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Abstract

Dung’s Argumentation Framework (AF) has been extended
in several directions, including the possibility of represent-
ing unquantified uncertainty about the existence of arguments
and attacks. The framework resulting from such an extension
is called incomplete AF (iAF). In this paper, we first introduce
three new satisfaction problems named totality, determinism
and functionality, and investigate their computational com-
plexity for both AF and iAF under several semantics.
We also investigate the complexity of credulous and skepti-
cal acceptance in iAF under semi-stable semantics—a prob-
lem left open in the literature. We then show that any iAF
can be rewritten into an equivalent one where either only
(unattacked) arguments or only attacks are uncertain. Fi-
nally, we relate iAF to probabilistic argumentation frame-
work, where uncertainty is quantified.

Introduction
Formal argumentation has emerged as one of the important
fields in Artificial Intelligence (Bench-Capon and Dunne
2007; Simari and Rahwan 2009; Atkinson et al. 2017). In
particular, Dung’s abstract Argumentation Framework (AF)
is a simple yet powerful formalism for modeling disputes
between two or more agents (Dung 1995). An AF consists
of a set of arguments and a binary attack relation over the
set of arguments that specifies the interactions between ar-
guments: intuitively, if argument a attacks argument b, then
b is acceptable only if a is not. Hence, arguments are abstract
entities whose status is entirely determined by the attack re-
lation. An AF can be seen as a directed graph, whose nodes
represent arguments and edges represent attacks.

Several argumentation semantics—e.g. grounded (gr),
complete (co), preferred (pr), stable (st) (Dung 1995), and
semi-stable (sst) (Caminada 2006)—have been defined for
AF, leading to the characterization of σ-extensions, that in-
tuitively consist of the sets of arguments that can be collec-
tively accepted under semantics σ ∈ {gr, co, st, pr, sst}.

Various proposals have been made to extend the Dung
framework with the aim of better modeling the knowledge to
be represented. The extensions include Bipolar AF (Nouioua
and Risch 2011; Nouioua 2013; Villata et al. 2012), AF
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Figure 1: iAF ∆ of Example 1.

with recursive attacks and supports (Cohen et al. 2015; Got-
tifredi et al. 2018; Cayrol et al. 2018), Dialectical frame-
work (Brewka and Woltran 2010; Brewka et al. 2013), AF
with preferences (Amgoud and Cayrol 1998; Modgil and
Prakken 2013) and constraints (Coste-Marquis, Devred, and
Marquis 2006; Arieli 2015; Alfano et al. 2021b), as well ex-
tensions for representing uncertain information. For the rep-
resentation of uncertain information, two main extensions
have been proposed: incomplete AF (iAF), where arguments
and attacks may be uncertain (Baumeister et al. 2018, 2021),
and probabilistic AF (PrAF), where arguments and attacks
are associated with a probability (Dung and Thang 2010; Li,
Oren, and Norman 2011; Hunter 2012). In this paper we fo-
cus on iAF, but we will also study its connection with PrAF.

Example 1. Consider an iAF ∆ = 〈{a, b, c, d}, {e}, {(a, b),
(b, a), (a, c), (b, d), (c, d), (d, c), (d, a), (e, a), (e, b)}, ∅〉
whose corresponding graph is shown in Figure 1, where
dashed nodes represent uncertain arguments (see Defini-
tion 1 for the formal definition). ∆ describes the following
scenario. A party planner invites Alice, Bob, Carl, David,
and Erik to join a party. Due to their old rivalry (i) Alice
replies that she will join the party if Bob, David and Erik
do not; (ii) Bob replies that he will join the party if Alice
and Erik do not; (iii) Carl replies that he will join the party
if Alice and David do not; (iv) David replies that he will
join the party if Bob and Carl do not; and (v) Erik replies
that he is not sure that can join the party. This situation
can be modeled by iAF ∆, where an argument x states that
“(the person whose names’ initial is) x joins the party”, and
argument e=“Erik joins the party” is uncertain. �

The semantics of an iAF is given by considering all com-
pletions, i.e. AFs obtained by removing consistent subsets
of the uncertain elements, and for each completion its σ-
extensions under a given semantics σ.

Example 2. Continuing with Example 1, the completions of
∆ are as follows:
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• Λ1 = 〈{a, b, c, d, e}, {(a, b), (b, a), (a, c), (b, d), (c, d),
(d, c), (d, a), (e, a), (e, b)}〉;

• Λ2 = 〈{a, b, c, d}, {(a, b), (b, a), (a, c), (b, d), (c, d),
(d, c), (d, a)}〉.

Completion Λ1 is the AF obtained from ∆ by keeping all
the arguments and attacks, while completion Λ2 is obtained
from ∆ by removing the uncertain argument e and, consis-
tently with this, attacks (e, a) and (e, b) starting from e. �

Since most of the argumentation semantics defined for
AF are non-deterministic (or multiple-status), the notions of
credulous and skeptical acceptance have been defined. Thus,
given a semantics σ, an argument is credulously accepted if
it occurs in at least one σ-extension, whereas it is skeptically
accepted if all σ-extensions contain it.

Acceptance problems have been recently extended to
iAF: an argument is possibly credulously (resp. skeptically)
accepted if there exists a completion where it is credu-
lously (resp. skeptically) accepted; an argument is necessar-
ily credulously (resp. skeptically) accepted if for all comple-
tions it is credulously (resp. skeptically) accepted.

Our main contributions are as follows.

Determinism, totality, and functionality for AF. We in-
troduce three satisfaction problems for AF called determin-
ism (DS), totality (TS), and functionality (FS). Informally,
an argument is said to be deterministic if all extensions as-
sign the same status (either accepted, rejected, or undefined)
to it, whereas it is said to be total if for all extensions it is
either accepted or rejected (i.e. it is never undefined). To-
tality is inspired by the criterion leading to stable seman-
tics (Dung 1995). In fact, it requires the same property as
the stable semantics but for a given goal argument (instead
of all arguments). Specifically, while stable semantics forces
the status of all arguments to be either accepted or rejected,
totality requires this condition for a given goal argument un-
der semantics σ. For instance, given an AF, we may be in-
terested to know if an argument “The defendant is guilty”
can be decided w.r.t. any σ-extension, i.e. if it is total. For
AFs, determinism tells us if the status of a given argument
is always the same (accepted/rejected/undecided), that is if
we can safely make a decision or not based on the available
knowledge. When both totality and determinism hold for a
given argument, we say that it is functional. We study the
complexity of the problems of checking determinism (DS),
totality (TS), and functionality (FS) under several semantics
for general and odd-cycle free AF (see Table 1).

