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Abstract

Learning effective representations of entities and relations
for knowledge graphs (KGs) is critical to the success of
many multi-relational learning tasks. Existing methods based
on graph neural networks learn a deterministic embedding
function, which lacks sufficient flexibility to explore better
choices when dealing with the imperfect and noisy KGs such
as the scarce labeled nodes and noisy graph structure. To
this end, we propose a novel multi-relational graph Gaussian
Process network (GGPN), which aims to improve the flexi-
bility of deterministic methods by simultaneously learning a
family of embedding functions, i.e., a stochastic embedding
function. Specifically, a Bayesian Gaussian Process (GP) is
proposed to model the distribution of this stochastic function
and the resulting representations are obtained by aggregating
stochastic function values, i.e., messages, from neighboring
entities. The two problems incurred when leveraging GP in
GGPN are the proper choice of kernel function and the cu-
bic computational complexity. To address the first problem,
we further propose a novel kernel function that can explicitly
take the diverse relations between each pair of entities into ac-
count and be adaptively learned in a data-driven way. We ad-
dress the second problem by reformulating GP as a Bayesian
linear model, resulting in a linear computational complexity.
With these two solutions, our GGPN can be efficiently trained
in an end-to-end manner. We evaluate our GGPN in link pre-
diction and entity classification tasks, and the experimental
results demonstrate the superiority of our method. Our code
is available at https://github.com/sysu-gzchen/GGPN.

Introduction
Knowledge graphs (KGs), as high-profile multi-relational
graphs, are composed of entities as nodes and relations as
the types of edges to store plenty of factual knowledge. An-
alyzing KGs has become one of the most important topics in
machine learning community, with a wide spectrum of appli-
cations such as question answering (Liang, Luo, and Meng
2021; Luo, Liang, and Meng 2019), personalized recom-
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mendation (Qian et al. 2013), and relation extraction (Zhou
et al. 2005; Qu et al. 2020).

Recent researches on KGs have been focusing on learning
representations for entities and relations that encode seman-
tic and structural information inherent in KGs. Particularly,
multi-relational graph neural networks (Schlichtkrull et al.
2018; Vashishth et al. 2020b; Nathani et al. 2019), which
iteratively aggregate messages from neighboring entities,
have achieved impressive performance on multi-relational
learning tasks. However, these methods learn a determinis-
tic embedding function, which makes them less effective to
handle the imperfect and noisy KGs. For instance, the la-
beled entities in KGs are usually scarce due to the expen-
siveness and difficulty of human annotation, and missing or
wrong edges are also common in KGs (Ji et al. 2021). Learn-
ing with these imperfect and noisy KGs may lead to the
poor performance of deterministic embedding methods in
entity classification task, due to the rigidness of determinis-
tic methods and lacking sufficient supervision signals (Wang
et al. 2020).

To address these challenges, we propose a novel multi-
relational Graph Gaussian Process Network (GGPN) for
learning KG representations. GGPN aims to simultaneously
learn a family of embedding functions, i.e., a stochastic em-
bedding function (Ross et al. 1996), instead of learning a
deterministic function. The learned stochastic function of
GGPN offers more flexibility to handle the imperfections
or noises in KGs, effectively improving the performance.
Specifically, we model the stochastic embedding function
with Gaussian Process (GP), which defines a distribution
over functions in a continuous domain (Rasmussen 2003).
The resulting representations are obtained through aggre-
gating the stochastic function values, i.e., messages, from
neighboring entities associated with different relations.

Despite using GP for representation learning is promising,
there are two additional problems incurred by GP remain to
be solved: (1) Existing kernel functions, e.g., RBF (Bergman
1970), which heavily affect the performance of GPs, are in-
capable of taking diverse relations between each pair of enti-
ties into account and difficult to adapt to the training data. (2)
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It has cubic computational complexity (Rasmussen 2003)
with respect to the number of entities to learn the network
parameters through GP. To address the first problem, we
further propose a novel relation-aware kernel function. The
proposed kernel function firstly extracts the relation-specific
information of an entity using an information extractor and
then uses a base kernel to obtain the final value. To make our
kernel be adaptive to the data, we propose to define the base
kernel based on the Bochner’s theorem (Rudin 2017), whose
parameters can be learned in a data-driven way. Moreover,
we address the second problem by leveraging the equiva-
lence between GP and Bayesian linear model. Specifically,
we reformulate GP as a Bayesian linear model with lin-
ear computational complexity, bypassing the cubic computa-
tional complexity of GP. Consequently, the network param-
eters and kernel parameters can be jointly learned efficiently
by optimizing the training objectives in an end-to-end man-
ner. Our contributions can be summarized as:
• We propose a novel GGPN framework to learn a fam-

ily of embedding functions, i.e., a stochastic embedding
function, to handle the imperfect and noisy KGs.

