dramatic improvement in solution perfor-
mance, thus results in a natural and promising candidate ap-
proach for addressing the problems of our interest. We show
how such problems can be conveniently modeled as ASP
programs, thus solved with any solver. Using the state-of-
the-art solver Clingo1 (Gebser et al. 2019), we experimen-
tally compare our approach against existing ones for Log
Generation and Conformance Checking, and show effective-
ness of the approach for Query Checking in a data-aware set-
ting. Besides providing an actual solution technique, ASP fa-

1potassco.org

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5539

cilitates reuse of specifications: the ASP encodings we pro-
pose here, indeed, differ in very few, although important,
details.

Previous related work include (Wieczorek, Jastrzab, and
Unold 2020), where ASP is used to infer a finite-state au-
tomaton that accepts (resp. rejects) traces from a positive
(negative) input set. This can be seen as a form of Declar-
ative Process Discovery, i.e., the problem of obtaining a
(declarative) process specification, which is complementary
to the problems we address here. Our approach is simi-
lar, in that we use automata to model temporal properties.
However, we propose a different automata encoding and
show the effectiveness of the approach on three different
problems. Another related paper is (Heljanko and Niemelä
2003), which shows how ASP can be used to check a Petri
Net against an LTL specification, up to a bounded time hori-
zon. Differently from our work, it: (i) deals with LTL over
infinite, as opposed to finite, runs; (ii) adopts a prescriptive,
as opposed to declarative, approach; and (iii) does not deal
with data in events.

From a broader perspective, we finally observe that while
we deal with a set of specific problems, the work paves
the way for ASP to become a general effective approach to
Declarative PM.

The Framework
An activity (signature) is an expression of the form
A(a1, . . . , anA

), where A is the activity name and each ai
is an attribute name. We call nA the arity ofA. The attribute
names of an activity are all distinct, but different activities
may contain attributes with matching names. We assume a
finite set Act of activities, all with distinct names; thus, ac-
tivities can be identified by their name, instead of by the
whole tuple. Every attribute (name) a of an activity A is as-
sociated with a type DA(a), i.e., the set of values that can
be assigned to a when the activity is executed. For simplic-
ity, we assume that all domains are equipped with the stan-
dard relations <,≤,=,≥, >. All results can be immediately
adapted if some relations are absent in some domain.

An event is the execution of an activity (at some time)
and is formally captured by an expression of the form e =
A(v1, . . . , vnA

), where A ∈ Act is an activity name and
vi ∈ DA(ai). The properties of interest in this work con-
cern (log) traces, formally defined as finite sequences of
events τ = e1 · · · en, with ei = Ai(v1, . . . , vnAi

). Traces
model process executions, i.e., the sequences of activities
performed by a process instance. A finite collection of exe-
cutions into a set L of traces is called an event log.

L-LTLf

We adopt a declarative approach to process modeling, mean-
ing that processes are specified through a set of constraints
over their executions, i.e., over the traces they produce. The
formal language we use to express properties of traces is a
variant of the Linear-time Logic over finite traces, LTLf (De
Giacomo and Vardi 2013), adapted to deal with the data at-
tributes of activities. We call such variant Linear-time Logic
with local conditions over finite traces, or local LTLf for
short, and denote it as L-LTLf .

Given a finite set of activities Act, the formulas ϕ of L-
LTLf over Act are inductively defined as follows:

ϕ = true | A | a� a′ | a� v | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where: a and a′ are attribute names from some activity in
Act, v ∈ DA(a), for some A ∈ Act, � is an operator from
{<,≤,=,≥, >}, and A is an activity name from Act. For-
mulas of the form true, A, a � a′, and a � v are called
atomic; formulas not containing the operators X and U are
called event formulas.

The logic is interpreted over positions of finite traces. For-
mula true holds at every position; A checks whether ac-
tivity A occurs in the trace at the given position; a � a′

(resp. a � v) compares the value assigned to attribute a
with that of attribute a′ (resp. with that of value v), at
the given position; boolean operators combine formulas as
usual; the next operator Xϕ checks whether ϕ holds in the
suffix starting at the next position; finally, the until operator
ϕUϕ′ checks whether ϕ′ is satisfied at some position k, and
whether ϕ holds in all positions that precede k, up to the
given position.