Determinism, totality, and functionality for iAF. We ex-
tend the totality, deterministic and functional properties to
iAFs. In this context, an argument a is total (resp. deter-
ministic, functional) if it is total (resp. deterministic, func-
tional) in every completion. Thus, for iAF, totality tells us
if an argument can be decided whatever the considered sce-
nario (i.e. completion/world) is, while determinism tells us
if we can safely make a decision in every scenario (comple-
tion). Functionality combines totality and determinism and
thus tells us if an argument can be firmly decided whatever
the considered scenario is, that is if the information at hand

(General) AF odd-cycle free AF
σ TS DS FS TS DS FS

gr P trivial P P trivial P
co P coNP-c P P coNP-c P
st NP-c DP-c DP-c trivial coNP-c coNP-c
pr Πp2-c Πp2-c Πp2-c trivial coNP-c coNP-c
sst Πp2-c Πp2-c Πp2-c trivial coNP-c coNP-c

Table 1: Complexity of TS, DS, and FS problems for AFs.

(General) iAF odd-cycle free iAF
σ TS DS FS TS DS FS

gr coNP-c trivial coNP-c coNP-c trivial coNP-c
co coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c
st Πp2-c Πp2-c Πp2-c trivial coNP-c coNP-c
pr Πp2-c Πp2-c Πp2-c trivial coNP-c coNP-c
sst Πp2-c Πp2-c Πp2-c trivial coNP-c coNP-c

Table 2: Complexity of TS, DS, and FS problems for iAFs.

is sufficient to make a decision irrespective of the possible
world, as shown in the following example.

Example 3. Continuing with Examples 1 and 2, suppose the
party planner is interested to know if, whatever Erik decide
to do, he has sufficient information to decide whether or not
Alice (resp. Bob) joins the party. The preferred (stable/semi-
stable) extensions of Λ1 and Λ2 are {{c, e}, {d, e}} and
{{b, c}}, respectively. As a and b are functional, the party
planner concludes that a decision on the fact that Alice (resp.
Bob) joins or not the party can be taken in both scenarios
(Erik joins or not the party).

Note that such questions cannot be answered by possi-
ble/necessary credulous/skeptical acceptance. In fact, a is
functional but not possible credulously accepted, and b is
functional but not necessary skeptically accepted. �

We investigate the complexity of the problems of check-
ing determinism, totality, and functionality for general iAF
and odd-cycle free iAF. Our results are reported in Table 2.

Possible/Necessary Credulous/Skeptical Acceptance un-
der Semi-Stable Semantics. We investigate the problems
of (i) possible credulous (resp. skeptical) acceptance (PCA,
resp. PSA), and (ii) necessary credulous (resp. skeptical) ac-
ceptance (NCA, resp. NSA) under semi-stable semantics—
though studied for semantics σ ∈ {gr, co, st, pr}, the in-
vestigation of the complexity of these problems was left
open for semi-stable semantics in (Baumeister et al. 2018;
Fazzinga, Flesca, and Furfaro 2020). We show that un-
der semi-stable semantics PCA (resp. PSA) is Σp2-complete
(resp. Σp3-complete), whereas NCA (resp. NSA) is Πp

3-
complete (resp. Πp

2-complete). Thus, compared with the re-
sults for the preferred semantics (Baumeister et al. 2018),
the complexity increases of one level of the polynomial hi-
erarchy for credulous reasoning, while it does not change for
skeptical reasoning and for problems DS, TS and FS (the re-
sults on last two rows of Table 2 coincide).

Equivalent Forms of iAF: arg-iAF, att-iAF, and farg-iAF.
We show that an iAF ∆ can be rewritten into an “equivalent”

5452



one ∆′, such that for every σ-extension E of ∆, there is
a σ-extension E′ of ∆′ coinciding with E (modulo some
meta-arguments added in the rewriting). Particularly, ∆′ can
be of one of the following forms: i) only arguments or only
attacks are uncertain (∆′ is said to be an arg-iAF or att-iAF,
respectively); or ii) uncertainty is only on arguments that
are not attacked by any other argument (∆′ is said to be an
farg-iAF). We also show that an arg-iAF can be translated
into an farg-iAF. It can be shown that the results in Table 2
also hold for these restricted forms of iAFs.

Relationship between iAF and PrAF. Finally, using the
equivalence result between iAF and arg-iAF, we investigate
the relationships between iAF and PrAF and relate the (pos-
sible/necessary credulous/skeptical) acceptance problems in
iAF to probabilistic acceptance in PrAF. For instance, we
show that, under the assumption that for each completion
the existence of at least one extension is guaranteed, if an
argument is necessarily skeptically accepted then its proba-
bilistic acceptance is 1, whereas in all other cases if the argu-
ment is accepted then the probability of acceptance is in the
interval (0, 1]. In our approach we derive a PrAF encoding a
given iAF, and also show that computing the probability of
acceptance of an argument is FP#P-hard even restricting to
acyclic iAFs.

Proofs of our results are available in (Alfano et al. 2021c).

Preliminaries
In this section, we first review the Dung’s framework and the
incomplete one, and then recall complexity classes.

Argumentation Framework
An abstract Argumentation Framework (AF) (Dung 1995) is
a pair 〈A,R〉, whereA is a set of arguments andR ⊆ A×A
is a set of attacks.

Given an AF Λ = 〈A,R〉 and a set S ⊆ A of arguments,
an argument a ∈ A is said to be i) defeated w.r.t. S iff there
exists b ∈ S such that (b, a) ∈ R, and ii) acceptable w.r.t. S
iff for every argument b ∈ A with (b, a) ∈ R, there is c ∈ S
such that (c, b) ∈ R. The sets of arguments defeated and
acceptable w.r.t. S are as follows (where Λ is understood):
• Def(S)={a ∈ A | ∃b ∈ S . (b, a) ∈ R};
• Acc(S)={a ∈A | ∀b ∈ A . (b, a) ∈ R ⇒ b ∈ Def(S)}.
Given an AF 〈A,R〉, a set S ⊆ A of arguments is said to
be conflict-free iff S ∩ Def(S) = ∅. Moreover, S ⊆ A is
said to be a complete (co) extension iff it is conflict-free and
S = Acc(S). A complete extension S ⊆ A is said to be:
• preferred (pr) iff it is ⊆-maximal;
• stable (st) iff it is a total preferred extension, i.e. a pre-

ferred extension such that S ∪ Def(S) = A;
• semi-stable (sst) iff it is a preferred extension with a max-

imal set of decided elements;
• grounded (gr) iff it is ⊆-minimal.