• We propose a novel relation-aware kernel function in our
GGPN framework, which can explicitly leverage the di-
verse relations between each pair of entities and be adap-
tive to KGs.

• We leverage the equivalence between GP and Bayesian
linear model to reformulate our GGPN framework to re-
duce the computational complexity, making our method
efficiently trainable in an end-to-end manner.

• The experimental results in both link prediction and en-
tity classification tasks demonstrate the superior perfor-
mance of the proposed GGPN.

Related Work
Knowledge Graph Embeddings. Recently, various KG
embedding methods have been proposed. These methods
mainly fall into three different categories: (1) Translation-
based methods, such as TransE (Bordes et al. 2013). (2)
Tensor factorization based methods, such as DistMult (Yang
et al. 2015) and ComplEx (Trouillon et al. 2016). (3) Neu-
ral network based methods such as ConvE (Dettmers et al.
2018) and DBKGE (Liao et al. 2021). However, these meth-
ods do not leverage the local neighborhood information of
an entity, which might potentially improve the quality of em-
beddings.

To this end, some multi-relational graph convolution
networks (RGCNs) (Schlichtkrull et al. 2018; Ye et al.
2019; Bansal et al. 2019; Vashishth et al. 2020b) have
been proposed. They extend graph convolution networks
(GCNs) (Kipf and Welling 2017) to handle multi-relational
graphs, which obtain embeddings of KGs based on the mes-
sage passing framework. Furthermore, RGCNs based on the
attention mechanism have also been proposed (Gilmer et al.
2017; Nathani et al. 2019). These attention-based methods
aggregate messages from neighbors by assigning respective
weights. However, aforementioned methods learn a single
deterministic function for relational learning tasks, which
may cause poor performance due to the imperfections or

noises (e.g., scarce labels or wrong edges) in KGs (Arora
2020; Ji et al. 2021). In contrast, our GGPN learns a family
of functions, i.e., a stochastic function, offering more flexi-
bility to handle these imperfections or noises in KGs.

Gaussian Processes for Graphs. GP methods for graphs
have been developed in the relational learning discipline.
They have been proposed with different emphases on dif-
ferent relational learning tasks, such as object classifica-
tion (Sindhwani, Ghahramani, and Keerthi 2007; Xu, Ker-
sting, and Tresp 2009; Ng, Colombo, and Silva 2018), link
prediction (Yu et al. 2007; Opolka and Liò 2020) and graph
classification (Li et al. 2020). However, the kernel func-
tions applied in these methods do not consider the relations
among entities, which are vital indicators of their similari-
ties. To address this problem, (Fang et al. 2021a) propose a
graph convolutional kernel to incorporate graph structures in
the kernel functions. However, it assumes a single relation
among entities, i.e., edges belong to the same type, which
makes it impractical in our multi-relational learning setting.
In contrast, to effectively tackle multi-relational learning
problems, our GGPN proposes a novel relation-aware kernel
function, which can explicitly leverage the diverse relations
among entities for calculating similarities.

Preliminary
Gaussian Process (GP) (Rasmussen 2003) defines a stochas-
tic function over a set of inputs, which assumes that the
marginal distribution over function values of any finite in-
puts is a Gaussian. Specifically, a GP places Gaussian
prior on the function values, which is denoted as: f(x) ∼
N (0, kθ(x,x

′)), where x,x′ ∈ Rd denote the inputs, and
kθ(x,x

′) is the kernel function parameterized by θ. The ker-
nel function is a key component of GP as it implicitly im-
poses assumptions on the statistical structure of data.

It’s worth noting that any kernel function can be ex-
pressed as the inner product of feature maps 〈ϕ(x), ϕ(x′)〉H
in Hilbert space (Young 1988), where ϕ is a function that
projects x into a high-dimensional (possibly infinite) Hilbert
spaceH. With this insight, researchers have found that GP is
equivalent to a Bayesian linear model whose weights follow
Gaussian distributions (Rasmussen 2003; Flam-Shepherd,
Requeima, and Duvenaud 2017). Therefore, a GP can be re-
formulated as: f(x) = ϕ(x)>w, where w is assigned with
a Gaussian prior.

Methodology
In this section, we introduce the technical details of the pro-
posed method.