Formally, we define by induction when a trace τ =
e1 · · · en satisfies an L-LTLf formula ϕ at position 1 ≤ i ≤
n, written τ, i |= ϕ, as follows:

• τ, i |= true;
• τ, i |= A iff ei = A(v1, . . . , vnA

);
• τ, i |= a � a′ iff for ei = Ai(v1, . . . , vnAi

) and
Ai(a1, . . . , anAi

) the signature of Ai, it is the case that,
for some j and k, a = aj , a′ = ak, and vj � vk; 2

• τ, i |= a � v iff for ei = Ai(v1, . . . , vnAi
) and

Ai(a1, . . . , anAi
) the signature of Ai, it is the case that,

for some j, a = aj and vj � v;
• τ, i |= ϕ1 ∧ ϕ2 iff τ, i |= ϕ1 and τ, i |= ϕ2;
• τ, i |= ¬ϕ iff τ, i 6|= ϕ;
• τ, i |= Xϕ iff i < n and τ, i+ 1 |= ϕ;
• τ, i |= ϕ1Uϕ2 iff there exists j ≤ n s.t. τ, j |= ϕ2 and

for every 1 ≤ k ≤ j − 1, it is the case that τ, k |= ϕ1.

Notice that while, in general, the satisfaction of an L-LTLf

formula ϕ at some position i of τ depends on the whole
trace, and precisely on the suffix of τ starting at position i,
event formulas depend only on the event at i.

As in standard LTLf , X denotes the strong next operator
(which requires the existence of a next event where the in-
ner formula is evaluated), while U denotes the strong until
operator (which requires the right-hand formula to eventu-
ally hold, forcing the left-hand formula to hold in all in-
termediate events). The following are standard abbrevia-
tions: ϕ1 ∨ ϕ2

.
= ¬(¬ϕ1 ∧ ¬ϕ2); ϕ1→ϕ2

.
= ¬ϕ1 ∨ ϕ2;

Fϕ = trueUϕ (eventually ϕ); and Gϕ = ¬F¬ϕ (glob-
ally, or always, ϕ).

Through L-LTLf one can express properties of process
traces that involve not only the process control-flow but also
the manipulated data.

2Notice that this requires compatibility between the domains
DAi(aj) and DAi(ak) wrt relation �.

5540

s0 s1

ϕ3

ϕ1

ϕ4

ϕ2

Figure 1: Automaton for the Response constraint.

Example 1 The L-LTLf formula ϕ = G(a→Fb), a so-
called Response constraint, says that whenever activity a
occurs, it must be eventually followed by activity b. A possi-
ble data-aware variant of ϕ is the formula ϕ′ = G((a∧n <
5)→Fb), which says that whenever activity a occurs with
attribute n less than 5, it must be followed by activity b.

Formulas of LTLf , thus L-LTLf , have the useful property
of being fully characterized by finite-state, possibly non-
deterministic, automata. Specifically, for every L-LTLf for-
mula ϕ there exists a finite-state automaton (FSA) Aϕ that
accepts all and only the traces that satisfy ϕ (De Giacomo
and Vardi 2013). Such automata are standard FSA with tran-
sitions labelled by event formulas. For a fixed set of activi-
ties Act, let ΓAct be the set of event formulas over Act. An
FSA over a set of activitiesAct is a tupleA = 〈Q, q0, ρ, F 〉,
where:

• Q is a finite set of states;
• q0 ∈ Q is the automaton initial state;
• δ ⊆ Q× ΓAct ×Q is the automaton transition relation;
• F ⊆ Q is the set of automaton final states.

Without loss of generality, we assume that formulas label-
ing transitions are conjunctions of literals. It is immediate to
show that every FSA can be rewritten in this way.

A run of an FSA A on a trace τ = e1 · · · en (over Act) is
a sequence of states ρ = q0 · · · qn s.t. for all 0 ≤ i ≤ n − 1
there exists a transition 〈qi, γ, qi+1〉 ∈ δ s.t. τ, i + 1 |= γ.
A trace τ over Act is accepted by A iff it induces a run
of A that ends in a final state. Notice that satisfaction of γ,
this being an event formula, can be established by looking at
each event ei+1 at a time, while disregarding the rest of the
trace; thus, in order to construct the induced run ρ, one can
proceed in an online fashion, as the next event arrives, by
simply triggering, at every step, a transition outgoing from
qi whose label is satisfied by the event.

Example 2 Consider again the formulas ϕ and ϕ′ shown
above, and the (paramtric) automaton depicted in Fig 1. It
is easy to see that for ϕ1 = a, ϕ2 = b, ϕ3 = ¬a, ϕ4 = ¬b,
the resulting automaton accepts all and only the traces that
satisfy ϕ, as well as that for ϕ1 = a ∧ n < 5, ϕ2 = b,
ϕ3 = ¬(a ∧ n < 5), ϕ4 = ¬b, the obtained automaton
accepts all and only the traces that satisfy ϕ′.