In the following, if not specified otherwise, σ denotes any
semantics in {gr, co, st, pr, sst}. For any AF Λ and se-
mantics σ, σ(Λ) denotes the set of σ-extensions of Λ. All
the above-mentioned semantics except the stable admit at

least one extension (i.e. σ(Λ) 6= ∅), and the grounded ad-
mits exactly one extension (i.e. |gr(Λ)| = 1) (Dung 1995;
Caminada 2006). The grounded semantics is called deter-
ministic (or unique status), whereas the other semantics are
called non-deterministic (or multiple status). The stable se-
mantics is said to be total as each argument belongs to either
E or Def(E) (i.e. it is either true or false) for every extension
E. For any AF Λ, it holds that st(Λ) ⊆ sst(Λ) ⊆ pr(Λ) ⊆
co(Λ), and gr(Λ) ⊆ co(Λ). An AF is acyclic (resp. odd-
cycle free) if the associated graph is acyclic (resp. odd-cycle
free). For acyclic AFs all the considered semantics coincide.

In the following we consider the acceptability of argu-
ment literals (or simply literals). A literal is either an argu-
ment a or its negation ¬a. A set of literals S is said to be
consistent if it does not contain two literals a and ¬a. We
use ¬S to denote the set {¬a | a ∈ S}, and S∗ to denote
S ∪ ¬S. To deal with literals, we define the notion of fulfill-
ment of an extension. Given AF Λ = 〈A,R〉 and an exten-
sion E for it, the fulfillment of E is E ∪ ¬Def(E). Clearly,
the fulfillment of an extension is a consistent set of literals.
Herein, arguments in E are represented as positive literals
(i.e. interpreted as true), while arguments defeated by E are
represented as negative literals (i.e. interpreted as false).

In the rest of the paper, with a little abuse of notation,
whenever we refer to an extension we mean its fulfillment.

For any AF Λ = 〈A,R〉, semantics σ, and literal a ∈ A∗,
we say that a is credulously (resp. skeptically) accepted (un-
der semantics σ), denoted as CAσ(Λ, a) (resp. SAσ(Λ, a)) if
a belongs to at least a (resp. every) σ-extension of Λ.

We use CAσ (resp. SAσ), or simply CA (resp. SA) when-
ever σ is understood, to denote the credulous (resp. skep-
tical) acceptance problem, that is, the problem of deciding
whether a literal is credulously (resp. skeptically) accepted.
Clearly, for the grounded semantics, which has exactly one
extension, these problems are identical (i.e. CAgr ≡ SAgr).

Example 4. Consider the AF Λ = 〈{a, b, c, d}, {(a, b),
(b, a), (a, c), (b, c), (c, d), (d, c)}〉. Λ has 4 complete exten-
sions: E0 = ∅, E1 = {a,¬b,¬c, d}, E2 = {¬a, b,¬c, d}
and E3 = {¬c, d}. That is, co(Λ) = {E0, E1, E2, E3}. E0

is the grounded extension, E1 and E2 are stable (preferred
and semi-stable) extensions. Thus, a, b, d, as well as ¬a,
¬b, ¬c, are credulously accepted for all semantics except
the grounded; only d and ¬c are skeptically accepted for
stable, preferred and semi-stable semantics. �

Incomplete Argumentation Framework
We now recall the incomplete AF (Baumeister et al. 2018).

Definition 1 (Incomplete AF). An incomplete (abstract) Ar-
gumentation Framework (iAF) is a tuple ∆ = 〈A,B,R, T 〉,
where A and B are disjoint sets of arguments, and R and T
are disjoint sets of attacks between arguments in A∪B. Ar-
guments in A and attacks in R are said to be certain, while
arguments in B and attacks in T are said to be uncertain.

Certain arguments in A are definitely known to exist,
while uncertain arguments inB are not known for sure: they
may occur or may not. Analogously, certain attacks in R are
definitely known to exist if both the incident arguments ex-
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ist, while for uncertain attacks in T it is not known for sure
if they hold, even if both the incident arguments exist.

An iAF compactly represents alternative AF scenarios,
called completions.
Definition 2 (Completion). A completion for an iAF ∆ =
〈A,B,R, T 〉 is an AF Λ = 〈A′, R′〉whereA ⊆ A′ ⊆ A∪B
and R ∩ (A′ ×A′) ⊆ R′ ⊆ (R ∪ T ) ∩ (A′ ×A′).

The set of completions of ∆ is denoted by comp(∆).
An iAF 〈A,B,R, T 〉 is acyclic (resp. odd-cycle free) iff

the AF 〈A ∪B,R ∪ T 〉 is acyclic (resp. odd-cycle free).
To define acceptability and properties satisfaction of lit-

erals for iAFs, we refine the definition of fulfillment of ex-
tensions. Given an iAF ∆ = 〈A,B,R, T 〉 and an extension
E for a completion Λ = 〈A′, R′〉 of ∆, the fulfillment of
E is E ∪ ¬Def(E) ∪ ¬(B \ A′). Herein, arguments in E
are represented as positive literals (i.e. interpreted as true),
while arguments attacked by E as well as uncertain argu-
ments not occurring in Λ are represented as negative literals
(i.e. interpreted as false).
Example 5. Consider the iAF ∆ of Example 1 and
the completion Λ2 reported in Example 2. Λ2 has only
one preferred extension, {b, c}, whose fulfillment is
{¬a, b, c,¬d,¬e}. �

Acceptance problems. Credulous and skeptical accep-
tance for iAF have been recently proposed in (Baumeister,
Neugebauer, and Rothe 2018), where the goal, i.e. the ele-
ment for which acceptance is checked, is an argument. As
we focus on fulfillment of extensions, our goal is a literal.
Definition 3 (Possible/Necessary Credulous/Skeptical Ac-
ceptance). Let ∆ = 〈A,B,R, T 〉 be an iAF and σ ∈ {gr,
co, st, pr, sst}. Then, a literal g ∈ A∗ ∪B∗ is said to be:
1. possibly credulously accepted under σ, denoted as
PCAσ(∆, g), iff there exists a completion Λ of ∆ and
a σ-extension E of Λ such that g ∈ E;

2. possibly skeptically accepted under σ, denoted as
PSAσ(∆, g), iff there exists a completion Λ of ∆ such
that g occurs in every σ-extension of Λ;

3. necessarily credulously accepted under σ, denoted as
NCAσ(∆, g), iff for every completion Λ of ∆, there ex-
ists a σ-extension E of Λ such that g ∈ E;

4. necessarily skeptically accepted under σ, denoted as
NSAσ(∆, g), iff for every completion Λ of ∆, g occurs
in every σ-extension of Λ.
We use PCAσ (resp. PSAσ , NCAσ , NSAσ), or simply