Notations and Task
We denote a knowledge graph as G = {E ,R, T }, where E
and R denote the set of entities (nodes) and relations (types
of edges), respectively, and T denotes the set of facts with
the form of triples: {(e, r, o) ∈ E × R × E}. To enable the
bidirectional flow of messages, as shown by the “KG” in
Figure 1, we further extend T and R with corresponding
inverse relations, i.e., T ′ = T ∪ {(o, r−1, e) | (e, r, o) ∈
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T } ∪ {(e, τ, e) | e ∈ E} and R′ = R ∪ Rinv ∪ τ , where
Rinv = {r−1|r ∈ R} denotes the inverse relations and τ is
the self-loop relation. Given the knowledge graph, the goal
of our model is to learn representations of both entities and
relations, i.e., H ∈ R(Ne+Nr)×d, where Ne, Nr and d de-
note the total number of entities E , the total number of rela-
tionsR′, and the embedding dimension, respectively,

Overview of Our GGPN
The overall architecture of our method is show in Figure 1.
The proposed method is a general framework for a variety
of multi-relational learning tasks, and follows an encoder-
decoder structure (Cho et al. 2014). The encoder is the pro-
posed L-layered GGPN, which aims to learn the entity and
relation embeddings. Subsequently, these embeddings are
utilized in the decoder for practical tasks, such as link pre-
diction and entity classification.

Specifically, in each layer of GGPN, GP with proposed
relation-aware kernel is leveraged to model the stochastic
embedding function over entities. Afterwards, the entity em-
beddings are obtained with a relation-aware weighted aggre-
gation mechanism, which aggregates the stochastic function
values, i.e., messages, from neighboring entities for a given
entity. Additionally, the relation embeddings are updated
with a linear transformation. The choice of decoder can be
task-specific, which means that we can use different de-
coders based on the learning tasks. For instance, in link pre-
diction task, the decoder can be chosen as TransE (Bordes
et al. 2013), DistMult (Yang et al. 2015), or Conve (Dettmers
et al. 2018), while the softmax decoder can be applied to the
entity classification task.

Multi-Relational Gaussian Process Network
In this section, we introduce details of our GGPN. We firstly
introduce a single layer of GGPN and then generalize it to
a multi-layer setting. We denote the input features of enti-
ties and relations to the l-th layer as Hl ∈ R(Ne+Nr)×d. To
learn a family of embedding functions, we define a vector-
valued stochastic function f on entities, the prior of which
is specified with GP. Denoting the function values as Fl, i.e.
Fl = f(Hl), we can obtain its prior as p(Fl | Hl,G) =
N (0,Kl), where Kl is the covariance matrix with each
component being the covariance between two entities, which
is obtained with a kernel function.

One critical problem in GP is to choose a proper kernel
to capture the underlying statistical structure of data. Off-
the-shelf kernel functions, such as the Radial Basis Func-
tion (RBF) kernel (Bergman 1970) and deep kernel (Wilson
et al. 2016), measure similarities based on the entity features
only, and hence are incapable of taking diverse relations be-
tween each pair of entities into account. However, the re-
lations between each pair of entities are vital indicators for
their similarities. Intuitively, Joe Biden and USA should be
more similar under the relation President of than the rela-
tion Born in. To explicitly consider the entity relationships,
we propose a novel relation-aware kernel function:

k(e, r, o) = k̃θ
(
g(hle,h

l
r),g(h

l
o,h

l
r)
)
, (1)

where hle,h
l
o,h

l
r ∈ Hl denote the features of corresponding

entities and relation. Here, g is an information extractor to
obtain the specific information of an entity associated with a
relation, and is defined as:

g(hle,h
l
r) = W(hle � hlr) , (2)

where � denotes the Hadamard (element-wise) multiplica-
tion and W ∈ Rd×d is a linear transformation matrix, which
is shared across layers. After the relation-aware features are
obtained with g, we use a base kernel function k̃θ to obtain
the final kernel value. Since applying a deterministic trans-
formation to kernel inputs results in a valid kernel (MacKay
1998), the function defined in (1) is a valid kernel function.
After defining the relation-aware kernel function, we can use
it to calculate the kernel matrix Kl, and hence obtain the GP
prior over the entity function values Fl.

Inspired by the success of graph neural networks, which
iteratively aggregate messages from neighborhoods, we fur-
ther leverage a relation-aware aggregation mechanism to ob-
tain the layer output. The output embedding of an entity is
obtained with the weighted aggregation of messages from
its neighboring entities associated with diverse relations.
Specifically, the output embedding of entity e is given by:

hl+1
e = ψ

 ∑
(r,o)∈N (e)

αr,oe Wl
λ(r)F

l
o

 , (3)

where ψ is the activation function such as Relu, and
N (e) denotes the neighbors of entity e, i.e., N (e) =
{(r, o)|(e, r, o) ∈ T ′}. Wl

λ(r) ∈ Rd×d is the aggregation
parameters based on the relation type, where λ(r) is the re-
lation type function that returns the specific type of relation
r. In this paper, we use three different relation types: real re-
lation (T), inverse relation (I) and self-loop relation (L), and
we define the function λ as: λ(r) = T, if r ∈ R; λ(r) = I, if
r ∈ Rinv; and λ(r) = L, otherwise.

