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Abstract

A common feature of non-monotonic logics is that the clas-
sical notion of equivalence does not preserve the intended
meaning in light of additional information. Consequently,
the term strong equivalence was coined in the literature and
thoroughly investigated. In the present paper, the knowl-
edge representation formalism under consideration is claim-
augmented argumentation frameworks (CAFs) which provide
a formal basis to analyze conclusion-oriented problems in ar-
gumentation by adapting a claim-focused perspective. CAFs
extend Dung AFs by associating a claim to each argument
representing its conclusion. In this paper, we investigate both
ordinary and strong equivalence in CAFs. Thereby, we take
the fact into account that one might either be interested in the
actual arguments or their claims only. The former point of
view naturally yields an extension of strong equivalence for
AFs to the claim-based setting while the latter gives rise to
a novel equivalence notion which is genuine for CAFs. We
tailor, examine and compare these notions and obtain a com-
prehensive study of this matter for CAFs. We conclude by in-
vestigating the computational complexity of naturally arising
decision problems.

Introduction

Equivalence is an important subject of research in knowl-
edge representation and reasoning. Given a knowledge base
K, finding an equivalent one, say X', helps to obtain a better
understanding or more concise representation of /C. From
a computational point of view, equivalence is particularly
interesting whenever a certain subset of a collection of in-
formation can be replaced without changing the intended
meaning. In propositional logics, for example, replacing a
subformula ¢ of ® with an equivalent one, say ¢, yields a
formula ®[¢/¢’| equivalent to . That is, we may view ¢ as
an independent module of ®. Within the KR community it is
folklore that this is usually not the case for non-monotonic
logics (apart from folklore, we refer the reader to (Baumann
and Strass 2016) for a rigorous study of this matter).
Motivated by this observation, the notion of strong equiv-
alence was introduced in the literature. In a nutshell, strong
equivalence requires the aforementioned property by design:
K and K’ are strongly equivalent if for any #, the knowl-
edge bases K U H and K’ U H are equivalent. Although a
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naive implementation would require to iterate over an in-
finite number of possible H, researchers discovered tech-
niques to decide strong equivalence of two knowledge bases
efficiently, most notably for logic programming (Lifschitz,
Pearce, and Valverde 2001) and argumentation frameworks
(AFs) (Oikarinen and Woltran 2011). The possibility to re-
place parts of a framework in a semantical neutral way is
particularly important whenever dynamics in argumentation
are considered. The latter topic is rightly one of the most ac-
tive research areas within the community at the moment (cf.
(Gabbay et al. 2021). In this paper, we extend this line of re-
search to a recent extension of AFs, called claim-augmented
argumentation frameworks (CAFs).

Dung boosted the research in abstract argumentation
frameworks (Dung 1995) which can by now be considered
a classical area in knowledge representation and reasoning.
AFs have been thoroughly investigated since then and vari-
ous extensions have been proposed; e.g., the addition of sup-
ports (Cayrol and Lagasquie-Schiex 2005), recursive (Ba-
roni et al. 2011) and collective (Nielsen and Parsons 2006)
attacks, or probabilities (Thimm 2012) to mention a few.
In recent years, the focus on conclusion-oriented reasoning
(Baroni and Riveret 2019; Dvorak and Woltran 2020) be-
came increasingly popular. While traditional argumentation
formalisms focus on the identification of acceptable argu-
ments, the emphasis in claim-focused argumentation lies on
the argument’s conclusions (claims). Building on the obser-
vation that a claim can be supported by different arguments,
it becomes evident that the traditional argument-focused per-
spective is often insufficient to capture claim-based reason-
ing. Claim-augmented argumentation frameworks as intro-
duced by (Dvordk and Woltran 2020) address this issue
by extending AFs with a function that assigns a claim to
each argument. They are in particular well-suited to analyze
instantiation-based approaches, e.g., instantiations of logic
programs (Caminada et al. 2015b), rule-based formalisms,
e.g., ABA (Bondarenko, Toni, and Kowalski 1993; Cam-
inada et al. 2015a), or logic-based instantiations (Besnard
and Hunter 2001; Gorogiannis and Hunter 2011), where the
focus lies on the claims of the constructed arguments.