PCA (resp. PSA, NCA, NSA) whenever σ is understood,
to denote the problem of deciding acceptance according to
Item 1 (resp. 2, 3, and 4) of Definition 3. For the grounded
semantics we have PCAgr ≡ PSAgr and NCAgr ≡ NSAgr.
Example 6. Consider the iAF ∆ = 〈{a, b, d}, {c},
{(a, b), (b, a)}, ∅〉. ∆ has 2 completions: Λ1 = 〈{a, b, d},
{(a, b), (b, a)}〉 and Λ2 = 〈{a, b, c, d}, {(a, b), (b, a)}〉.
Under semantics σ ∈ {st, pr, sst}, Λ1 has two extensions
E
′

1 = {a,¬b,¬c, d} and E
′′

1 = {¬a, b,¬c, d}, while Λ2 has
two extensions E

′

2 = {a,¬b, c, d} and E
′′

2 = {¬a, b, c, d}.
Thus, a, b, c, d,¬a,¬b,¬c satisfy PCA, c, d,¬c satisfy
PSA, a, b, d,¬a,¬b satisfy NCA and only d satisfies NSA. �

Observe that we consider acceptance of literals and, dif-
ferently from (Fazzinga, Flesca, and Furfaro 2020) and
(Baumeister et al. 2018), we also deal with sst semantics.

Complexity Classes
We recall here the main complexity classes used in the paper
and, in particular, the definition of the classes Σpk and Πp

k,
with k ≥ 0 (see e.g. (Papadimitriou 1994)): (i) Σp0 = Πp

0 =

P; (ii) Σp1 = NP and Πp
1 = coNP; and (iii) Σpk = NPΣp

k−1

and Πp
k = coΣpk, ∀k > 0. P denotes the class of prob-

lems that can be solved in polynomial time (w.r.t. the size
of the input) by a deterministic Turing machine. NPC de-
notes the class of problems that can be solved in polynomial
time using an oracle in the class C by a non-deterministic
Turing machine. Under a standard complexity assumption,
Σpk⊆Σpk+1 ⊆ PSPACE and Πp

k⊆Πp
k+1 ⊆ PSPACE. A lan-

guage L is in the class DP iff there are two languages L1 ∈
NP and L2 ∈ coNP such that L = L1 ∩ L2. FP is the class
of the function problems that can be solved in polynomial
time by a deterministic Turing machine. FP#P is the class
of functions computable by a polynomial-time Turing ma-
chine with a #P oracle. #P is the complexity class of the
functions counting the number of accepting paths of a non-
deterministic poly-time Turing machine (Valiant 1979).

Totality, Determinism and Functionality in AF
In this section we discuss desirable properties to be satisfied
by literals w.r.t. a given semantics. As discussed in the in-
troduction, these properties concern the fact that the status
of a literal is i) never undefined (totality), ii) the same in all
extensions (determinism), and iii) never undefined and the
same in all extensions (functionality). They will be extended
to the case of iAFs in a subsequent section.

Definition 4. Let Λ = 〈A,R〉 be an AF, σ ∈ {gr, co,
st, pr, sst}, and g ∈ A∗ a literal. We say that g is:

• total under σ, denoted as TSσ(Λ, g), if i) σ(Λ) 6= ∅ and
ii) for each E ∈ σ(Λ), either g ∈ E or ¬g ∈ E;

• deterministic under σ, denoted as DSσ(Λ, g), if i)
σ(Λ) 6= ∅, and ii) either SAσ(Λ, g) or SAσ(Λ,¬g) or
(¬CAσ(Λ, g) ∧ ¬CAσ(Λ,¬g));

• functional under σ, denoted as FSσ(Λ, g), if g is total and
deterministic under σ, that is i) σ(Λ) 6= ∅ and ii) either
SAσ(Λ, g) or SAσ(Λ,¬g).

Observe that only for σ = st we may have σ(Λ) = ∅:
for all other semantics we have that σ(Λ) 6= ∅. We use TSσ
(resp. DSσ , FSσ) to denote the problem of deciding whether
a goal is total (resp. deterministic, functional). The next the-
orem states the complexity of checking these properties.

Theorem 1. For general AFs, it holds that:

• TSσ is polynomial for σ ∈ {gr, co}, NP-complete for
σ = st, and Πp

2-complete for σ ∈ {pr, sst};
• DSσ is trivial for σ = gr, coNP-complete for σ = co,

DP-complete for σ = st, and Πp
2-complete for σ ∈

{pr, sst};
• FSσ is polynomial for σ ∈ {gr, co}, DP-complete for
σ = st, and Πp

2-complete for σ ∈ {pr, sst}.
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Example 7. Considering the AF of Example 4, literals c
and d are functional for σ ∈ {st, pr, sst}, whereas a and
b are total, but not deterministic, for σ = st. Obviously, for
σ = gr all literals are deterministic, but not total. �

Theorem 2. For odd-cycle free AFs, it holds that:

• TSσ is polynomial for σ ∈ {gr, co}, trivial for σ ∈
{st, pr, sst};

• DSσ trivial for σ = gr; coNP-complete for σ ∈
{co, st, pr, sst};

• FSσ is polynomial for σ ∈ {gr, co}, and coNP-complete
for σ ∈ {st, pr, sst}.

Proposition 1. For any AF Λ = 〈A,R〉, literal g ∈ A∗, and
semantics σ ∈ {gr, co, pr, sst}, it holds that:

• DSσ(Λ, g) = false ⇒ SAσ(Λ, g) = false (or, equiva-
lently, SAσ(Λ, g) = true⇒ DSσ(Λ, g) = true) , and

• FSσ(Λ, g) ≡ SAσ(Λ, g) ∨ SAσ(Λ,¬g).

Concerning the previous results, notice that stable, pre-
ferred and semi-stable semantics coincide for odd-cycle free
AFs, and thus the existence of a stable extension is always
guaranteed (Dung 1995). Thus, Proposition 1 holds also for
σ = st and odd-cycle free AFs.

Totality, Determinism and Functionality in iAF
The concepts of totality, determinism and functionality, de-
fined in the context of AF can be extended to iAF as follows.
Definition 5 (Total, deterministic, functional literals). Let
∆ = 〈A,B,R, T 〉 be an iAF, σ ∈ {gr, co, st, pr, sst},
and g ∈ A∗ ∪B∗ a goal literal. We say that g is:
• total under σ, denoted as TSσ(∆, g), if for each Λ ∈
comp(∆), i) σ(Λ) 6= ∅ and ii) for each E ∈ σ(Λ), ei-
ther g ∈ E or ¬g ∈ E;

• deterministic under σ, denoted as DSσ(∆, g), if for each
Λ ∈ comp(∆), i) σ(Λ) 6= ∅, and ii) either SAσ(Λ, g) or
SAσ(Λ,¬g) or (¬CAσ(Λ, g) ∧ ¬CAσ(Λ,¬g));

• functional under σ, denoted as FSσ(∆, g), if g is total and
deterministic under σ, that is, for each Λ ∈ comp(∆), i)
σ(Λ) 6= ∅ and ii) either SAσ(Λ, g) or SAσ(Λ,¬g).
The next result immediately derives from definitions.