Moreover, we also propose to attend differently to neigh-
boring messages by assigning different attentions. The at-
tention of a neighboring entity o is denoted as αr,oe in (3).
We can readily use the kernel values in GP to define the
attentions since the kernel values have already considered
the similarities between two entities under specific relations.
Specifically, the proposed kernel attention is defined as:

αr,oe =
exp
(
k(e, r, o)

)∑
(r′,o′)∈N (e) exp

(
k(e, r′, o′)

) , (4)

where we use a softmax operation for normalization.
After obtaining the updated representations of entities at

l-th layer, the relation embeddings are also updated as:
hl+1
r = Wl

relh
l
r . (5)

Consequently, a layer of GGPN consists of two major
components, where the entity embeddings are firstly updated
with a GP followed by the relation-aware weighted aggrega-
tion, and the relation embeddings are updated with a linear
transformation. It is straightforward to extend to the multi-
layer setting, where we simply use the output embeddings
of the previous layer as the input to the next layer. We use
the outputs of the final layer as the desired embeddings, i.e.,
H = HL, where L is the number of layers.
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Figure 1: The overall architecture of GGPN. Given entity and relation embeddings, each layer uses three components: Informa-
tion Extractor (IE), RFF kernel, and Relation-aware Updater (RAU), to update the embeddings.

Adaptive and Scalable Kernel Learning
There are still two more problems in the proposed method:
the first one is that we need to choose a proper base kernel k̃θ
in (1) to capture the similarities between relation-aware fea-
tures. We can use off-the-shelf kernel functions, such as RBF
kernel. However, the parameters of these kernel functions
can hardly be learned (Rasmussen 2003) and hence they are
difficult to adapt to the data, which can be problematic when
modeling complicated structured data such as KGs. The sec-
ond problem is that it is computationally expensive to learn
the network parameters, since inferring through GP has a
cubic computational complexity (Rasmussen 2003) with re-
spect to the number of entities due to matrix inversion.

To address the first problem, we propose a novel ker-
nel function that can be adaptively learned in a data-driven
way based on the Bochner’s theorem. The Bochner’s theo-
rem (Rudin 1962; Rahimi and Recht 2008) is given by:
Theorem 1 (Bochner’s theorem) A continuous, symmetric
and translation-invariant functions k(x,x′) = k(r) on Rd,
where r = x − x′, is a positive definite kernel if and only if
it is the Fourier transform of a positive finite measure.

The Bochner’s theorem states that we can define a kernel
function through the Fourier transform of a probability dis-
tribution. Inspired by this insight, we firstly specify a prob-
ability distribution p(ω), where ω is a random variable, and
define a kernel function through the Fourier transform of this
probability distribution:

k̂θ(x,x
′) =

∫
R
eiω

>(x−x′)p(ω)dω. (6)

By extracting the real part of above equation, we can obtain:

k̂θ(x,x
′) = Eω

[
cos(ω>(x− x′))

]
(7)

= Eω

[
cos(ω>x) cos(ω>x′) + sin(ω>x) sin(ω>x′)

]
.

The expectation term suggests that we can use Monte Carlo
method to approximate the kernel function by sampling

from distribution p(ω). Specifically, the kernel function can
be approximated as: k̂θ(x,x′) ≈ φ(x)>φ(x′), where φ(·) is
the feature mapping function defined as:

φ(x) =

√
1

M

[
cos(ω>mx), sin(ω>mx))

]M
m=1

, (8)

where M denotes the total number of samples from p(ω).
The features obtained with φ is referred to as the random
Fourier features (RFFs). We set the base kernel function k̃θ
in (1) as the proposed kernel function defined with the ran-
dom Fourier features, i.e., k̂θ.

By using the proposed kernel function, we convert the ker-
nel learning problem as the distribution learning problem,
i.e., learning the distribution p(ω) in (6). To enable efficient
sampling and backpropagation, we set the distribution to be
reparameterizable distributions such as Gaussian distribu-
tions, i.e., p(ω) = N (ω;µ, s), where µ and s represent the
mean and covariance, respectively. Since the parameters of
this distribution can be inferred from data, we can learn an
adaptive kernel function in a data-driven way, which is more
effective in capturing the statistical structure of the KGs.