The details about the construction of Aϕ from ϕ are
not in the scope of this work, and we refer the interested
reader to (De Giacomo and Vardi 2013) for more informa-
tion; we rely on the results therein. We observe that while
the automaton construction is time-exponential in the worst-
case, wrt the size of the input formula ϕ, tools exist, such

as Lydia3 (De Giacomo and Favorito 2021), which exhibit
efficient performance in practice; this, combined with the
fact that the specifications of practical interest are typically
small, makes the approaches based on automata construc-
tion usually feasible in practice. We can now formalize the
problems addressed in this paper.

Event Log Generation. Given a set Φ of L-LTLf formulas
over a set of activities Act and a positive integer t, return a
trace τ over Act of length t s.t., for every formula ϕ ∈ Φ,
it is the case that τ |= ϕ. In words, the problem amounts to
producing a trace of length t over Act that satisfies all the
input constraints in Φ. A more general version of the prob-
lem requires to generate a log L of n traces of fixed length
t satisfying the constraints. For simplicity, we consider the
first formulation.

Query Checking. Query Checking takes as input formu-
las from the extension of L-LTLf with activity variables, de-
fined as follows:

ϕ = true |?V | A | a�a′ | a�v | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ,

where symbols starting with “?” are activity variables and
the other symbols are as in L-LTLf (given Act).

Given an L-LTLf formula with activity variables, by as-
signing an activity (from Act) to every variable, we obtain a
“regular” L-LTLf formula. Formally, for an L-LTLf formula
ϕ (over Act), containing a (possibly empty) set of activity
variables V arsϕ, an assignment to V arsϕ is a total func-
tion ν : V arsϕ → Act. Given ϕ and an assignment ν to
its activity variables, ϕ[ν] denotes the (regular) L-LTLf for-
mula obtained by replacing, in ϕ, every variable symbol ?V
with an activity name from Act. Observe that if V arsϕ = ∅
there exists only one assignment ν and ϕ = ϕ[ν]. Given a
trace τ , sinceϕ[ν] is a regular L-LTLf formula, we can check
whether τ |= ϕ[ν].

An instance of Query Checking consists in a log L and an
L-LTLf formula ϕ with activity variables V arsϕ; a solution
is a set Λ of assignments to V arsϕ s.t. for every assignment
ν ∈ Λ and every trace τ ∈ L, it holds that τ |= ϕ[ν].

In words, query checking requires to find a set Λ of as-
signments ν, each transforming the input formula ϕ into an
L-LTLf formula ϕ[ν] satisfied by all the traces of the input
log L. Observe that ϕ variables can only span over activities.

Conformance Checking. Given a trace τ and a set Φ of
L-LTLf formulas, both over the same set of activities Act,
check whether, for all formulas ϕ ∈ Φ, τ |= ϕ. The prob-
lem can also be defined in a more general form, where τ is
replaced by a log L of traces over Act and the task requires
to check whether for all the traces τ of L and all ϕ ∈ Φ, it
holds that τ |= ϕ.

Answer Set Programming (ASP)
An ASP program consists in a set of rules which define pred-
icates and impose relationships among them. The task of
an ASP solver is that of finding a finite model of the pro-
gram, i.e., an interpretation of the predicates that satisfies

3github.com/whitemech/lydia/releases/tag/v0.1.1

5541

the program rules. ASP rules are written in a fragment of
(function-free) First-order Logic (FOL) extended with a spe-
cial negation-as-failure (NAF) operator (in addition to clas-
sical negation) which allows for distinguishing facts that are
false from facts that are unknown. The presence of this oper-
ator, combined with the classical FOL negation, has a huge
impact on the programs one can write and the way models
are found. Here, we do not discuss these details, referring the
interested reader to (Gelfond and Lifschitz 1988; Niemelä
1999). For our purposes, it will be sufficient restricting to
the class of rules with the NAF operator as the only available
negation operator (that is, disallowing classical negation).

Syntax
The basic constructs of ASP programs are: 1. constants,
identified by strings starting with a lower-case letter; 2. vari-
ables, identified by strings starting with an upper-case let-
ter; 3. terms, i.e., constants or variables; 4. atoms, i.e., ex-
pressions of the form p(t1, . . . , tn), where p is a predicate,
identified by a string, and each ti is a term. A predicate p
is said to have arity n if it occurs in an expression of the
form p(t1, . . . , tn). An atom containing only constant terms
is said to be ground.

ASP rules are obtained by combining the basic elements
through boolean operators and the NAF operator. In this
work, we use rules of the following form:

a← l1, . . . , ln, not ln+1, . . . , not lm

where a and each li are atoms p(t1, . . . , tn), not denotes the
NAF operator, and every variable occurring in the rule also
occurs in some atom l1, . . . , ln. The left-hand side is called
the rule’s head and is optional. When the head is absent, the
rule is called an integrity constraint. The right-hand side is
called the body and can be left empty, in which case the←
symbol is omitted and the rule is called a fact.