The goal of this paper is to investigate equivalence no-
tions for reasoning with a claim-centered point of view. Due
to their generality, CAFs form an ideal basis to obtain a com-
prehensive study of this matter. Our main contributions are:



e We provide characterization results of strong equivalence
between CAFs via semantics-dependent kernels for each
CAF semantics which has been considered in the liter-
ature so far. Moreover, we discuss ordinary equivalence
for CAFs and present dependencies between semantics
for this weaker equivalence notion.

e We introduce novel equivalence concepts based on argu-
ment renaming which are genuine for CAFs. We show
that ordinary equivalence up to renaming coincides with
ordinary equivalence while strong equivalence up to re-
naming can be characterized via kernel isomorphism.

e We present a rigorous complexity analysis of deciding
equivalence between two CAFs for all of the aforemen-
tioned equivalence notions. We show that deciding ordi-
nary equivalence can be computationally hard, up to the
third level of the polynomial hierarchy.

Motivation

Abstract argumentation frameworks have proved to be a
powerful and expressive tool in that they are capable of cap-
turing the behavior of various knowledge representation for-
malisms by so-called instantiations, see e.g. (Modgil and
Prakken 2014; Toni 2014; Wu, Caminada, and Gabbay 2009;
Caminada et al. 2015b).

Such intertranslations possess various advantages. First,
since AFs are graphical and accessible by design, repre-
senting a knowledge base as an AF may yield a more user-
friendly representation. Second, they facilitate the investiga-
tion of theoretical results since this way different research ar-
eas can benefit from each other. Moreover, some formalisms
have semantics which are solely based on the evaluation of
a constructed AF. Our main motivation to investigate the
behavior of CAFs is that they can help streamlining such
instantiations. To illustrate this, we consider the following
simple example where we translate a logic program.

Example 1. Let P be the following program:

a<+notb. b<nota. c<nota. c¢< notb.

The corresponding AF (Wu, Caminada, and Gabbay 2009)
would have the following structure:

O—E_®

Thereby, both arguments ¢ and ¢’ are associated with the
conclusion c. Since Dung-style AFs are not tailored to cap-
ture such a relationship between two arguments, some more
technical machinery is required. First, the extensions of the
AF are translated into labelings as e.g. done in (Caminada
2006a). Second, given a labeling of the constructed AF, two
more mappings are required to translate labelings into mod-
els and vice versa ((Wu, Caminada, and Gabbay 2009, Defi-
nitions 21 and 22)) to then obtain the desired correspondence
between LPs and AFs.

The recently introduced claim-centered AFs (CAFs)
(Dvorék and Woltran 2020) provide a natural solution to this
problem by extending Dung-style AFs in a way that to each
argument an associated claim (or: conclusion) is assigned as
well. As pointed out by (Dvordk and Woltran 2020), using
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CAFs to instantiate knowledge representation formalisms
streamlines the evaluation. Let us return to the previous ex-
ample, this time utilizing a CAF.

Example 2. The LP from above yields the following CAF,
including claims depicted next to the respective argument.

- O— G T—@-

As the reader may verify, from a structural point of view
the CAF is comparable to the AF from above, however it
captures the fact that two occurring arguments represent the
same conclusion. CAF semantics are equipped to deal with
scenarios of this kind out of the box, thus no labelings and
no further mappings are required, which establishes a closer
relation between the base formalism (in this case: our LP)
and the instantiated instance (in this case: our CAF).

CAFs thus provide a more robust translation and better
preserve properties of the instantiated knowledge base. They
are therefore a simple, yet promising extension of Dung-AFs
and this paper contributes to their investigation by examin-
ing one of the basic problems in knowledge representation
and reasoning, namely (strong) equivalence.

Background

Abstract Argumentation. We fix a non-finite background
set . An argumentation framework (AF) (Dung 1995) is a
directed graph F' = (A, R) where A C U is a finite set of
arguments and R C A x A models attacks between them.
We use AF to denote the set of all AFs.

For two arguments a,b € A, if (a,b) € R we say that a
attacks b as well as the set E C A attacks bif a € E. The
range of a set ' C A is defined as E;‘? =FEU E;,C where
Ef = {a € A | E attacks a}. E is conflict-free in F' (for
short, E € ¢f (F))iff fornoa,b € E, (a,b) € R. E defends
an argument ¢ if any attacker of a is attacked by F. A seman-
tics is a function o : AF — 22" with F — o(F) C 24.
This means, given an AF F' = (A, R) a semantics returns a
set of subsets of A. These subsets are called o-extensions.

In this paper we consider so-called naive, admissible,
complete, grounded, preferred, stable, semi-stable and stage
semantics (abbr. na, ad, co, gr, pr, stb, ss, stg). Apart from
naive, semi-stable and stage semantics (Verheij 1996; Cam-
inada 2006b), all mentioned semantics were already intro-
duced in (Dung 1995).