Fact 1. Let ∆ be an iAF, σ ∈ {gr, co, st, pr, sst} and
g a literal. We have that i) TSσ(∆, g) ≡ TSσ(∆,¬g),
ii) DSσ(∆, g) ≡ DSσ(∆,¬g), and iii) FSσ(∆, g) ≡
FSσ(∆,¬g) hold.

Example 8. Consider the iAF ∆ = 〈A= {a, b, c}, B = {d},
R = {(a, b), (b, a), (b, c), (c, c), (d, a), (d, b)}, T = ∅〉 re-
ported in Figure 2, left side. ∆ has two completions Λ1 = 〈A,
R \ {(d, a), (d, b)}〉 and Λ2 = 〈A ∪ B,R〉, also shown in
Figure 2 (center). For Λ1 there are three complete exten-
sions (recall that we refer to the fulfillments): E0 = {¬d},
E1 = {a,¬b,¬d} and E2 = {¬a, b,¬c,¬d}. The grounded
extension is E0, while E1 is preferred, and E2 is stable, pre-
ferred, and semi-stable. For Λ2 there is only one complete
extension E3 = {¬a,¬b, d}, which is grounded, preferred,
and semi-stable. The goal b is i) total only for semantics pr
and sst (it is not total for st as Λ2 does not have stable
extensions) and ii) deterministic for semantics gr, st and

sst (it is not deterministic for pr as the two preferred ex-
tensions, E1 and E2, of Λ1 are such that E1 contains ¬b
while E2 contains b). Thus, b is functional for sst only. �

We use TSσ (resp. DSσ , FSσ), or simply FS (resp. TS,
DS) whenever σ is understood, to denote the problem of de-
ciding whether a literal is total (resp. deterministic, func-
tional). The complexity of the aforementioned problems is
characterized in the following theorem.

Theorem 3. For general iAFs, it holds that:

• TSσ is coNP-complete for σ ∈ {gr, co} and Πp
2-

complete for σ ∈ {st, pr, sst};
• DSσ is trivial for σ = gr, coNP-complete for σ = co,

and Πp
2-complete for σ ∈ {st, pr, sst};

• FSσ is coNP-complete for σ ∈ {gr, co} Πp
2-complete for

σ ∈ {st, pr, sst}.
The next proposition provides conditions under which

unattacked arguments are functional.

Proposition 2. For any iAF ∆ = 〈A,B,R, T 〉 and
unattacked argument g ∈ A∪B, it holds that g is functional
i) under semantics σ ∈ {gr, co, pr, sst}, and ii) under se-
mantics σ = st if ∆ is odd-cycle free.

Thus, under semantics σ ∈ {co, gr, pr, sst}, every
unattacked argument is total and deterministic. However,
this does not hold for general iAFs under stable semantics,
as there could be completions prescribing no extensions.

We conclude this section by providing the complexity of
the problems of deciding whether a literal is total, determin-
istic, and functional for the case of odd-cycle free iAFs.

Theorem 4. For odd-cycle free iAFs, it holds that:

• TSσ is coNP-complete for σ ∈ {gr, co} and trivial for
σ ∈ {st, pr, sst};

• DSσ is trivial for σ = gr, coNP-complete for σ ∈
{co, st, pr, sst};

• FSσ is coNP-complete for σ ∈ {gr, co, st, pr, sst}.
The results of Theorem 4 complement those of Theorem 3

(see Table 2). Except for the grounded and complete se-
mantics, the complexity of checking determinism and func-
tionality decreases by one level of the polynomial hierarchy
whereas checking totality becomes trivial.

Acceptance Problems for iAF
We first characterize the complexity of the so-called veri-
fication problems for iAF under the semi-stable semantics.
To this end, we need to introduce the concepts of possible
and necessary extension for iAF (Baumeister et al. 2018;
Fazzinga, Flesca, and Furfaro 2020). Given an iAF ∆ and
a semantics σ, a (consistent) set of literals S is said to be a
possible (resp. necessary) σ-extension for ∆ if for at least
one (resp. for every) completion Λ of ∆, S is a σ-extension
of Λ.1 The verification problem is then defined as follows.
Given an iAF ∆, a semantics σ and a set of literals S,

1We use the definition of possible (resp. necessary) σ-extension
introduced in (Fazzinga, Flesca, and Furfaro 2020) that revised the
initial definition in (Baumeister et al. 2018).
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the possible (resp. necessary) verification problem is decid-
ing whether S is a possible (resp. necessary) σ-extension
of ∆. It has been shown that the complexity of the possi-
ble and necessary verification problems is polynomial for
σ ∈ {gr, co, st}, whereas it is Σp2-complete (resp. coNP-
complete) for the possible (resp. necessary) variant under the
preferred semantics (Fazzinga, Flesca, and Furfaro 2020).

As stated next, the complexity of the verification prob-
lems for the semi-stable and preferred semantics coincides.
Theorem 5. Given an iAF ∆ = 〈A,B,R, T 〉 and a con-
sistent set S ⊆ A∗ ∪ B∗, checking whether S is a possible
(resp. necessary) sst-extension of ∆ is Σp2-complete (resp.
coNP-complete).

After characterizing the complexity of the verification
problem, in the next theorem we consider the acceptance
problems (cf. Definition 3) for semi-stable semantics.
Theorem 6. PCAsst (resp. PSAsst, NCAsst, and NSAsst)
is Σp2-complete (resp. Σp3-complete, Πp

3-complete, and Πp
2-

complete).

Compared with the results for the other seman-
tics (Baumeister et al. 2018), it turns out that deciding PCA
and NCA for sst is more costly than for any other seman-
tics, while deciding PSAsst and NSAsst costs the same as
deciding PSApr and NSApr, respectively. Moreover, the re-
sults of Theorems 5 and 6 complement those in Table 2,
showing that, though problems DS, TS, and FS under sst
and pr have the same complexity, these semantics behave
differently under credulous reasoning.

