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Abstract

Recently, data-driven inertial navigation approaches have
demonstrated their capability of using well-trained neural
networks to obtain accurate position estimates from inertial
measurement units (IMUs) measurements. In this paper, we
propose a novel robust Contextual Transformer-based net-
work for Inertial Navigation (CTIN) to accurately predict ve-
locity and trajectory. To this end, we first design a ResNet-
based encoder enhanced by local and global multi-head self-
attention to capture spatial contextual information from IMU
measurements. Then we fuse these spatial representations
with temporal knowledge by leveraging multi-head attention
in the Transformer decoder. Finally, multi-task learning with
uncertainty reduction is leveraged to improve learning ef-
ficiency and prediction accuracy of velocity and trajectory.
Through extensive experiments over a wide range of inertial
datasets (e.g., RIDI, OxIOD, RoNIN, IDOL, and our own),
CTIN is very robust and outperforms state-of-the-art models.

Introduction
Inertial navigation is a never-ending endeavor to estimate
the states (i.e., position and orientation) of a moving sub-
ject (e.g., pedestrian) by using only IMUs attached to it.
An IMU sensor, often a combination of accelerometers and
gyroscopes, plays a significant role in a wide range of ap-
plications from mobile devices to autonomous systems be-
cause of its superior energy efficiency, mobility, and flexi-
bility (Lymberopoulos et al. 2015). Nevertheless, the con-
ventional Newtonian-based inertial navigation methods re-
veal not only poor performance, but also require unrealistic
constraints that are incompatible with everyday usage sce-
narios. For example, strap-down inertial navigation systems
(SINS) may obtain erroneous sensor positions by perform-
ing double integration of IMU measurements, duo to expo-
nential error propagation through integration (Titterton, We-
ston, and Weston 2004). Step-based pedestrian dead reck-
oning (PDR) approaches can reduce this accumulated error
by leveraging the prior knowledge of human walking mo-
tion to predict trajectories (Tian et al. 2015). However, an
IMU must be attached to a foot in the zero-velocity update
(Foxlin 2005) or a subject must walk forward so that the
motion direction is constant in the body frame (Brajdic and
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Harle 2013). In addition, inertial sensors are often combined
with additional sensors and models using Extended Kalman
Filter (Bloesch et al. 2015) to provide more accurate es-
timations, where the typical sensors include WiFi (Ahme-
tovic et al. 2016), Bluetooth (Li, Guo, and Li 2017), Li-
DAR (Zhang and Singh 2014), or camera sensors (Leuteneg-
ger et al. 2015). Nonetheless, these combinations with ad-
ditional sensors are posing new challenges about instru-
ment installations, energy efficiency, and data privacy. For
instance, Visual-Inertial Odometry (VIO) substantially de-
pends on environmental factors such as lighting conditions,
signal quality, blurring effects (Usenko et al. 2016).

Recently, a growing number of data-driven approaches
such as IONet (Chen et al. 2018), RoNIN (Herath, Yan,
and Furukawa 2020), and IDOL (Sun, Melamed, and Ki-
tani 2021) have demonstrated their capability of using well-
trained neural networks to obtain accurate estimates from
IMU measurements with competitive performance over the
aforementioned methods. However, grand challenges still
exist when applying neural network techniques to IMU mea-
surements: 1) most existing data-driven approaches lever-
age sequence-based models (e.g., LSTM (Hochreiter and
Schmidhuber 1997)) to learn temporal correlations but fail
to capture spatial relationships between multivariate time-
series. 2) There is few research work to explore rich contex-
tual information among IMU measurements in dimensions
of spatial and temporal for inertial feature representation. 3)
Usually, uncertainties of IMU measurements and model out-
put are assumed to be a fixed covariance matrix in these pure
and black-box neural inertial models, which brings signifi-
cant inaccuracy and much less robustness because they can
fluctuate dramatically and unexpectedly in nature.