We now proceed to address the second problem by our
method. Inspired by the insight that GP is equivalent to a
Bayesian linear model whose weights follow Gaussian dis-
tributions (Rasmussen 2003), we also reformulate our GP
module as a Bayesian linear model (Fang et al. 2021b).
Specifically, the GP module in l-th layer is defined as Fl =
Alϕ(Hl), where Al ∼ N (0, δI) is the weights of linear
transformation with δ denoting the variance of noise, and ϕ
is the feature mapping function which maps the input fea-
tures into a Hilbert space. In this paper, we set the mapping
function ϕ as the information extractor function g defined
in (2) as we empirically found this can achieve the best per-
formance.

Combining the above formulations with (3), the output
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embeddings of an entity e in the l-th layer is denoted as:

hl+1
e = ψ

 ∑
(r,o)∈N (e)

αr,oe Wl
λ(r) ·A

lg(ho,hr)

 . (9)

To make predictions, we need to infer the posterior dis-
tribution of Al. In this paper, to enable efficient learning,
we approximate this posterior with a Dirac distribution. As
a result, the parameters of our GGPN, including network pa-
rameters and kernel parameters, can be efficiently learned in
an end-to-end fashion.

Training Objectives
We would like to emphasize that our method is a general
framework for multi-relational learning tasks. It is straight-
forward to apply our method to different learning tasks by
specifying proper decoders. For instance, we conduct ex-
periments in link prediction and entity classification tasks,
where the decoders can be chosen as any existing KG score
functions and softmax function, respectively. Specifically,
in link prediction task, we utilize the following three score
functions (Bordes et al. 2013; Yang et al. 2015; Dettmers
et al. 2018) as decoders:
• TransE: s (e, r, o) = −‖he + hr − ho‖22,
• Distmult: s (e, r, o) = −‖hediag (hr)ho‖22,
• ConvE: s (e, r, o) = ψ

(
vec
(
ψ
(
[he;hr] ∗ µ

))
Wc

)
ho,

where (e, r, o) ∈ T ′, he,ho,hr ∈ H, and he,hr ∈ Rd1×d2
are 2D reshapings of he,hr, where d = d1 × d2 is the di-
mension of he,hr, µ denotes a set of filters, * is the convo-
lution operator, vec(·) is a vectorization function and Wc is
a weight matrix. By the score function, our GGPN is trained
with the cross-entropy loss as in (Vashishth et al. 2020b).

On the other hand, in entity classification, the decoder can
be chosen as a full-connected layer followed by a softmax
function, i.e., s (e) = softmax (σ(Wshe)), where Ws is
the linear weight matrix and σ is the sigmoid function. Sim-
ilarly, we also use the cross-entropy loss to train our model.

Experiments
In this section, we evaluate the performance of our GGPN in
two typical tasks: link prediction and entity classification.

Link Prediction
In this section, we mainly study the following four research
questions: (RQ1) How does GGPN perform in link predic-
tion task compared with baselines? (RQ2) How is the per-
formance of GGPN with different decoders? (RQ3) How is
the performance of the proposed kernel function in GGPN?
(RQ4) What are the effects of the number of RFF features,
i.e., M , on the performance of GGPN?

Datasets We adopt two widely used benchmark datasets
in our link prediction experiments: FB15K-237 (Toutanova
et al. 2015) and WN18RR (Dettmers et al. 2018), which are
the subsets of popular KG datasets: FB15K (Bordes et al.
2013) and WN18 (Bordes et al. 2013), respectively. FB15K
and WN18 are not adopted in our experiments, as they are

observed a serious flaw that contains a large amount of in-
verse triples (Toutanova et al. 2015; Dettmers et al. 2018).
Consequently a simple linear model trained to inverse triples
can irrationally outperform lots of models on link prediction.
FB15K-237 and WN18RR avoid this problem by removing
the reverse relations.

Baselines In our experiments, we compare our GGPN
against a variety of baselines which can be categorized as:

• Non-GNN methods: Methods that use vector based
operations for computing score, such as TransE (Bor-
des et al. 2013), DistMult (Yang et al. 2015), Com-
plEx (Trouillon et al. 2016), Conve (Dettmers et al.
2018), RotatE (Sun et al. 2019), and InteractE (Vashishth
et al. 2020a).

• GNN methods: Methods that leverage graph neural
network (GNN) based architecture as encoder like R-
GCN (Schlichtkrull et al. 2018), A2N (Bansal et al.
2019), SACN (Shang et al. 2019), VR-GCN (Ye
et al. 2019), KBAT (Nathani et al. 2019) and
CompGCN (Vashishth et al. 2020b).