Semantics
Intuitively, a model of an ASP program P is a set of ground
atoms that satisfies all program rules. In general, many mod-
els exist. Among these, only those that are minimal wrt set
inclusion and that contain a ground atom only “if needed”,
i.e., if it occurs as the head of a ground rule, are taken as so-
lutions, called the answer sets of P in the ASP terminology.
The task of an ASP solver is to compute such sets.

Given an ASP program P and a rule r ∈ P , the set of
r ground instantiations is the set G(r) of rules obtained by
replacing all the variables in r with all the constants men-
tioned in P (the so-called Herbrand universe of P), in all
possible ways, so that all rules in G(r) contain only ground
atoms. Then, the ground instantiation G(P) of a program P
is the union of all the ground instantiations of its rules, i.e.,
G(P) =

⋃
r∈P G(P).

An interpretation I of a program P is a set of ground
atoms p(c1, . . . , cn), where p is a predicate of arity n oc-
curring in P and c1, . . . , cn are constants from the Herbrand
universe of P . Given a positive (i.e., without occurrences of
not) program P , an interpretation I is a model of P if, for
every ground rule, a← l1, . . . , ln in G(P), whenever li ∈ I

for i = 1, . . . , ln, it holds that a ∈ I . An answer set of P is
a model I that is minimal wrt set inclusion.

The semantics of general programs is obtained as a reduc-
tion to positive programs. Namely, the reduct of a ground
program G(P) wrt an interpretation I is the positive ground
program G(P)I obtained by:

• deleting all the rules

a← l1, . . . , ln, not ln+1, . . . , not lm

of G(P) s.t. li ∈ I for some i ∈ {n+ 1, . . . ,m};
• replacing all the remaining rules

a← l1, . . . , ln, not ln+1, . . . , not lm

with a← l1, . . . , ln.

Intuitively, the first transformation removes a rule, as already
satisfied by I; the second transformation removes the so-
called negative body of the rule, because it is satisfied. As
it can be easily seen, the resulting program G(P)I does not
mention the not operator. The interpretation I is an answer
set of P if it is an answer set of G(P)I .

In this work, we do not discuss the algorithms to compute
the answer sets of a program, but focus on how the problems
of our interest can be encoded in ASP and then solved by an
ASP solver, in such a way that the returned Answer Sets
represent the solution to our problems. This is the focus of
the next section. For the experiments, we use the state-of-
the-art solver Clingo.

ASP for Declarative Process Mining
We encode Log Generation, Conformance Checking, and
Query Checking into ASP programs. For every L-LTLf for-
mula ϕ we deal with, we assume available the correspond-
ing automaton Aϕ. The three programs share some com-
mon parts, such as the automata and the traces, which are
modeled through suitable predicates and ASP rules. Each
encoding re-uses some of these parts, possibly customized,
together with additional fragments used to model problem-
specific features.

Activities are captured by the unary predicate act(A),
where A is the activity name. In the presence of data,
activity signatures are modeled by the binary predicate
has attr(A,N), where A is the activity name and N is
the attribute name. Attributes may be typed by stating the
set of values they can take, through predicate val(N,V),
where N is the attribute name and V one of its possible val-
ues. A trace is modeled by the binary predicate trace(A, T),
where A is the activity and T the time point where it occurs.
Time points come from predicate time(T), which contains
the values {0, . . . , `}, for ` the trace length. The trace is de-
fined on time points from 0 to `− 1. In the presence of data,
activity attributes are paired with values through predicate
has val(N,V, T), where N is the attribute name, V the as-
signed value, and T the time point . Notice that the associ-
ation is based on the time point (exactly one activity is per-
formed at one time point). Simple integrity constraints are
used to ensure that the mentioned attributes belong in fact

5542

to the activity and that the sassigned value comes from the
corresponding type.

Automata are encoded with predicates init(S), acc(S),
trans(S, F, S′), and hold(F, T). The first and the second
one model the initial state and the accepting states of the
automaton, the third one models the existence of a transition
from S to S′ under the event formula represented by integer
F , and the last one models satisfaction of (event) formula F
at time point T . In the presence of multiple L-LTLf formulas,
each automaton is identified by a unique integer value and an
additional parameter is added to the above predicates to refer
to the various automata.