Definition 3. Let F' = (A, R) be an AF and F € ¢f (F).

1. E € na(F)iff E is C-maximal in cf (F),

E € ad(F) iff E defends all its elements,

3. E € co(F)iff E € ad(F) and for any a defended by E

we have, a € F,

E € gr(F)iff Eis C-minimal in co(F), and

E € pr(F) iff E is C-maximal in ad(F'),

E € sth(F)iff E€ ¢f (A) and E attacks any a € A\ E,

E € ss(F)iff E € ad(F) and there is no D € ad(F)

with EE C D,

8. E € stg(F)iff E € ¢f(F) and there is no D € cf (F)
with Ef C D%.



Claim-based Argumentation. A claim-augmented argu-
mentation framework (CAF) (Dvordk and Woltran 2020) is
atriple F = (4, R, cl) where F = (A, R) is an AF and
cl : A — Cis afunction which assigns a claim to each argu-
ment in A; C is a set of (countably infinite) possible claims.
The claim-function is extended to sets in the natural way, i.e.
foraset E C A, welet cl(E) = {cl(a) | a € E}.

There are several ways in which semantics for AFs extend
to CAFs. The most basic one is to choose an appropriate AF
semantics and consider the claims of the induced extensions.

Definition 4. For a CAF F = (A, R, cl), F = (A, R), and
a semantics o, we define the inherited variant of o (i-o) as
0(F) =A{cl(E) | E € o(F)}. Wecall E € o(F) with
cl(E) = S a g.-realization of S in F.

Example 5. Consider the following CAF F:

d (dv) (1) b

e(@) @)
Let us focus on stable semantics. For the underlying AF F
we have the unique stable extension E = {cy, by }. It is thus
easy to see that stb.(F) = {{c, b}}. Moreover, {c1,b1} is a

stb.-realization of E.

a

Let us now turn to the semantics which actually operate
on the level of the claims instead of focusing on the underly-
ing arguments. For this, we need to generalize the notion of
defeat to claims. A set of arguments F2 C A defeats a claim
¢ € cl(A) in F if E attacks every a € A with cl(a) = ¢ (in
F); we write

Eff = {c € cl(A) | E defeats cin F}

to denote the set of all claims which are defeated by E in F.
The claim-range of a set of claims S = cl(F) is denoted by

Ef = cl(BE)UESF.
Example 6. Consider again the CAF F from the previous

example. Although c; defeats a4, it does not defeat the claim
a. However, E = {c1, b, } defeats a,i.e.a € Ef"' The claim-

range of F is thus E¥ = {a,b, c,d}.

Observe that the range of a set of claims is not a well-
defined concept: In our example CAF F, the claim-range of
{a} could either be {a, b} induced by the realization {a; }
or it could be {a}, which is induced by the realization {as}.
Nonetheless, we can define semantics based on the claim-
range by focusing on the underlying set E' of arguments. We
consider cl-preferred, cl-naive, cl-cf-stable, cl-ad-stable,
cl-semi-stable and cl-stage semantics (abbr. cl-pr, cl-na,
cl-stbey, cl-stbgq, cl-ss, cl-stg) as introduced in (Rapberger
2020; Dvorak, Rapberger, and Woltran 2020a).

Definition 7. Let 7 = (A, R, cl) be a CAF with underlying

AF F = (A, R). For a set of claims S C cl(A),

e S € cl-pr(F)if S is C-maximal in ad,(F);

e S € cl-na(F)if S is C-maximal in c¢f.(F);

o S e cl-sthy(F), T € {cf, ad}, if there is a 7.-realization
E of S which defeats any ¢ € cl(A)\ S (e, EE =
cl(A));
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e S € cl-ss(F) if there is an ad,-realization E of S in F
such that there is no D € ad(F) with Ef ¢ D¥;
o S € cl-stg(F) if there is an cf-realization E of S in F
such that there is no D € cf (F) with Eff ¢ D
Aset E C A cl-o-realizes the claim-set S in F if cl(E) =
S and F satisfies the respective requirements; e.g., ' €
cf (F) and E = ¢l(A) for cl-cf-stable semantics. We call
E a cl-o-realization of S in F.
Example 8. Consider the semantics cl-stb ;. We have that
S = {c,b} € cl-stby(F) since the realization E
{c1,b1} for S has full claim-range as we already observed
before. Moreover, 5" = {d,a} € cl-stb.s(F) as well: We
consider the realization E’ = {d;,a}. The claims ¢ and b
are defeated by F’ and hence, E;‘? = {a,b,c,d}. Note that
E’ is not a stable extension of the underlying AF.