Evaluation Metrics Following (Bordes et al. 2013), we
evaluate methods in the filtered setting, i.e., while evaluat-
ing on test triples, we build a candidate set either corrupt-
ing the head or tail entity of a triple and then filter out all
the valid triples in it. The performance is reported on the
standard evaluation metrics: Mean Reciprocal Rank (MRR),
Mean Rank (MR) and Hits@N for N=1, 3, and 10.

Settings The input features of entities and relations to our
GGPN are randomly initialized with a size of 100, and the
output embedding size of both entities and relations are set
to 200. We use Adam (Kingma and Ba 2015) as the opti-
mizer and perform grid search to select the hyperparameters
that have the best performance on validation sets.

Results and Analyses
Link Prediction Results We firstly address (RQ1) by ex-
amining the performance of GGPN in link prediction. Table
1 reports the link prediction results of GGPN and baselines
on FB15K-237 and WN18RR benchmark datasets. The re-
sults demonstrate that our GGPN outperforms all the base-
lines in three out of five metrics (MRR, Hits@1 and Hits@3)
on FB15K-237 and in all the metrics on WN18RR. These re-
sults suggest that GGPN is effective for link prediction task.
Particularly, when compared with the second best model,
i.e., CompGCN, on FB15K-237, GGPN increases the per-
formance by 1.69%, 2.65% and 1.54% on MRR, Hits@1
and Hits@3 respectively. Similar improvements can also be
observed on WN18RR. The improvements on these metrics
indicate that the embeddings learned with GGPN can better
capture the similarities among entities and relations, leading
to the overall lower rankings, i.e., higher MRR and Hits@N.
The higher MR on FB15K-237 is due the fact that some
triples might have abnormal high rankings, thus increasing
the overall average ranking.

Performance Comparison on Decoders Next, we ad-
dress (RQ2) by examining the performance of GGPN with
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FB15K-237 WN18RR
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE ¶ 357 0.294 - - 0.465 3384 0.226 - - 0.501
DistMult ¶ 254 0.241 0.155 0.263 0.419 5110 0.430 0.390 0.440 0.490
ComplEx ¶ 339 0.247 0.158 0.275 0.428 5261 0.440 0.410 0.460 0.510

ConvE ¶ 244 0.325 0.237 0.356 0.501 4187 0.430 0.400 0.440 0.520
RotatE ¶ 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571

InteractE ¶ 172 0.354 0.263 - 0.535 5202 0.463 0.430 - 0.528
R-GCN ¶ - 0.248 0.153 0.258 0.414 - - - - -

A2N ¶ - 0.317 0.232 0.348 0.486 - 0.450 0.420 0.460 0.510
SACN ¶ 0.350 0.260 0.390 0.540 - 0.470 0.430 0.480 0.540

VR-GCN ¶ - 0.248 0.159 0.272 0.432 - - - - -
KBAT § 251 0.318 0.231 0.362 0.499 3958 0.410 0.423 0.451 0.501

CompGCN ¶ 197 0.355 0.264 0.390 0.535 3533 0.479 0.443 0.494 0.546
Ours 189 0.361† 0.271† 0.396† 0.540 2937† 0.481 0.447† 0.499† 0.548

Table 1: Link prediction performance of GGPN and baselines on FB15K-237 and WN18RR datasets. We use ConvE as decoder
here. ¶ indicates the results are taken from origin papers, and § indicates that the results are reproduced by ourselves. The
best scores per dataset per metric are marked in boldface and the second best scores are underlined. † denotes the significant
improvements over the comparative methods (paired t-test, p<0.05).

TransE DistMult ConvE
MRR MR Hits@10 MRR MR Hits@10 MRR MR Hits@10

No-encoder ¶ 0.294 357 0.465 0.241 354 0.419 0.325 244 0.501
R-GCN ? 0.281 325 0.443 0.324 230 0.497 0.344 200 0.524
KBAT § 0.244 547 0.413 0.281 397 0.433 0.318 251 0.499

CompGCN ? 0.336 214 0.518 0.335 227 0.514 0.355 197 0.535
Ours 0.340† 188† 0.527† 0.342† 197† 0.530† 0.361† 189 0.540†

Table 2: Link prediction performance of GGPN and baselines under different decoders on FB15K-237 dataset. ¶ indicates the
results are taken from origin papers, § indicates the results are reproduced by ourselves, and ? indicates the results are taken
from (Vashishth et al. 2020b). No-encoder denotes using corresponding decoder as embedding model directly. The best scores
per dataset per metric are marked in boldface and second best scores are underlined. † denotes the significant improvements
over the comparative methods (paired t-test, p<0.05).