Equivalent Forms of iAFs
In this section we show that iAFs can be rewritten into equiv-
alent iAFs where uncertainty is restricted to either attacks or
(unattacked) arguments.
Definition 6 (arg-iAF and att-iAF). An iAF ∆ =
〈A,B,R, T 〉 is said to be argument-incomplete (arg-iAF for
short) if T = ∅, whereas it is said to be attack-incomplete
(att-iAF for short) if B = ∅.

Given an iAF ∆, we denote by arg(∆) the arg-iAF de-
rived from ∆ by replacing every uncertain attack (a, b) with
the certain attacks (a, αab), (αab, βab), (βab, b), where αab
(resp. βab) is a fresh certain (resp. uncertain) argument.

Analogously, we denote by att(∆) the att-iAF derived
from ∆ as follows: for each uncertain argument b, make b
certain and add an uncertain attack (α, b), where α is a fresh
certain argument—it is sufficient to add only one fresh argu-
ment α.
Example 9. Consider the iAF ∆ = 〈{b, c}, {a},
{(a, b), (b, a)}, {(b, c)}〉. The arg-iAF derived from ∆ is
∆′ = 〈{b, c, αbc}, {a, βbc}, {(a, b), (b, a), (b, αbc), (αbc,
βbc), (βbc, c)}, ∅〉, whereas the att-iAF derived from ∆ is
∆′′ = 〈{b, c, a, α}, ∅, {(a, b), (b, a)}, {(b, c), (α, a)}〉. �

The transformations described above to eliminate uncer-
tain attacks/arguments are inspired by those proposed in
(Mantadelis and Bistarelli 2020) to eliminate attacks/argu-
ments with probability less than 1 in probabilistic AF.

We now introduce a special class of arg-iAFs.

Definition 7 (farg-iAF). An arg-iAF ∆ = 〈A,B,R, ∅〉 is
said to be fact-uncertain (farg-iAF) iff ∀(a, b) ∈ R, b 6∈ B.

Observe that the iAF of Example 1 is an farg-iAF.
Given an arg-iAF ∆, farg(∆) denotes the farg-iAF de-

rived from ∆ as follows: for each uncertain argument b
which is attacked in ∆, make b certain and add the attacks
(bu, bc), (bc, b), where bc (resp. bu) is a fresh certain (resp.
uncertain) argument. With a little abuse of notation, for any
iAF ∆ we use farg(∆) to denote farg(arg(∆)).
Example 10. Considering an arg-iAF ∆ = 〈{m, r},
{f, w}, {(f, m), (m, f), (m, w), (w, r), (r, w)}, ∅〉, the derived
farg-iAF ∆′ is as follows: 〈{f, m, w, r, fc, wc}, {fu, wu},
{(f, m), (m, f), (m, w), (w, r), (r, w), (fu, fc), (fc, f), (wu, wc),
(wc, w)}, ∅〉. The completions of ∆′ are obtained by select-
ing all subsets of the set {fu, wu} of uncertain arguments. �

Given an iAF ∆ = 〈A,B,R, T 〉, let ϕ ∈
{arg, att, farg}, for any Λ′ = 〈A′, R′〉 ∈ comp(ϕ(∆)),
af∆(Λ′) denotes the AF Λ′′ = 〈A′′, R′′〉 ∈ comp(∆) with:
• A′′ = A∪ ((B ∩A′) \ {a | (α, a) ∈ R′ ∨ au 6∈ A′}), and
• R′′ = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \
{(a, b) | (βab 6∈ A′) ∨ (βcab ∈ A′ ∧ βuab 6∈ A′)}.
Herein, the set {a | (α, a) ∈ R′ ∨ au 6∈ A′} is used

to avoid considering arguments either (i) attacked by α in
comp(att(∆)) or (ii) always false in comp(farg(∆)) as
au 6∈ A′. Analogously, {(a, b) | (βab 6∈ A′) ∨ (βcab ∈ A′ ∧
βuab 6∈ A′)} is used to avoid considering uncertain attacks
that are chosen to not occur in either (i) comp(arg(∆)), as
βab 6∈ A′, or (ii) comp(farg(∆)) as (βcab ∈ A′∧βuab 6∈ A′).
Example 11. Consider the iAF ∆ of Example 9. Then,
farg(∆) = 〈A= {a, b, c, ac, αbc, βbc, β

c
bc}, B = {au, βubc},

R = {(a, b), (b, a), (ac, a), (au, ac), (b, αbc), (αbc, βbc),
(βbc, c), (βcbc, βbc), (β

u
bc, β

c
bc)}, T = ∅〉. For Λ = 〈A∪{au},

R \ {(βubc, βcbc)}〉 ∈ comp(farg(∆)), containing the uncer-
tain argument au but not βubc, af∆(Λ) = 〈{a, b, c}, {(a, b),
(b, a)}〉 ∈ comp(∆) that contains the uncertain argument a
and does not contain the uncertain attack (b, c). �

Lemma 1. For any iAF ∆ and ϕ ∈ {arg, att, farg}, af∆ :
comp(ϕ(∆))→ comp(∆) is a surjective function.

The next theorem states the ‘equivalence’ between iAFs
and the iAFs derived by applying the previous mappings.
Theorem 7. Let ∆ = 〈A,B,R, T 〉 be an iAF, σ ∈
{gr, co, st, pr, sst}, and ϕ ∈ {arg, att, farg}. Then,

• comp(∆) = {af∆(Λ) |Λ ∈ comp(ϕ(∆))}, and
• σ(Λ′) = {E ∩ (A ∪B) |Λ ∈ comp(ϕ(∆)) ∧

Λ′ = af∆(Λ) ∧ E ∈ σ(Λ)} ∀Λ′∈comp(∆).

Thus, any iAF ∆ is equivalent to an arg-iAF (resp. farg-
iAF, att-iAF) ∆′ in the sense that there is mapping between
the completions of ϕ(∆) and the completions of ∆, and for
any pair of AFs for which the mapping holds, the two AFs
have the same (modulo arguments added in the rewriting)
set of σ-extensions, for σ ∈ {gr, co, st, pr, sst}. This re-
sult entails that arg-iAFs (resp. farg-iAF, att-iAF) have the
same expressivity of general iAFs, though arg-iAFs (resp.
farg-iAF, att-iAF) have a simpler structure. The results of
Theorem 7 with those of Theorems 3 and 4 entail that the
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a ¬a b ¬b c ¬c d ¬d
gr 0 1/2 0 1/2 0 0 1/2 1/2
co 1/6 2/3 1/6 2/3 0 1/6 1/2 1/2
st 0 1/2 1/2 0 0 1/2 0 1/2
pr 1/4 3/4 1/4 3/4 0 1/4 1/2 1/2
sst 0 1 1/2 1/2 0 1/2 1/2 1/2

Table 3: Acceptance probability for literals of Example 8.
Bold denotes total literals, under the given semantics.

complexity results for the problems of checking totality, de-
terminism, and functionality for iAFs in Table 2 also hold for
each restricted form of iAFs (att-iAF, arg-iAF, f-arg-iAF).