In response to the observations and concerns raised above,
a novel robust contextual Transformer network is proposed
to regress velocity and predict trajectory from IMU mea-
surements. Particularly, CTIN extends the ideas of ResNet-
18 (He et al. 2016) and Transformer (Vaswani et al. 2017) to
exploit spatial and longer temporal information among IMU
observations and then uses the attention technique to fuse
this information for inertial navigation. The major contribu-
tions of this paper are summarized as follows:
• Extending ResNet-18 with attention mechanisms is to

explore and encode spatial information of IMU samples.
• A novel self-attention mechanism is proposed to extract
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contextual features of IMU measurements.
• Multi-Task learning using novel loss functions is to im-

prove learning efficiency and reduce models’ uncertainty.
• Comprehensive qualitative and quantitative comparisons

with the existing baselines indicate that CTIN outper-
forms state-of-the-art models.

• A new IMU dataset with ground-truth trajectories under
natural human motions is provided for future reference.

• To the best of our knowledge, CTIN is the first
Transformer-based model for inertial navigation.

Background
IMU models
Technically, 3D angular velocity (ω) and 3D acceleration (α)
provided by IMUs are subjected to bias and noise based on
some sensor properties, as shown in Equation 1 & 2:

ωt = rωt + bωt + nωt (1)
αt = rαt + bαt + nαt (2)

where rωt and rαt are real sensor values measured by the gy-
roscope and accelerometer at timestamp t, respectively; bωt
and bαt are time-varying bias; nωt and nαt are noise values,
which usually follow a zero-mean gaussian distribution.

Inertial Tracking
According to Newtonian mechanics (Kok, Hol, and Schön
2017), states (i.e., position and orientation) of a moving
subject (e.g., pedestrian) can be estimated from a history
of IMU measurements, as shown in Equation 3:

Rnb (t) = Rnb (t− 1)⊗ Ω(t) (3a)

Ω(t) = exp(
dt

2
ω(t− 1)) (3b)

vn(t) = vn(t− 1) + ∆(t) (3c)
∆(t) = (Rnb (t− 1)� α(t− 1)− gn)dt (3d)

Pn(t) = Pn(t− 1) + vn(t− 1)dt (3e)

Here, the orientation Rnb (t) at timestamp t is updated with
a relative orientation (Ω(t)) between two discrete instants t
and t − 1 according to Equation 3a & 3b, where ω(t − 1)
measures proper angular velocity of an object at timestamp
(t − 1) in the body frame (denoted by b) with respect to
the navigation frame (denoted by n). Rnb can be used to ro-
tate a measurement x ∈ [ω, α] from the body frame b to
the navigation frame n, which is denoted by an expression
Rnb � x = Rnb ⊗ x ⊗ (Rnb )T where ⊗ is a hamilton prod-
uct between two quaternions. The navigation frame in our
case is defined such that Z axis is aligned with earth’s grav-
ity gn and the other two axes are determined according to
the initial orientation of the body frame. In Equation 3c &
3d, velocity vector vn(t) is updated with its temporal dif-
ference ∆(t), which is obtained by rotating α(t − 1) to the
navigation frame using Rwb (t − 1) and discarding the con-
tribution of gravity forces gn. Finally, positions Pn(t) are
obtained by integrating velocity in Equation 3e. Therefore,
given current IMU measurements (i.e., α, ω), the new sys-
tem states (i.e., Pn, vn and Rnb ) can be obtained from the
previous states using a function of f in Equation 4, where f
represents transformations in Equation 3.

[Pn, vn, Rnb ]t = f([Pn, vn, Rnb ]t−1, [α, ω]t) (4)

Drawback and Solution: However, using IMUs for local-
ization results in significant drift due to that the bias and
noise intrinsic to the gyroscope and accelerometer sensing
can explode quickly in the double integration process. Using
pure data-driven models with IMU measurements for Iner-
tial Navigation has shown promising results in pedestrian
dead-reckoning systems. To tackle the problems of error
propagation in Equation 4, we break the cycle of continuous
integration and segment inertial measurements into indepen-
dent windows, then leverage a sequence-to-sequence neural
network architecture (Sutskever, Vinyals, and Le 2014; Bah-
danau, Cho, and Bengio 2015; Wu et al. 2016; Vaswani et al.
2017) to predict velocities and positions from an input win-
dow m of IMU measurements, as shown in Equation 5.

[Pn, vn]1:m = Fθ(Pn0 , vn0 , [Rnb , α, ω]1:m) (5)

where Fθ represents a latent neural system that learns the
transformation from IMU samples to predict positions and
velocities, where Pn0 , vn0 are initial states.