different decoders. Recall that the proposed method is a
general encoder-decoder framework with GGPN as the en-
coder and the decoder can be chosen based on the learning
tasks. Here, we study the performance of GGPN under three
typical decoders for link prediction: TransE, DistMult, and
ConvE. We compare the results against some GNN-based
encoders, e.g., R-GCN, KBAT and CompGCN. The experi-
mental results in Table 2 show that GGPN can outperform
all the baselines under all decoders. This result indicates
that our GGPN, as an encoder, provides a more effective
and powerful way to learn high quality entity and relation
embeddings, which can improve the performance of down-
stream task regardless of the decoders.

Kernel Comparison Subsequently, we turn to (RQ3) by
examining the performance of GGPN with different kernel
functions. Recall that we propose a novel adaptive kernel
function in GGPN based on the Bochner’s theorem, such
that the kernel function can be learned in a data-driven way.
We study the performance of the proposed kernel function
by comparing it with other kernel functions. Specifically,
we evaluate the performance of GGPN with other kernel
functions such as linear, RBF, Laplacian, and sigmoid ker-

nels (Bergman 1970) in link prediction task on FB15K-237.
The experimental results are provided in Table 3, which
show that the proposed kernel function can outperform all
the other kernels in all the metrics. This is due to the fact
that the proposed kernel function can be effectively learned
from data and better adapt to the statistical structure of data,
resulting in an improved performance.

Influence of the Number of RFF Features Finally, we
answer (RQ4) by studying the effects of the number of
RFF features, i.e., M . Specifically, we conduct experiments
on FB15K-237 by varying M from 100 to 700 and report
the results of GGPN. In addition to the evaluation met-
rics, i.e., MRR and Hits@10, we also report the results of
training time and memory usages. The experimental results
are shown in Figure 2. We can find that the performance
of GGPN increases with M at first and then gradually de-
creases with M . In contrast, the training time and memory
usage keep increasing with M . The results suggest that we
can strike a balance between the performance and training
efficiency of our GGPN by choosing a proper M .
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MRR MR Hits@1 Hits@3 Hits@10
Linear 0.341 217 0.253 0.373 0.512
RBF 0.344 218 0.256 0.377 0.520
Laplacian 0.334 228 0.249 0.372 0.497
Sigmoid 0.341 214 0.252 0.374 0.518
Ours 0.361† 189† 0.271† 0.396† 0.540†

Table 3: Link prediction performance of GGPN with dif-
ferent kernel functions on FB15K-237. The best scores per
dataset per metric are marked in boldface and second best
scores are underlined. † denotes the significant improve-
ments over the comparative methods (paired t-test, p<0.05).
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Figure 2: Influence of the number of RFF features for MRR,
Hits@10, Training time and Memory usage. The solid lines
and shadow areas denote the mean values and standard de-
viations over 5 runs, respectively.

Entity Classification
Entity classification aims to correctly classify the types of
entities in a KG, depending on the way of how entities asso-
ciate with other entities through corresponding relations. In
this section, we mainly study the performance of GGPN in
the entity classification task.

Datasets We conduct experiments on four RDF-format
datasets (Ristoski, De Vries, and Paulheim 2016): AIFB,
MUTAG, BGS, and AM. In these datasets, entities are repre-
sented as nodes with specific features and relations represent
the dependencies from subject nodes to object nodes.

Baselines We compare GGPN against some state-of-the-
art entity classification methods including RDF2Vec (Ris-
toski and Paulheim 2016), R-GCN, CompGCN, and handle-
designed feature exactors (Feat) (Paulheim and Fümkranz
2012). RDF2Vec is a skip-gram based embedding method,
Feat is an aggregation method for in-relation and out-
relation of every labeled entity, and R-GCN and CompGCN
are GNN-based methods to learn entity and relation embed-
dings for relational graphs.

Settings We report accuracy as evaluation metric based on
the test splits provided by (Ristoski and Paulheim 2016).

Datasets AIFB MUTAG BGS AM

Feat [ 55.55 77.94 72.41 66.66
RDF2Vec [ 88.88 67.20 87.24 88.33
R-GCN [ 95.83 73.23 83.10 89.29

CompGCN § 94.44 76.47 89.27 78.81
Ours 95.83 80.88† 93.10† 87.37

Table 4: Accuracies (%) of GGPN and baselines in en-
tity classification task. [ indicates the results are taken
from (Schlichtkrull et al. 2018) and § indicates the results
are reproduced by ourselves. The best scores per dataset are
marked in boldface and the second best scores are under-
lined. † denotes the significant improvements over the com-
parative methods (paired t-test, p<0.05).