Finally, as shown in the next section, the restricted forms
of iAF allow to establish a tight connection between iAF
and Probabilistic AF, and simplify the presentation as it suf-
fices to focus on arg-iAF and an analogous form of restricted
Probabilistic AF where only arguments are uncertain.

Probabilistic Acceptance
Probabilistic Argumentation Framework (PrAF) has been
investigated in the recent years (Li, Oren, and Norman 2011;
Rienstra 2012; Fazzinga, Flesca, and Parisi 2015, 2016;
Fazzinga, Flesca, and Furfaro 2019; Alfano et al. 2020a). In-
complete AF is tightly connected to PrAF, as every comple-
tion of an iAF corresponds to a so-called possible world in
PrAF. Here we highlight this relationship and relate accep-
tance problems in iAF, to probabilistic acceptance in PrAF.

W.l.o.g. we focus on PrAF where only arguments are un-
certain (and attacks are certain, i.e. their probability is 1),
since as shown in (Mantadelis and Bistarelli 2020) a PrAF
with probabilities on arguments and attacks can be trans-
formed into an equivalent PrAF where only arguments may
have probability lower than 1. Here, an argument a ∈ A
is viewed as a probabilistic event that is independent from
events associated with other arguments b ∈ A (with b 6= a).

Analogously to what is said above, since any iAF is equiv-
alent to an arg-iAF, w.l.o.g. in the following we consider arg-
iAFs and denote them by triples 〈A,B,R〉 (i.e. omitting the
empty set of uncertain attacks).

Definition 8 (PrAF). A Probabilistic Argumentation Frame-
work (PrAF) is a triple 〈A,R, P 〉 where 〈A,R〉 is an AF,
and P is a function assigning a non-zero probability value
to every argument in A, that is, P : A→ (0, 1].

Observe that assigning probability equal to 0 to arguments
is useless. Basically, the value assigned by P to any ar-
gument a represents the probability that a actually occurs.
Moreover, every attack (a, b) occurs with conditional prob-
ability 1, that is, a attacks b whenever both a and b occur.

The meaning of a PrAF is given in terms of possible
worlds. Given a PrAF ∇ = 〈A,R, P 〉, a possible world
of ∇ is an AF Λ = 〈A′, R′〉 such that A′ ⊆ A and
R′ = R ∩ (A′ × A′). We use pw(∇) to denote the set
of all possible worlds of ∇. An interpretation for a PrAF
∇ = 〈A,R, P 〉 is a probability distribution function (PDF)
I over the set pw(∇) of the possible worlds. Each Λ =
〈A′, R′〉 ∈ pw(∇) is assigned by I probability I(Λ), where:

1
2

a b c

d

a b c a b c

d

a b c

d

Figure 2: (From left to right:) iAF ∆ of Example 8, its com-
pletions Λ1 and Λ2, and its derived PrAF ∆p of Example 12.

I(Λ) =
∏
a∈A

P (a) ·
∏

a∈A\A′
(1− P (a)).

We now define a PrAF ∆p encoding an iAF ∆.
Definition 9 (Derived PrAF). Given an arg-iAF ∆ =
〈A,B,R〉, the PrAF derived from ∆ is ∆p = 〈A∪B,R, P 〉,
where P : A ∪B → {1/2, 1} with P (a) = 1 for a ∈ A and
P (b) = 1/2 for b ∈ B.

It is easy to check that, given an arg-iAF ∆ = 〈A,B,R〉,
for every Λ ∈ pw(∆p), I(Λ) is equal to either 0 or 1

2|B|
. As

stated next, non-zero probability possible worlds of derived
PrAF ∆p one-to-one correspond to completions of ∆.
Proposition 3. For any arg-iAF ∆, comp(∆) =
{Λ | Λ ∈ pw(∆p) ∧ I(Λ) > 0}.

Example 12. Consider the arg-iAF ∆ of Example 8 (see
Figure 2). The derived PrAF ∆p = 〈A ∪ B,R, P 〉, with
P (x) = 1 for x ∈ {a, b, c} and P (d) = 1/2, is shown
in Figure 2. There are only two possible worlds with prob-
ability greater than 0: Λ1 = 〈A,R \ {(d, a), (d, b)}〉 and
Λ2 = 〈A ∪B,R〉 with I(Λ1) = I(Λ2) = 1/2. �

Given a PrAF, the probabilistic acceptance provides the
probability that a given goal is accepted (Alfano et al.
2020a). Specifically, given a PrAF ∇, a semantics σ, and
a goal literal g, the probability that g is accepted can be
computed by associating to every extension E ∈ σ(Λ),
with Λ ∈ pw(∇), a probability Pr(E,Λ, σ) so that∑
E∈σ(Λ) Pr(E,Λ, σ) = 1 (the sum of the probabilities

of the σ-extensions of Λ is equal to 1). More in detail, a
PrAF ∆p derived from a given iAF ∆ is considered, and
a PDF over the set σ(Λ) of the extensions of each possi-
ble world Λ ∈ pw(∆p) is required. This means that the
condition σ(Λ) 6= ∅ must hold. To ensure this, in the
rest of this section, if not specified otherwise, whenever we
write semantics σ and (arg-)iAF ∆ we mean that either i)
σ ∈ {gr, co, pr, sst} and ∆ is an (arg-)iAF without re-
strictions or ii) σ = st and ∆ is odd-cycle free; in the lat-
ter case, the existence of an extension is guaranteed since
st(Λ) = sst(Λ) = pr(Λ) 6= ∅ for all Λ ∈ pw(∆p).
Definition 10 (Probabilistic Acceptance). Given an arg-iAF
∆ = 〈A,B,R〉 and a literal g ∈ A∗ ∪ B∗, the probability
PrAσ∆(g) that g is acceptable w.r.t. semantics σ is:

PrAσ∆(g) =
∑

Λ ∈ pw(∆p)∧
E ∈ σ(Λ) ∧ g ∈ E

I(Λ) · Pr(E,Λ, σ)

where Pr(·,Λ, σ) is a PDF over the set σ(Λ).
Hereafter, we consider the uniform PDF assigning to ev-

ery σ-extension of Λ the same probability (1/n where n is
the number of σ-extensions). Our results still hold for other
PDFs over σ(Λ), such as that used in (Alfano et al. 2020a).