Attention Mechanism
Attention can be considered as a query procedure that maps
a query Q for a set of key-value pairs (K,V ) to an output
(Vaswani et al. 2017; Han et al. 2020), which is denoted
by ATT (Q,K, V ) = γ(Q,K) × V . Typically, the output
is computed as a sum of weighted values (V ), where the
weights γ(Q,K) are computed according to a compatibility
function of Q and K. There are two kinds of γ used in this
paper (Bahdanau, Cho, and Bengio 2015; Wang et al. 2018):
(1) we perform a dot product betweenQ andK, divides each
resulting element by

√
d, and applies a softmax function to

obtain the weights: γ(Q,K) = softmax(QK
T

√
d

) where d
is the dimension size of vectors Q, K and V . (2) Inspired
by Relation Networks (Santoro et al. 2017), we investigate
a form of concatenation: γ(Q,K) = ReLU(Wγ [Q,K]),
where [·, ·] denotes concatenation and Wγ is a weight vec-
tor that projects the concatenated vector to a scalar. Self-
attention networks compute a representation of an input se-
quence by applying attention to each pair of tokens from
the sequence, regardless of their distance (Vaswani et al.
2017). Technically, given IMU samples X ∈ Rm×d, we can
perform the following transformation on X directly to ob-
tain Q, K and V : Q,K, V = XWQ, XWK , XWV , where
{WQ,WK ,WV } ∈ Rd×d are trainable parameters. Usually,
these intermediate vectors are split into different represen-
tation subspaces at different positions (i.e., h = 8, dk =
d
h ), e.g., K = [K1, . . . ,Kh] with Ki ∈ Rm×dk . For a
subspace, the attention output is calculated by headi =
ATT (Qi,Ki, V i). The final output representation is the
concatenation of outputs generated by multiple attention
heads: MultiHead(Q,K, V ) = [headi, . . . , headh].

Our Approach
System Overall
The Attention-based architecture for inertial navigation is
shown in Figure 1 and its workflow is depicted as follows:

Data Preparation. Initially, an IMU sample is the con-
catenation of data from gyroscope and accelerometer. To ex-
ploit temporal characteristics of IMU samples, we leverage
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Figure 1: Overall workflow of the proposed contextual transformer model for inertial navigation.

a sliding window with size m to prepare datasets at times-
tamp t, denoted by X1:m

t = [xt−m+1, . . . , xt]. Similarly,
we adopt this rolling mechanism with the same window size
to build the ground truth of velocities: gt1:mvel . Usually, IMU
samples in each window are rotated from the body frame
(i.e., ωb, αb) to the navigation frame (i.e., ωn, αn) using pro-
vided orientations. Rotation Matrix Selector is designed to
select sources of orientation for training and testing auto-
matically. Typically, we use the device orientation estimated
from IMU for testing.

Embedding. We need to compute feature representations
for IMU samples before feeding them into encoder and de-
coder. Spatial Embedding uses a 1D convolutional neural
network followed by batch normalization and linear layers
to learn spatial representations; Temporal Embedding adopts
a 1-layer bidirectional LSTM model to exploit temporal in-
formation, and then adds positional encoding provided by a
trainable neural network.

Spatial Encoder. The encoder comprises a stack of N
identical layers, which maps an input sequence of X1:m

t to
a sequence of continuous representations z = (z1, . . . , zm).
To capture spatial knowledge of IMU samples at each times-
tamp, we strengthen the functionality of the core bottleneck
block in ResNet-18 (He et al. 2016) by replacing spatial
convolution with a local self-attention layer and inserting a
global self-attention module before the last 1× 1 downsam-
pling convolution (cf. in Section ). All other structures, in-
cluding the number of layers and spatial downsampling, are
preserved. The modified bottleneck layer is repeated multi-
ple times to form Spatial Encoder, with the output of one
block being the input of the next one.

Temporal Decoder. The decoder also comprises a stack
of N identical layers. Within each layer, we first perform
a masked self-attention sub-layer to extract dependencies in
the temporal dimension. The masking emphasizes a fact that
the output at timestamp t can depend only on IMU sam-
ples at timestamp less than t. Next, we conduct a multi-head
attention sub-layer over the output of the encoder stack to
fuse spatial and temporal information into a single vector

representation and then pass through a position-wise fully
connected feed-forward sub-layer. We also employ residual
connections around each of the sub-layers, followed by layer
normalization.