Furthermore, following (Vashishth et al. 2020b), we ran-
domly divide 20% of training data as the validation dataset
for hyperparameters tuning. We also use grid search to find
the hyperparameters based on their performance on valida-
tion sets.

Results and Analyses Table 4 reports the experimental re-
sults of entity classification task on AIFB, MUTAG, BGS,
and AM datasets. We can observe that our model achieves
state-of-the-art performance on MUTAG and BGS by large
margins of 4.41% and 3.83% respectively, and has competi-
tive performance on AIFB and AM. The results validate that
our GGPN is effective in entity classification task. More-
over, it is worth noting that on AIFB, MUTAT and BGS
datasets, where the labels are scarce (only a few hundreds of
labels), our GGPN can outperform deterministic baselines
(Feat, RDF2Vec, R-GCN and CompGCN) in most cases.

This supports our original hypothesis that scarce and lim-
ited labeled data cannot provide sufficient supervision sig-
nals for the effective learning of a deterministic model, lead-
ing to a suboptimal performance. In contrast, GGPN ad-
dresses this problem by introducing GP, i.e., learning a fam-
ily of classification functions, which offers much more flexi-
bility to handle the insufficient supervision signals such that
it can outperform deterministic methods.

Conclusion
This paper deals with the representation learning problem
in knowledge graphs. To effectively handle the imperfec-
tions and noises in KGs, we propose GGPN, a Bayesian rep-
resentation learning algorithm which simultaneously learn
a family of embedding functions, i.e., a stochastic embed-
ding function, through Gaussian Process. In particular, we
employ a novel relation-aware kernel function built on the
Bochner’s theorem in our GGPN, which can explicitly take
the diverse relations among entities into account and be
adaptive to the training data. Furthermore, we reformu-
late GP as Bayesian linear model to address the issue of
high computational cost. Extensive experiments on popular
benchmark datasets of link prediction and entity classifica-
tion demonstrate the superior performance of our GGPN.
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Bouchard, G. 2016. Complex embeddings for simple link
prediction. In International conference on machine learn-
ing, 2071–2080. PMLR.
Vashishth, S.; Sanyal, S.; Nitin, V.; Agrawal, N.; and Taluk-
dar, P. 2020a. Interacte: Improving convolution-based
knowledge graph embeddings by increasing feature interac-
tions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 3009–3016.
Vashishth, S.; Sanyal, S.; Nitin, V.; and Talukdar, P. P. 2020b.
Composition-based Multi-Relational Graph Convolutional
Networks. In 8th International Conference on Learning
Representations, ICLR 2020.
Wang, H.; Zhou, C.; Chen, X.; Wu, J.; Pan, S.; and Wang, J.
2020. Graph stochastic neural networks for semi-supervised
learning. Advances in Neural Information Processing Sys-
tems.
Wilson, A. G.; Hu, Z.; Salakhutdinov, R.; and Xing, E. P.
2016. Deep kernel learning. In Artificial intelligence and
statistics, 370–378. PMLR.
Xu, Z.; Kersting, K.; and Tresp, V. 2009. Multi-Relational
Learning with Gaussian Processes. In the 21st International
Joint Conference on Artificial Intelligence, 1309–1314.
Yang, B.; Yih, W.; He, X.; Gao, J.; and Deng, L. 2015. Em-
bedding Entities and Relations for Learning and Inference

in Knowledge Bases. In 3rd International Conference on
Learning Representations, ICLR 2015.
Ye, R.; Li, X.; Fang, Y.; Zang, H.; and Wang, M. 2019.
A Vectorized Relational Graph Convolutional Network for
Multi-Relational Network Alignment. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, 4135–4141. International Joint Con-
ferences on Artificial Intelligence Organization.
Young, N. 1988. An Introduction to Hilbert Space. Cam-
bridge university press.
Yu, K.; Chu, W.; Yu, S.; Tresp, V.; and Xu, Z. 2007. Stochas-
tic Relational Models for Discriminative Link Prediction.
In Schölkopf, B.; Platt, J.; and Hoffman, T., eds., Advances
in Neural Information Processing Systems, volume 19. MIT
Press.
Zhou, G.; Su, J.; Zhang, J.; and Zhang, M. 2005. Exploring
various knowledge in relation extraction. In Proceedings
of the 43rd annual meeting of the association for computa-
tional linguistics (acl’05), 427–434.

5538