Basic relations between i-semantics carry over from
AF semantics, e.g., sth.(F) C ss.(F) C pr.(CF) C
co.(CF) C ad.(F) C ¢f.(F) and sth.(F) C stg.(F) C
na(F) C cf.(F). As shown in (Dvordk, Rapberger,
and Woltran 2020a), we have sth.(F) C cl-sthaq(F) C
cl-sthep(F) C cl-stg(F) C na(F) and cl-sthaq(F) C
cl-ss(F) C pr.(F). Moreover, each cl-o-claim-set of F is
C-maximal in o, (F) for o € {pr, na}.

Notation. We write 7 = (F, cl) as an abbreviation for
F = (A4, R, cl) with AF F = (A, R) (similar for CAFs G or
‘H for which we denote the corresponding AFs by G and H,

respectively). Also, we use the subscript-notation Ar, Rr,
clr, and Fr to indicate the affiliations.

Ordinary Equivalence
We start our analysis by investigating ordinary equivalence.

Definition 9. Two CAFs F and G are ordinary equivalent
to each other w.r.t. a semantics p, in symbols F =¥ G, if we
have p(F) = p(G).

Example 10. Consider the following CAFs F and G:

o e
@@

a b c

Although F and G disagree only on the direction of the at-
tack between the arguments a; and as, we observe that F
and G are not ordinary equivalent under i-stable semantics:
sth.(F) = () while G has the unique i-stable claim-set {a, ¢}
witnessed by the stable extension {ag, ¢; } of G.

If we consider instead cl-stable semantics, we observe that
the two CAFs agree on their outcome: First notice that {a, ¢}
is also cl-ad-stable (cl-cf-stable) in G (every stb.-realization
is admissible and has full claim-range). Moreover, we have
that {a, c} is also cl-ad-stable (cl-c¢f-stable) in F since the
set {a1, ¢1 } is admissible and defeats every remaining claim.
As a side remark, we mention that the claim-set {a, c} has
two realizations in F and G since both of the sets {a1, ¢y},
{ag, ¢1 } are conflict-free and have full claim-range. We ob-
tain that the CAFs F and G are ordinary equivalent with
respect to cl-stb,q and cl-stb.; semantics.



There are only few relations that hold in general between
the semantics for ordinary equivalence. We summarize them
as follows:

Proposition 11. For any two CAFs F and G,

F=0G= F=r G pec{ad,pr.};
F=G=F=00Gpe{gr,cprk
F ngc g o F Egl-na g;

F=2%G=F=G, pe {cf,cl-na}.

Interestingly, we observe that the relations for AF seman-
tics presented in (Oikarinen and Woltran 2011) do not carry
over to inherited semantics. This is due to the fact that i-
preferred (i-naive) semantics are not necessarily C-maximal
i-admissible (i-conflict-free) claim-sets; for CAFs, this role
is instead taken over by cl-preferred (cl-naive) semantics.

Example 12. Assume we are given two CAFs as follows:

Fi@ @ G: @) G-

a b a b a

Clearly, ad.(F) = ad.(G) = {0,{a},{b},{a,b}}. On the
other hand, {a,b} is the unique i-preferred claim-set of F
while pr.(G) = {{a}, {a,b}} witnessed by the extensions
{a1,a2} and {ay,b;}. Thus F =% G A F =P G. The
example furthermore shows F ngc G # F =2% @ since
cf. and ad. as well as the respective variants of naive and
preferred semantics coincide in F and G.

The relations presented in Proposition 11 follow since cl-
preferred claim-sets are C-maximal in ad.(F), co.(F) and
pr.(F) for any CAF F; moreover, the i-grounded claim-set
is the C-minimal i-complete extension. Similar observations
hold for conflict-free and naive semantics; additionally, we
observe that F =f G, p € {cl-na, na.}, implies F E(‘jfc g
since cf. semantics satisfies downward closure (every sub-
set of a conflict-free set is conflict-free). We can construct
counter-examples for the remaining cases.