Velocity and Covariance. Finally, two MLP-based
branch heads regress 2D velocity (vel1:mt ) and the corre-
sponding covariance matrix (cov1:mt ) using the input of h,
respectively. Position can be obtained by the integration of
velocity. The model of the covariance, denoted by Σ : x →
R2×2 where x is a system state, can describe the distribu-
tion difference between ground-truth velocity and the corre-
sponding predictions of them during training. Given that, the
probability of a velocity yv considering current system state
x can be approximated by a multivariate Gaussian distribu-
tion (Russell and Reale 2021):

pc(yv|x) =
1√

(2π)2|Σ(x)|
×

exp(−1

2
(yv −Fθ(x))TΣ(x)−1(yv −Fθ(x)))

(6)

It is worthwhile to mention that we also leverage multi-task
learning with uncertainty reduction to accomplish the de-
sired performance (See details in Section ).

Attention In Inertial Navigation
In this paper, the encoder and decoder rely entirely on atten-
tion mechanism with different settings for embedding ma-
trix {WQ,WK ,WV } and γ to explore spatial and temporal
knowledge from IMU samples.

Global self-attention in Encoder. It triggers the feature
interactions across different spatial locations, as shown in
Figure 1(a). Technically, we first transform X into Q, K,
and V using three separated 1D 1 × 1 convolutions, re-
spectively. After that, we obtain the global attention ma-
trix (i.e., γ(Q,K)) between K and Q using a Dot Prod-
uct version of γ. Finally, the final output Y is computed by
γ(Q,K)×V . In addition, we also adopt multi-head attention
to jointly summarize information from different sub-space
representations at different spatial positions.
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Dataset Year IMU
Carrier

Sample
Frequency

No of
Subjects

No of
Sequences

Ground
Truth

Motion
Context

RIDI 2017 Lenovo Phab2 Pro 200 Hz 10 98 Google Tango phone
Four attachments: leg pocket,
bag, hand, body

OxIOD 2018
iPhone 5/6, 7 Plus,

Nexus 5 100 Hz 5 158 Vicon
Four attachments: handheld, pocket,
handbag, trolley

RoNIN 2019 Galaxy S9, Pixel 2 XL 200 Hz 100 276 Asus Zenfone AR Attaching devices naturally
IDOL 2020 iPhone 8 100 Hz 15 84 Kaarta Stencil Attaching devices naturally
CTIN 2021 Samsung Note, Galaxy 200 Hz 5 100 Google ARCore Attaching devices naturally

Table 1: Description of public datasets used for evaluation of navigation models.

Local self-attention in Encoder. Although performing a
global self-attention over the whole feature map can achieve
competitive performance, it not only scales poorly but also
misses contextual information among neighbor keys. Be-
cause it treats queries and keys as a group of isolated pairs
and learns their pairwise relations independently without ex-
ploring the rich contexts between them. To alleviate this is-
sue, a body of research work (Hu et al. 2019; Ramachandran
et al. 2019; Zhao, Jia, and Koltun 2020; Li et al. 2021; Yao
et al. 2022) employs self-attention within the local region
(i.e., 3 × 3 grid) to boost self-attention learning efficiently,
and strengthen the representative capacity of the output ag-
gregated feature map. In this paper, we follow up this track
and design a novel local self-attention for inertial navigation,
as shown in Figure 1(b). In particular, we first employ 3× 3
group convolution over all the neighbor keys within a grid
of 3 × 3 to extract local contextual representations for each
key, denoted by C1 = XWK,3×3. After that, the attention
matrix (i.e., γ(Q,C1)) is achieved through a concatenation
version of γ in which Wγ is a 1 × 1 convolution and Q is
defined as X . Next, we calculate the attended feature map
C2 by γ(Q,C1) × V , which captures the global contextual
interactions among all IMU samples. The final output Y is
fused by an attention mechanism between local context C1

and global context C2.
Multi-head attention in Decoder. We inherit settings

from vanilla Transformer Decoder for attention mechanisms
(Vaswani et al. 2017). In other words, we take three sepa-
rated linear layers to generate Q, K and V from X , respec-
tively, and leverage a pairwise function of Dot product to
calculate attention matrix (i.e., γ(Q,K)). Finally, the final
output Y is computed by γ(Q,K)× V .