Example 3 The ASP encoding of the automaton for the
LTLf formula G(a → Fb), shown in Fig. 1, for ϕ1 = a,
ϕ2 = b, ϕ3 = ¬a, ϕ4 = ¬b, is as follows:

init(1, s0).
acc(1, s0).
trans(1, s0, 1, s1).
hold(1, 1, T)← trace(a, T).
trans(1, s1, 2, s0).
hold(1, 2, T)← trace(b, T).
trans(1, s0, 3, s0).
hold(1, 3, T)← not hold(1, 1, T), time(T).
trans(1, s1, 4, s1).
hold(1, 4, T)← trace(A, T), activity(A), A 6= b.

where a and b are activities and each formula ϕi (i =
1, . . . , 4) is identified by index i in the encoding.

In a data-aware setting, conditions on data can be simply
added to the rules for holds. For example the following rule:

hold(1, 1, T)←
trace(a, T), has val(number, V, T), V < 5.

expresses the fact that the event formula ϕ1 holds at time T
if activity a occurs at time T in the trace, with a value less
than 5 assigned to its attribute number.

To capture satisfaction of an L-LTLf formula ϕ by a trace
τ , we model the execution of the automatonAϕ on τ . To this
end, we introduce predicate state(I, S, T), which expresses
the fact that automaton (with index) I is in state S at time
T . Since the automaton is nondeterministic in general, it can
be in many states at time point T (except for the initial one).
The rules defining state are the following:

state(I, S, 0)← init(I, S).
state(I, S′, T)← state(I, S, T − 1),

trans(I, S, F, S′), hold(I, F, T − 1).

The first one says that at time point 0 every automaton I is
in its respective initial state. The second one says that the
current state of automaton I at time point T is S′ whenever
the automaton is in state S at previous time point T − 1,
the automaton contains a transition from S to S′ under some
event formula with index F and the formula holds at time
T − 1 in the trace.

Finally, the fact that a trace is accepted by all automata,
i.e., that the trace satisfies the corresponding formulas, is
stated by requiring that, for each automaton, at least one of

the final states be accepting (tlength(T) denotes the length
T of the trace):

← {state(I, S, T) : not acc(I, S), tlength(T)} = 0.

Next, we use these fragments to describe the ASP encod-
ings for the problems of interest. For lack of space, we dis-
cuss only the main rules.

Event Log Generation The encoding schema of Event
Log Generation is as follows:

1. Activities, attributes, attribute types, and trace length are
provided as input and formalized as discussed above.

2. For each input L-LTLf constraint ϕ, the corresponding
automaton Aϕ is generated and modeled as discussed,
using a unique integer value to identify it.

3. Suitable integrity constraints are defined to ensure that:
each time point in the trace has exactly one activity; ev-
ery attribute is assigned exactly one value; and the at-
tributes assigned at a given time point actually belong to
the activity occurring at that time point.

4. Finally, predicate state is defined as above and it is re-
quired that every automaton ends up in at least one final
state at the last time point.

5. Predicates trace and has val contain the solution, i.e.,
they model a sequence of activities whose attributes
have an assigned value, which satisfies all the input con-
straints.

Query Checking The ASP specification of query check-
ing is analogous to that of Log Generation except for the
following. Firstly, the problem takes as input a set of fully
specified traces. This is dealt with in a simple way, by adding
a parameter to predicate trace representing the (unique)
identifier of the trace and, consequently, by adding such
parameter to all the predicates that depend on trace (e.g.,
has val, hold, state). Secondly, the input L-LTLf formu-
las contain activity variables. To deal with them, additional
predicates var(V) and assgnmt(V,W) are introduced to
account for, respectively, variables V and assignments of
value W to variable V . Besides this, the automata Aϕi as-
sociated with the formulas are obtained by treating activity
variables as if they were activity symbols (without affect-
ing the construction, which does not consider the seman-
tics of such objects), thus obtaining automata whose tran-
sitions are labelled by event formulas, possibly containing
activity variables instead of activity symbols. Such formu-
las become regular event formulas once values are assigned
to variables and can thus be evaluated on the (events of the)
input trace. Formally, this requires a slightly different def-
inition of predicate hold, which must now take assgnmt
into account. To see how this is done, consider the formula
ϕ = G((?A1 ∧ number < 5) → F?A2). The corre-
sponding automaton is the same as that of Fig. 1, where
ϕ1 =?A1 ∧ number < 5, ϕ2 =?A2, ϕ3 = ¬ϕ1, and
ϕ4 = ¬ϕ2. For formula ϕ1, we have the following definition
of predicate hold:

hold(1, 1, J, T)← trace(J,A, T), assgnmt(varA1, A),
has val(J, integer, V, T), V < 5.

5543

The parameter J stands for the trace identifier, as discussed
above. The above rule generalizes the corresponding one in
Log Generation in the presence of activity variable ?A1. As
it can be seen, in order to evaluate formula ϕ1 (second pa-
rameter in hold) of automaton 1 (first parameter), such vari-
able (modeled as varA1) must be instantiated first, through
predicate assgnmt. Observe that once all variables are as-
signed a value, the whole formula ϕ becomes variable-free,
and the corresponding automaton is a regular automaton.
The returned extensions of assgnmt and has val represent,
together, the problem solution.