Strong Equivalence

In this section, we discuss strong equivalence for CAFs. A
crucial observation is that ordinary equivalence is not robust
when it comes to expansions of the frameworks, e.g., if an
update in the knowledge base induces new arguments or at-
tacks. Let us illustrate this at the following example:

Example 13. Assume we are given an updated version of F
and G from Example 10 where an additional argument has
been introduced. Let 7' and G’ be given as follows:

F’ and G’ no longer agree on their cl-ad-stable claim-
sets: In G’, the set {az,c1} does not defeat claim d, thus
cl-sth,q(G") = () while {a, ¢} remains cl-ad-stable in F'.
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In the light of this issue, it is evident that a stronger notion
is needed to handle equivalence between CAFs in a dynam-
ical setting. In accordance with standard literature on strong
equivalence in other non-monotonic formalisms (Lifschitz,
Pearce, and Valverde 2001; Oikarinen and Woltran 2011),
we will call two CAFs strongly equivalent to each other if
they possess the same extensions independently of any such
(simultaneous) expansion of the frameworks.

Before we can define this notion formally, we require an
additional concept which ensures that the expansion of the
frameworks is well-defined.

Definition 14. Two CAFs F and G are compatible to each
other if ¢lz(a) = clg(a) for all a € Ar N Ag. The union
F UG of two compatible CAFs F and G is defined compo-
nentwise, i.e., FUG = (Ax U Ag, R U Rg, clx U clg).

We are ready to introduce strong equivalence for CAFs.

Definition 15. Two compatible CAFs F and G are strongly
equivalent to each other w.r.t. a semantics p, in symbols
F =P G, iff p(FUH) = p(G UH) for each CAF H which
is compatible with F and G.

The definition extends strong equivalence for AFs. We
write F' =7 G to denote strong equivalence of two AFs F’
and G w.r.t. the semantics o.

Strong equivalence for AFs has been characterized via
syntactic equivalence of so-called (semantics-dependent)
kernels, which are obtained by syntactical modifications
(attack-removal or -addition) of the given frameworks. Let
us recall the definitions of the stable and the naive kernel
(Oikarinen and Woltran 2011; Baumann, Linsbichler, and
Woltran 2016) as they exhibit interesting overlaps with our
novel kernel for cl-cf-stable semantics.

Definition 16. For an AF F' = (A, R), we define the stable
kernel F** = (A, R**) with

R** = R\ {(a,b) | a # b, (a,a) € R};
and the naive kernel F™* = (A, R"*) with
R"™ = RU{(a,b) | a # b,{(a,a),(b,b), (b,a)} N R # 0}.
For a CAF F = (F,cl), we write F** (F"¥) to denote
(F*k cl) (F™*, cl), respectively).

The stable kernel characterizes strong equivalence for sta-
ble and stage semantics, i.e., F' =7 G iff F*¥ = G** for
o € {stb,stg} (Oikarinen and Woltran 2011); similarly,
F =7 Giff F** = G"* for o € {cf,na} (Baumann, Lins-
bichler, and Woltran 2016).

Example 17. For the CAF F from Example 10, the stable
kernel F** and the naive kernel F"* are given as follows:

In what follows, we characterize strong equivalence for all
considered semantics by identifying appropriate kernels. Let
us start with cl-cf-stable semantics. An interesting observa-
tion is that the CAFs 7’ and G’ from Example 13 yield the



same cl-cf-stable claim-sets even after the argument d; has
been added. In fact, it can be shown that F and G yield the
same cl-cf-stable claim-sets under any possible expansion.
The reason is that the direction of the attack between a; and
as 1s irrelevant since both arguments possess the same claim
a. Thus it suffices to include one of them in a cl-¢f-stable
claim-set in case not both of them are attacked.
Let us now introduce the cf-stable kernel for CAFs.

Definition 18. For a CAF F = (A, R, ¢l), we define the
cf -stable kernel as F¢* = (A, R°**, cl) with

RF = RU{(a,b) | a # b,
(a,a) € RV (cl(a) = cl(b) AN{(b,a),(b,b)} N R # 0)}.

We denote the underlying AF (A, R¢*k) by Fesk,

Example 19. Consider again our previous CAF F. We con-
struct the cf-stable kernel F°** of F as follows:

Fesk. a/
@ —b)—()

a b C

Remark 20. The cf-stable kernel consists of a combina-
tion of the stable and the naive kernel for AFs, where the
claim-independent part stems from the stable kernel while
the case where two arguments have the same claim relates to
the naive kernel. In a nutshell, it is save to introduce attacks
(a,b), a # b where a is self-attacking without changing sta-
ble semantics because attacks of this form neither interfere
with the conflict-free extensions of an AF nor change the
range of a conflict-free set. In case two arguments have the
same claim, it is irrelevant which of these arguments is in-
cluded in an extension. It is thus save to introduce attacks
between two arguments in case their union is conflicting.