Jointly Learning Velocity and Covariance

We leverage multi-task learning with uncertainty reduction
to improve learning efficiency and prediction accuracy of
the two regression tasks: prediction of 2D velocity and its
covariance. Inspired by (Kendall, Gal, and Cipolla 2018;
Liu et al. 2020; Yao et al. 2021; Yang et al. 2021), we de-
rive a multi-task loss function by maximizing the Gaussian
likelihood with uncertainty (Kendall and Gal 2017). First,
we define our likelihood as a Gaussian with mean given by
the model output as pu(y|Fθ(x)) = N (Fθ(x), δ2), where δ
is an observation noise scalar. Next, we derive the model’s
minimization objective as a Negative Log-Likelihood (NLL)
of two model outputs yv (velocity) and yc (covariance):

L(Fθ, δv, δc)

= − log(pu(yv, yc|Fθ(x)))

= − log(pu(yv|Fθ(x))× pu(yc|Fθ(x)))

= −(log(pu(yv|Fθ(x))) + log(pu(yc|Fθ(x)))

= −(log(N (yv;Fθ(x), δ2v)) + log(N (yc;Fθ(x), δ2c )))

∝ ‖ yv −Fθ(x) ‖2

2δ2v
+ log δv︸ ︷︷ ︸

Velocity

+
‖ yc −Fθ(x) ‖2

2δ2c
+ log δc︸ ︷︷ ︸

Covariance

=
1

2δ2v
Lv +

1

2δ2c
Lc + log δvδc

(7)

where δv and δc are observation noises for velocity and co-
variance, respectively. Their loss functions are denoted by
Lv and Lc, and depicted as follows:
Integral Velocity Loss (IVL, Lv). Instead of performing
mean square error (MSE) between predicted velocity (v̂) and
the ground-truth value (v), we first integrate predicted posi-
tions from v̂ (cf. Equation 3e), and then define a L2 norm
against the ground-truth positional difference within same
segment of IMU samples, denoted by Lpv . In addition, we
calculate cumulative error between v̂ and v, denoted by Lev .
Finally, Lv is defined as Lpv + Lev .
Covariance NLL Loss (CNL, Lc). According to the covari-
ance matrix in Equation 6, We define the Maximum Likeli-
hood loss as the NLL of the velocity with consideration of
its corresponding covariance Σ:

Lc = − log(pc(yv|x))

=
1

2
(yv − f(x))TΣ(x)−1(yv − f(x)) +

1

2
ln |Σ(x)|

=
1

2
‖ yv − f(x) ‖2Σ(x) +

1

2
ln |Σ(x)|

(8)

There is a rich body of research work to propose various
covariance parametrizations for neural network uncertainty
estimation (Liu et al. 2020; Russell and Reale 2021). In this
study, we simply define the variances along the diagonal,
which are parametrized by two coefficients of a velocity.

Experiments
We evaluate CTIN on five datasets against four representa-
tive prior research works. CTIN was implemented in Pytorch
1.7.1 (Paszke et al. 2019) and trained using Adam optimizer
(Kingma and Ba 2014). During training, early stopping with
30 patience (Prechelt 1998; Wang et al. 2020) is leveraged
to avoid overfitting according to model performance on the
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Dataset Test
Subject Metric

Performance (meter) Perf. Improvement

SINS PDR RIDI RoNIN CTIN CTIN improvement over RoNIN
R-LSTM R-ResNet R-TCN R-LSTM R-ResNet R-TCN

RIDI

Seen
ATE 6.34 22.76 8.18 2.55 2.33 3.25 1.39 45.36% 40.10% 57.13%

T-RTE 8.13 24.89 9.34 2.34 2.36 2.64 1.99 15.00% 15.78% 24.80%
D-RTE 0.52 1.39 0.97 0.16 0.16 0.17 0.11 32.47% 32.26% 35.91%

Unseen
ATE 4.62 20.56 8.18 2.78 1.97 2.06 1.86 33.07% 5.40% 9.68%

T-RTE 4.58 31.17 10.51 2.95 2.47 2.43 2.49 15.66% -0.70% -2.36%
D-RTE 0.36 1.19 1.09 0.15 0.14 0.14 0.11 28.00% 21.22% 22.72%