Conformance Checking Conformance Checking can be
seen as a special case of Query Checking with a single input
trace and where all input formulas are variable-free. In this
case, the problem amounts to simply checking whether the
whole specification is consistent, which is the case if and
only if the input trace, together with the assignments to the
respective activity attributes, satisfy the input formulas.

We close the section by observing how these problems
provide a clear example of how the declarative approach al-
lows for specification reuse. All the specifications, indeed,
share the main rules (for trace, automaton, etc.) and are eas-
ily obtained as slight variants of each other, possibly varying
the (guessed) predicates representing the solution.

Experiments
In this section, we provide both a comparison with state-of-
the-art tools for Log Generation and Conformance Check-
ing, based on multi-perspective declarative models, and an
estimate of scalability for our query checking tool, for
which, instead, no competitors exist. The state-of-the art
tool used for Log Generation is the one presented in (Sky-
danienko et al. 2018), which is based on Alloy4 and tailored
for MP-Declare; our results show that our ASP implementa-
tion for Log Generation scales much better than that and, at
the same time, supports a more expressive data-aware rule
language. As to Conformance Checking, we considered the
state-of-the-art tool Declare Analyzer (Burattin, Maggi, and
Sperduti 2016); we obtained comparable execution times but
Declare Analyzer is specifically tailored for Declare and op-
timized to check conformance wrt Declare rules only, while
our tool is more general in this respect. The experiments
have been carried out on a standard laptop Dell XPS 15 with
an Intel i7 processor and 16GB of RAM. All execution times
have been averaged over 3 runs. Source code, declarative
models and event logs used in the experiments are available
at https://github.com/fracchiariello/process-mining-ASP.

Log Generation
For testing the Log Generation tools, we have used 8 syn-
thetic models and 8 models derived from real life logs. The
experiments with synthetic models allowed us to test scala-
bility of the tools in a controlled environment and over mod-
els with specific characteristics. The experiments with real
models have been used to test the tools in real environments.

4https://alloytools.org/

constr.→ 3 5 7 10
Trace len ↓

10 595 614 622 654
15 876 894 904 956
20 1132 1155 1178 1250
25 1364 1413 1444 1543
30 1642 1701 1746 1874
10 249 270 289 340
15 349 390 408 457
20 436 496 538 601
25 519 568 611 712
30 622 666 726 837
10 35975 35786 36464 37688
15 50649 51534 54402 54749
20 69608 70342 73122 73222
25 85127 85598 87065 89210
30 101518 101882 106062 107520
10 18733 18947 19539 20007
15 25700 25723 27344 26897
20 32047 33837 33107 33615
25 39114 38666 40556 41055
30 46207 46706 47613 49410

Table 1: Log Generation (times in ms)

For the experiments with synthetic models, we built 8 refer-
ence models containing 3, 5, 7, and 10 constraints with and
without data conditions. Each model was obtained from the
previous one by adding new constraints and preserving those
already present. Times are in ms.

The first and second blocks of Table 1 show the execution
times for the ASP-based log generator, respectively with and
without data conditions; the third and fourth blocks show the
results obtained with the Alloy log generator, with and with-
out data. Times refer to the generation of logs with 10000
traces (of length from 10 to 30). Consistent results are ob-
tained also on additional experiments for logs of size be-
tween 100 and 5000, not reported here for space reasons.

The results obtained with models containing data condi-
tions show that the ASP-based tool scales very well, requir-
ing less than 2 sec in the worst case. This occurs when a
model with 10 constraints is used to generate 10000 traces
of length 30. As expected, the execution time increases lin-
early when the length of the traces in the generated logs in-
creases. The number of constraints in the declarative model
also affects the tool performance but with a lower impact.

Without data conditions the results are similar but, as
expected, the execution time is lower and increases less
quickly when the complexity of the model and of the gener-
ated log increases. In the worst case (a model with 10 con-
straints used to generate 10000 traces of length 30), the exe-
cution time is lower than 1 sec.

The results obtained with the Alloy-based tool show sim-
ilar trends but with execution times almost 60 times higher
than those obtained with the ASP-based tool.