The following main theorem states that the cf-stable ker-
nel characterizes strong equivalence for cl-cf-stable and cl-
stage semantics.

Theorem 21. For any two compatible CAFs F and G,
Fesk = Gesk iff F =P G for p € {cl-stb.y, cl-stg}.

The remaining semantics under consideration can be char-
acterized via known AF kernels. We recall the AF kernels
from the literature (Oikarinen and Woltran 2011).

Definition 22. For an AF F' = (A, R), we define the admis-
sible kernel F* = (A, R%*) with

R* = R\{(a,b) | a#b, (a,a)€R, {(b,a),(b,b)}NR#D};
the complete kernel F9% = (A, R9%) with
R* = R\ {(a,b) | a # b, (a,a), (b,b) € R};
and the grounded kernel F9% = (A, R9%) with
R9* = R\{(a,b) | a#b, (b,b) € R, {(b,a),(a,a)}NR#D}.

We recall that the grounded (complete) kernel character-
izes strong equivalence for grounded (complete) semantics;
moreover, for any two AFs F' and G we have F' =7 G iff
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Fo = G for ¢ € {ad, pr,ss} (Oikarinen and Woltran
2011). We write F’ k(r) to denote the kernel which character-
izes strong equivalence for the semantics p.

It can be shown that two CAFs are strongly equivalent
under cl-ad-stable and cl-semi-stable semantics iff their ad-
missible kernels coincide.

Theorem 23. For any two compatible CAFs F and G, F =*
G iff F*% = G for p € {cl-stb,gq, cl-ss}.

Moreover, each each inherited semantics o, can be char-
acterized by the respective kernel for o.

Theorem 24. For any two compatible CAFs F and G,
F =2 Giff F = G for any considered AF semantics o.

For cl-naive and cl-preferred semantics, it can be shown
that strong equivalence w.r.t. cl-naive and cl-preferred se-
mantics coincides with strong equivalence w.r.t. their inher-
ited counterparts. This implies that two CAFs are strongly
equivalent w.r.t. cl-preferred semantics iff their admissible
kernels coincide; likewise, two CAFs are strongly equiva-
lent w.r.t. cl-naive semantics iff their naive kernels coincide.

Theorem 25. For any two compatible CAFs F and G,
F =tko Giff F =% G for o € {na,pr}.

Renaming and Equivalence

The equivalence notions we investigated so far where op-
erating on the given arguments together with their claims.
However, as we already mentioned in the introduction, a key
motivation behind CAFs is the investigation of claim-based
reasoning. It therefore makes sense to consider an equiva-
lence notion which abstracts from the underlying arguments
and thus focuses on the claims and their relationships. Let
us consider the following illustrative example.

Example 26. Assume we are given two CAFs F (cf. Exam-
ple 10) and G which both stem from instantiating the same
knowledge base using different argument naming schemes —
the CAF F relates argument names with the corresponding
claim (e.g., arguments with claim a are named a;) while G
uses a consecutive numbering for all arguments:

It is evident that F and G are ordinary equivalent w.r.t.
all considered semantics despite the mismatch in argument
names because they represent the same knowledge base.
However, when we consider equivalence in a dynamic set-
ting, we observe that different argument naming patterns can
cause unwanted effects. To illustrate this let us suppose we
are given H in a way that a novel argument e; with claim e
is given which attacks z;:




This is fine when insisting on the arguments, but on a claim-
level one could of course argue that H did not yield the same
modification on both sides and thus disrupts the similarity
between F and G in an unintended way.

The example suggests that the usual notion of strong
equivalence does not handle situations where we are inter-
ested in claims only very well. Our goal is hence to de-
velop notions of equivalence which handle such scenarios
in a more intuitive way. The first step to formalize the un-
derlying idea is the following notion of a renaming.

Definition 27. For a CAF F and a set A’ of arguments we
call a bijection f : Ax — A’ a renaming for F. By f(F)
we denote the CAF (f(F), cly) := (f(A), Ry, cly) where
(a,b) € Ry iff (f(a), (b)) € R and el (F(a)) = elr(a).
Example 28. Consider again our previous CAF F. Let us
assume we are given A’ = {x1, 22, Y1, 21, 22 }. The renam-
ing f with a; — x;, by — y; and ¢; — z; induces the
following CAF f(F):

We observe that f does not change the structure of F on
claim-level. In particular, we observe that p(F) = p(f(F))
for all considered semantics p.