Given an arg-iAF ∆ and a literal g, the problem of com-
puting the value PrAσ∆(g) (under a given semantics σ) is
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denoted by PrAσ , or simply PrA whenever σ is understood.
We recall that PrAσ is defined after choosing an arbitrary but
fixed PDF over the set of extensions. As stated next, PrAσ is
FP#P-hard, regardless of the chosen PDF and semantics σ.

Theorem 8. PrAσ is FP#P-hard, even for acyclic arg-iAF
and for any chosen PDF.

The following propositions highlight the relations be-
tween iAFs and PrAFs (with uniform PDF over extensions).

Proposition 4. For any goal g, we have that:

• PCAσ(∆, g) is false iff PrAσ∆p(g) = 0;
• NSAσ(∆, g) is true iff PrAσ∆p(g) = 1.

The connection between iAF and PrAF is also investi-
gated in (Baumeister et al. 2021), where the PrAF associated
to an iAF assigns a probability in (0, 1) to each uncertain ar-
gument. Moreover, PCA, PSA, NCA, and NSA are related
to the concept of probabilistic credulous/skeptical accep-
tance (Fazzinga, Flesca, and Furfaro 2018), which is differ-
ent from that of probabilistic acceptance of Definition 10.
Indeed, the probability that an argument g is credulously
(resp. skeptically) accepted is the sum of the probabilities
of the possible worlds where g is credulously (resp. skep-
tically) accepted, according to a given semantics σ. Hence,
the probability of a world Λ is added to the summation iff
g belongs to at least one (resp. every) σ-extension of Λ. In
contrast, with the aim of offering a more granular approach,
Definition 10 uses the probabilities assigned to σ-extensions
by the PDF Pr(·,Λ, σ). For instance, taking the PrAF ∆p

of Example 12 (see Figure 2), under the complete semantics
the probabilistic skeptical (resp. credulous) acceptance of b
is 0 (resp. 1/2), while PrAco

∆p(b) = 1/6 as b belongs to one
of three extensions of one of the two worlds (cf. Table 3).
Although the conditions of Proposition 4 are similar to those
identified in (Baumeister et al. 2021), they refer to differ-
ent notions of probabilistic acceptance. In fact, while prob-
abilistic skeptical and credulous acceptance define an inter-
val, Definition 10 provides a precise value in that interval.

The next proposition considers acyclic arg-iAFs, a sub-
class of odd-cycle free iAFs.
Proposition 5. Let ∆ = 〈A,B,R〉 be an acyclic arg-iAF
and g a goal. It holds that:

• PSAσ(∆, g) ≡ PCAσ(∆, g) and
NSAσ(∆, g) ≡ NCAσ(∆, g);

• PSAσ(∆, g) is true iff PrAσ∆p(g) ≥ 1
2|B|

;
• NSAσ(∆, g) is false iff PrAσ∆p(g) ≤ 1− 1

2|B|
.

Our last result relates the satisfaction of properties (e.g.
totality) to probabilistic acceptance.

Theorem 9. A goal g is:

• total iff PrAσ∆(g) + PrAσ∆(¬g) = 1;
• deterministic iff ∀Λ ∈ comp(∆),

∑
α
Pr(E,Λ, σ) = 1,

where either (i) α = E ∈ σ(Λ) ∧ g ∈ E
or (ii) α = E ∈ σ(Λ) ∧ ¬g ∈ E
or (iii) α = E ∈ σ(Λ) ∧ (g 6∈ E ∧ ¬g 6∈ E).

Example 13. Consider again the iAF of Example 8. Assum-
ing a uniform distribution for the probabilities of extensions,

the probabilistic acceptance of literals is as reported in Ta-
ble 3 (where bold means that the literal of the column is total
under the semantics of the row). �

Conclusions and Future Work
We have presented the total, deterministic and functional
properties for AFs and iAFs, and provided complexity
bounds for the problems of checking whether these prop-
erties hold under five well-known argumentation semantics.
We also identified equivalent forms of iAFs (in terms of ex-
tensions), investigated possible and necessary variants of the
credulous and skeptical acceptance problems for iAFs, and
addressed the possible and necessary verification problems
under semi-stable semantics (left open in previous work).
We have also explored the relationship between acceptance
problems in iAFs and probabilistic acceptance in PrAFs.

As iAF generalizes Partial AF (Coste-Marquis et al. 2007;
Baumeister et al. 2021), allowing to model the problem
of merging AFs representing subjective views of several
agents, we believe that checking totality, determinism, and
functionality in such context may help in understanding
agents’ points of view.

As future work we plan to extend our investigation to
other semantics, such as ideal (Dung, Mancarella, and Toni
2007) and eager semantics (Caminada 2007). We also plan
to consider other notions of acceptance that, as totality/deter-
minism/functionality, require the existence of an extension
(e.g. skeptical acceptance under stable semantics requiring
non-emptyness (Dunne and Wooldridge 2009)).

We envisage that SAT-based approaches for computing
credulous and skeptical acceptance (Järvisalo 2018) could
be used to define algorithms for checking functionality, to-
tality and determinism since these properties can be defined
in terms of credulous and skeptical acceptance for AFs.
More elaborated solutions need to be investigated for iAF.

Considering the connections between iAFs and Control
AFs (Neugebauer, Rothe, and Skiba 2021; Gaignier et al.
2021; Dimopoulos, Mailly, and Moraitis 2018; Mailly 2020;
Niskanen, Neugebauer, and Järvisalo 2020), we plan to in-
vestigate totality, determinism, and functionality in that con-
text. Finally, given the inherent dynamic nature of argu-
mentation and the typical high computational complexity of
most of the reasoning tasks (Alfano et al. 2020a), there have
been efforts toward the investigation of incremental tech-
niques that use AF solutions (e.g. extensions, skeptical ac-
ceptance) at time t to recompute updated solutions at time
t + 1 after that an update (e.g. adding/ removing an attack)
is performed (Greco and Parisi 2016a,b; Alfano, Greco, and
Parisi 2017, 2019, 2021; Alfano and Greco 2021; Doutre
and Mailly 2018). These approaches have been extended to
argumentation frameworks more general than AFs (Alfano,
Greco, and Parisi 2020; Alfano et al. 2020b; Alfano, Greco,
and Parisi 2018a,b; Alfano et al. 2021a, 2018); in (Odek-
erken, Borg, and Bex 2020) stability in a dynamic structured
argumentation setting is studied, where so-called future se-
tups can be seen as completions of an iAF. Following these
lines of research, we plan to investigate incremental tech-
niques for checking totality, determinism, and functionality
of goal arguments in dynamic iAFs.
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