The real life logs used in the experiments are taken
from the collection available at https://data.4tu.nl/. We used

5544

Model (80)→ BPI2012 DD ID PL PTC RP RT Sepsis
Trace len ↓

10 656 100* 726* 3901 1183 119* 319 460
15 817 887 2865 4538 1820 1069 353 564
20 846 832 3160 4102 2194 813 860 640
25 1061 930 4129 6169 2889 1063 483 780
30 1433 1026 5226 9231 2370 1220 630 923
10 31935 2364* 30762* 59468 65783 2703* 24909 38241
15 43337 58572 152188 85942 97098 66641 34408 57178
20 57596 80665 237777 122511 146420 95005 44608 85808
25 72383 118975 359665 174596 221434 134851 54808 120110
30 86910 181027 563794 236697 330753 187972 63379 174838

Table 2: Log Generation, real life (times in ms)

Tool→ ASP Declare Analyzer
Trace Len ↓ data no data data no data

10 665 635 598 110
15 1100 1035 805 145
20 1456 1354 1092 155
25 2071 1896 1273 177
30 2407 2219 1337 215

Table 3: Conformance Checking (times in ms)

the declarative process model discovery tool presented in
(Maggi et al. 2018) to extract a process model using the de-
fault settings. The models in the real cases are much more
complex and include a number of constraints between 10
and 49 for a minimum support of 80. The execution times
needed for the Log Generation task with the ASP-based log
generator and with the Alloy-based tool are shown, respec-
tively, in the first and second block of Table 2. An asterisk
indicates that for the specific model it was not possible to
generate 10000 unique traces. The complexity of real life
models makes even more evident the significant advantage
of using the ASP-based tool with respect to the Alloy-based
one. In particular, in the worst case, the ASP-based tool re-
quires around 9 sec (to generate 10000 traces of length 30
for log PL) while the Alloy-based generator almost 4 mins.

Conformance Checking
Also for Conformance Checking we used synthetic and real
life datasets. The former include the same declarative mod-
els as those used for Log Generation, plus synthetic logs of
1000 traces of lengths from 10 to 30. Table 3 shows the
execution times for the ASP-based tool, with and without
data conditions, and for the Declare Analyzer tool for syn-
thetic datasets (times in ms). The results show that in all
cases the execution times increase when the model becomes
larger and the traces in the log become longer. The execu-
tion times obtained with the ASP-based tool and the Declare
Analyzer are comparable for data-aware constraints, while,
model constraints do not contain data conditions, the De-
clare Analyzer is around 5 times faster. This might be due to
the use of the #max aggregate to compute a trace’s length,

which yields performance degradations. A possible solution
could be computing the trace length in advance and then pro-
vide it in the ASP encoding as a fact.

In the real life experiments, we tested the Conformance
Checking tools using models obtained with the discovery
tool by varying the minimum support between 60 and 90.
The minimum support indicates the minimum percentage of
traces in which a constraint should be fulfilled to be added
to the discovered model. Clearly, a higher minimum sup-
port implies that the discovered models contain less con-
straints. As expected (see Table 4), the execution times de-
crease when the minimum support used to discover the ref-
erence models increases in size. Also in this case, the De-
clare Analyzer (second block in Table 4) is faster. However,
the ASP-based tool also scales well (first block in Table 4)
requiring in the worst case around 1min.

Query Checking
Since for Query Checking no competitor exists in the PM
literature, we ran a set of controlled experiments to check
how execution times vary under different conditions. We
used the same synthetic logs used for Conformance Check-
ing and tested 8 queries corresponding to 8 standard Declare
templates, with and without data conditions. The results are
shown in Table 5 (with and without data in the first and sec-
ond block respectively). The execution times are comparable
for different types of queries and the presence of data does
not affect performance. In addition, as expected, the execu-
tion times increase when the traces in the log become longer.

Conclusions
We have devised an ASP-based approach to solve three clas-
sical problems from Declarative PM, namely Log Genera-
tion, Query Checking and Conformance Checking, in a data-
aware setting. Our results include correct ASP-encoding
schemata and an experimental evaluation against other ap-
proaches. The experimental results show that, for Log Gen-
eration, our approach drastically outperforms the state-of-
the-art tool from PM. Time performance are slightly worse
wrt to the existing ad-hoc Conformance Checker Declare
Analyzer, which is optimized for Declare. As to Query
Checking, our approach provides the first solution in a data-

5545

BPI2012 DD ID PL PTC RP RT Sepsis
60 33426 13084 49969 78625 8412 9354 49501 7116
70 33242 13245 46388 55475 5596 9359 35537 3796
80 24482 10176 29969 33775 4699 6836 35483 1778
90 8445 4568 17576 26590 2787 5608 35483 731
60 2882 2771 9800 8521 1549 2122 15262 1194
70 2852 3249 7416 5358 959 2102 10351 705
80 2291 2103 3993 2677 755 1532 11285 318
90 1691 1525 1946 1595 404 1091 10628 250

Table 4: Conformance Checking (times in ms)