The last observation we made was no coincidence in the
specific situation. More precisely, for the semantics consid-
ered in this paper, renaming does not change the meaning of
our CAF.

Proposition 29. For a CAF F, an arbitrary set A’ of argu-
ments and a renaming | we have p(F) = p(f(F)) for any
semantics p considered in this paper.

Having formally established that names of arguments do
not change the given semantics, let us proceed with defining
notions of equivalence that build upon this insight.

Definition 30. Two CAFs F and G are ordinary equivalent
up to renaming to each other w.r.t. a semantics p, in symbols
F =Pf. G, if there is some set A of arguments and some
renaming f : Ax — Afor F s.t. p(f(F)) = p(G).

So, informally speaking, Definition 30 requires that 7 and
G are equivalent, at least after the underlying arguments are
relabeled in a suitable way. However, in Proposition 29 we
have actually already established that this adjustment is su-
perfluous for our semantics. More formally, we infer the fol-
lowing result.

Proposition 31. For any two CAFs F and G, F =0, G iff
F =£ G for any semantics p under consideration.

Considering this result, it becomes apparent that we could
also require that p(f(F)) = p(G) holds for any renaming,
not just for one in particular.

Proposition 32. For two CAFs F and G we have that for
all semantics considered in this paper F =F_. G implies
p(f(F)) = p(G) for any renaming f for F.
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Now we utilize the notion of a renaming in order to de-
fine a strong equivalence-like relation which is more suitable
than strong equivalence for situations like the one described
in Example 26.

Definition 33. Two CAFs F and G are strongly equivalent
up to renaming to each other w.r.t. a semantics p, in sym-
bols F =~ G, iff there is a renaming f : Ar — Ag for
F such that f(F) and G are compatible with each other and
p(f(F)UH) = p(GUH) for each CAF H which is com-

patible with f(F) and G, i.e., f(F) =£ G.

Let us reconsider our motivating Example 26.
Example 34. Recall the CAFs F, G from before and con-
sider a renaming f with f(a1)=x1, f(b1) =22, f(c1) =23,
f(az) =x4, and f(c2) = x5. Augmenting both f(F) and G
with the CAF H, we obtain the following desired situation:

Notice that Proposition 29 ensures that our renaming for F
only prevents H from introducing a novel argument, while
preserving the semantics of F.

Strong equivalence up to renaming implies the usual
strong equivalence. This can be obtained by setting f = id.

Proposition 35. For any two CAFs F and G, if F = G,
then F =X, G for all considered semantics p.

Even without using Proposition 29 explicitly we can infer
that strong equivalence survives moving to a renamed ver-
sion of f as well.

Proposition 36. For any two compatible CAFs F and G, if
F =P, G, then f(F) =£. G for any renaming f for F, for
all semantics p under consideration.

Let us now come to the kernels. Since our notion of strong
equivalence up to renaming allows for changing the names
of the arguments, we expect our kernels to behave similarly.
More specifically, we also need to consider renamed ver-
sions of the CAFs before evaluating the kernels. However,
checking strong equivalence up to renaming will surely re-
quire to take the structure of the CAFs into consideration.
We thus define what we mean by a CAF isomorphism.

Definition 37. Two CAFs F and G are isomorphic to each
other iff there is a renaming f : Ax — Ag such that for all
a.b € Az, clr(a) = clg(f(a)) and (£(a), f(b)) € R iff
(a,b) € Rx; f is called isomorphism between F and G.

CAFs F and f(F) from Example 28 are isomorphic. The
given renaming f naturally is a CAF-isomorphism between
F and f(F). The following proposition collects basic prop-
erties of CAF isomorphisms.

Proposition 38. For any two CAFs F and G, (a) if F and
G are isomorphic, then p(F) = p(G) for any considered
semantics p; and (b) if [ is a renaming for F, then F and
f(F) are isomorphic.



As it turns out, we obtain exactly the result we desire to:
We check strong equivalence up to renaming by choosing
the appropriate kernel for p, computing the kernels of F and
G and then checking whether those are isomorphic to each
other. Informally speaking, our tailored notion of equiva-
lence which does not take the names of arguments into ac-
count yields the exact same kernels after relabeling the ar-
guments in a suitable way.

Theorem 39. For any two CAFs F and G, for any seman-
tics p under consideration, F =F,. G iff F**) and G*) are
isomorphic.