Constraints→ Existence Responded Response Chain Absence Not Resp. Not Resp. Not Chain
Trace len ↓ Existence Response Existence Response

10 521 736 534 503 566 783 602 385
15 704 1113 801 788 784 1180 879 606
20 1321 1675 1143 1128 1373 1821 1304 865
25 1397 3218 1528 1561 1562 2823 1807 1104
30 1674 2878 1824 1906 1905 2784 2028 1301
10 399 658 541 632 441 799 806 772
15 616 1183 824 1057 595 1319 1121 1182
20 903 1778 1339 1550 874 1887 2127 2062
25 1188 2381 1724 2036 1101 3246 3200 2486
30 1461 3278 2066 2632 1333 3391 2766 2846

Table 5: ASP Query Checking (times in ms)

aware setting, a problem still open so far. We believe that,
by showing how the selected problems can be encoded and
solved in ASP, we are not only offering a solution technique
but, more in general, we are putting forward ASP an effec-
tive modeling paradigm for Declarative PM in a data-aware
setting. For future work, we plan to extend the approach to
deal with actual, non-integer, timestamps in events and to
go beyond local LTLf by investigating the introduction of
across-state quantification to relate the values assigned to
attributes at a given time point to those assigned at a differ-
ent time point.

Acknowledgments
Work partly supported by the ERC Advanced Grant White-
Mech (No. 834228), the EU ICT-48 2020 project TAILOR
(No. 952215), the Sapienza Project DRAPE, and the UNIBZ
project CAT.

References
Burattin, A.; Maggi, F. M.; and Sperduti, A. 2016. Con-
formance checking based on multi-perspective declarative
process models. Expert Syst. Appl., 65: 194–211.
De Giacomo, G.; and Favorito, M. 2021. Compositional
Approach to Translate LTLf/LDLf into Deterministic Finite
Automata. In Biundo, S.; Do, M.; Goldman, R.; Katz, M.;
Yang, Q.; and Zhuo, H. H., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling, ICAPS 2021, Guangzhou, China (virtual), Au-
gust 2-13, 2021, 122–130. AAAI Press.

De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Rossi,
F., ed., IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, 854–860. IJCAI/AAAI.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory Pract.
Log. Program., 19(1): 27–82.

Gelfond, M.; and Lifschitz, V. 1988. The Stable Model Se-
mantics for Logic Programming. In Kowalski, R.; Bowen;
and Kenneth, eds., Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.

Heljanko, K.; and Niemelä, I. 2003. Bounded LTL model
checking with stable models. Theory Pract. Log. Program.,
3(4-5): 519–550.

Maggi, F. M.; Di Ciccio, C.; Di Francescomarino, C.; and
Kala, T. 2018. Parallel algorithms for the automated dis-
covery of declarative process models. Inf. Syst., 74(Part):
136–152.

Niemelä, I. 1999. Logic Programs with Stable Model Se-
mantics as a Constraint Programming Paradigm. Ann. Math.
Artif. Intell., 25(3-4): 241–273.

Räim, M.; Di Ciccio, C.; Maggi, F. M.; Mecella, M.; and
Mendling, J. 2014. Log-Based Understanding of Business
Processes through Temporal Logic Query Checking. In On
the Move to Meaningful Internet Systems: OTM 2014 Con-
ferences - Confederated International Conferences: CoopIS,

5546

and ODBASE 2014, Amantea, Italy, October 27-31, 2014,
Proceedings, 75–92.
Skydanienko, V.; Di Francescomarino, C.; Ghidini, C.; and
Maggi, F. M. 2018. A Tool for Generating Event Logs
from Multi-Perspective Declare Models. In van der Aalst,
W. M. P.; Casati, F.; Kumar, A.; Mendling, J.; Nepal, S.;
Pentland, B. T.; and Weber, B., eds., Proceedings of the
Dissertation Award, Demonstration, and Industrial Track at
BPM 2018 co-located with 16th International Conference
on Business Process Management (BPM 2018), Sydney, Aus-
tralia, September 9-14, 2018, volume 2196 of CEUR Work-
shop Proceedings, 111–115. CEUR-WS.org, Raffaele Con-
forti and Massimiliano de Leoni and Marlon Dumas.
van der Aalst, W. M. P. 2016. Process Mining - Data Sci-
ence in Action, Second Edition. Springer. ISBN 978-3-662-
49850-7.
van der Aalst, W. M. P.; Pesic, M.; and Schonenberg, H.
2009. Declarative workflows: Balancing between flexibil-
ity and support. Comput. Sci. Res. Dev., 23(2): 99–113.
Wieczorek, W.; Jastrzab, T.; and Unold, O. 2020. Answer
Set Programming for Regular Inference. Applied Sciences,
10(21): 7700.

5547