Example 40. For our CAFs F and G from Example 26 we
see that their kernels are isomorphic. Hence F and G are
strongly equivalent up to renaming w.r.t. all semantics con-
sidered in this paper.

Computational Complexity

In this section we examine the computational complexity of
deciding equivalence between two CAFs F and G for every
equivalence notion which has been established in this paper.
We assume the reader to be familiar with the polynomial hi-
erarchy. Our results reveal that ordinary equivalence can be
computationally hard, up to the third level of the polynomial
hierarchy for both variants of semi-stable and stage seman-
tics as well as for i-preferred semantics. For the remaining
semantics under consideration, the problem is I'I2P -complete;
the only exception is i-grounded semantics for which decid-
ing ordinary equivalence is P-complete. Moreover, we show
that deciding strong equivalence up to renaming extends the
list of problems which lie in NP but are not known to be
NP-complete.

First we present our complexity results for ordinary equiv-
alence. We formulate the following decision problem:

VER-OE,
Input: Two CAFs F, G.
Output:  TRUE iff F, G are ordinary equivalent w.r.t. p.

We obtain the following computational complexity results
for deciding ordinary equivalence:

Theorem 41. VER-OE,, is

e P-complete for p=gr.;

o NS-complete for p € {cf., ad., co., na, cl-pr, cl-na,
sthe, cl-stbef, cl-stboq, }; and

o ME-complete for p€ {pr., ss, stg., cl-stg, cl-ss}.

Observe that the computational complexity results from
Theorem 41 extend to ordinary equivalence up to renaming
by Proposition 31 for any semantics under consideration.
Having established complexity results for ordinary equiva-
lence it remains to discuss the computational complexity of
strong equivalence and strong equivalence up to renaming.

VER-SE,
Input: Two CAFs F, G.
Output:  TRUE iff F, G are strongly equivalent w.r.t. p.

In the section on strong equivalence, we have shown that
strong equivalence of two CAFs F and G can be charac-
terized via syntactic equivalence of their kernels. Since the
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computation and comparison of the kernels of F and G can
be done in polynomial time, we obtain tractability of strong
equivalence for every semantics under consideration.

Theorem 42. The problem VER-SE, can be solved in poly-
nomial time for any semantics p considered in this paper.

Finally, we consider strong equivalence up to renaming.
An analogous decision problem be formulated as follows:

VER-SER,
Input: Two CAFs F, G.
Output:  TRUE iff F, G are strongly equivalent up to re-

naming w.r.t. p.

As outlined above, the computation of the kernels lies in
P and is therefore negligible; the complexity of verifying
strong equivalence up to renaming thus stems entirely from
deciding whether two labelled graphs (i.e., the kernels of the
given CAFs) are isomorphic. As a consequence we obtain
that the complexity of VER-SER,, coincides with the com-
plexity of the well-known graph isomorphism problem.

Theorem 43. The problem VER-SER, is exactly as hard as
the graph isomorphism problem for any semantics p consid-
ered in this paper.

Conclusion and Future Work

In this paper, we considered ordinary and strong equivalence
as well as novel equivalence notions based on argument re-
naming for CAFs w.r.t. all semantics for CAFs which have
been considered in the literature so far and provided a com-
plexity analysis of all considered equivalence notions.

Our characterization results for strong equivalence are
in line with existing studies for related argumentation for-
malisms (Oikarinen and Woltran 2011; Dvordk, Rapberger,
and Woltran 2020b); in addition, we adapt an argument-
independent view by considering equivalence under renam-
ing. Equivalence of logic-based argumentation has been
studied in (Amgoud, Besnard, and Vesic 2014); they show
that under certain conditions on the underlying logic, unnec-
essary arguments can be removed while retaining (strong)
equivalence. In contrast to their work, our studies are inde-
pendent of the underlying formalism of the instantiated ar-
gumentation system as we do not impose any further con-
straints on the arguments or their claims; in this way, it
is even possible to test equivalence between argumentation
systems stemming from entirely different base formalisms.

For future work, we want to extend our strong equivalence
studies by considering certain constraints of the framework
modifications. What has been commonly investigated in the
literature are normal expansions where attacks can only
be introduced if they involve newly added arguments. We
also mention that our investigation was focusing on CAFs
with unrestricted attacks. While this reflects the behavior
of certain instantiations (Cyras and Toni 2016; Modgil and
Prakken 2014), oftentimes out-going attacks are character-
ized by the conclusions of arguments. It would be interesting
to extend our results to this class of CAFs.
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