OxIOD

Seen
ATE 15.36 9.78 3.78 3.87 2.40 3.33 2.32 40.10% 3.52% 30.27%

T-RTE 11.02 8.51 3.99 1.56 1.83 1.49 0.62 60.40% 66.27% 58.67%
D-RTE 0.96 1.16 2.30 0.20 0.56 0.19 0.07 61.94% 86.67% 61.21%

Unseen
ATE 13.90 17.72 7.16 5.22 3.51 6.16 3.34 35.90% 4.61% 45.69%

T-RTE 10.51 17.21 7.65 2.65 2.51 2.61 1.33 50.00% 47.18% 49.15%
D-RTE 0.89 1.10 2.62 0.29 0.49 0.24 0.13 55.57% 73.45% 45.48%

RoNIN

Seen
ATE 7.89 26.64 16.82 5.11 3.99 6.18 4.62 9.49% -15.81% 25.23%

T-RTE 5.30 23.82 19.50 3.05 2.83 3.27 2.81 7.70% 0.69% 13.91%
D-RTE 0.42 0.98 4.99 0.22 0.19 0.20 0.18 18.94% 2.75% 10.15%

Unseen
ATE 7.62 23.49 15.75 8.73 5.76 7.49 5.61 35.77% 2.60% 25.11%

T-RTE 5.12 23.07 19.13 4.87 4.50 4.70 4.48 8.04% 0.42% 4.61%
D-RTE 0.43 1.00 5.37 0.29 0.25 0.26 0.25 12.63% 0% 4.83%

IDOL

Seen
ATE 21.54 18.44 9.79 4.57 4.44 4.68 2.90 36.49% 34.63% 37.98%

T-RTE 14.93 14.53 7.97 1.72 1.58 1.77 1.35 21.47% 14.54% 23.46%
D-RTE 1.07 1.14 0.97 0.19 0.26 0.18 0.13 28.39% 48.21% 25.12%

Unseen
ATE 20.34 16.83 9.54 5.60 3.81 5.89 3.69 34.19% 3.28% 37.40%

T-RTE 18.48 15.67 9.07 1.99 1.67 2.21 1.65 16.73% 1.02% 25.30%
D-RTE 1.36 1.31 1.04 0.20 0.22 0.20 0.15 25.36% 30.14% 25.52%

CTIN Seen
ATE 5.63 12.05 4.88 2.22 2.39 2.02 1.28 42.25% 46.45% 36.68%

T-RTE 5.34 16.39 4.21 2.10 2.01 1.73 1.29 38.54% 35.87% 25.55%
D-RTE 0.50 0.79 0.18 0.11 0.16 0.11 0.08 28.91% 50.56% 24.61%

Table 2: Overall Trajectory Prediction Accuracy. The best result is shown in bold font.

validation dataset. To be consistent with the experimental
settings of baselines, we conduct both training and testing
on NVIDIA RTX 2080Ti GPU.

Dataset and Baseline
As shown in Table 1, all selected datasets with rich motion
contexts (e.g., handheld, pocket) are collected by multiple
subjects using two devices: one is to collect IMU measure-
ments and the other provides ground truth (i.e., position).
All datasets are split into training, validation, and testing
datasets in a ratio of 8:1:1. For testing datasets except in
CTIN, there are two sub-sets: one for subjects that are also
included in the training and validation sets, the other for un-
seen subjects. The selected baseline models are listed below:

• Strap-down Inertial Navigation System (SINS): The sub-
ject’s position can be obtained from double integration
of linear accelerations (with earth’s gravity subtracted).
To this end, we need to rotate the accelerations from the
body frame to the navigation frame using device orien-
tations and perform an integral operation on the rotated
accelerations twice to get positions (Savage 1998).

• Pedestrian Dead Reckoning (PDR): We leverage Adap-
tiv1 to detect foot-steps and update positions per step
along the device heading direction. We assume a stride
length of 0.67m/step.

1An Adaptive Jerk Pace Buffer Step Detection Algorithm

• Robust IMU Double Integration (RIDI): We use the orig-
inal implementation (Yan, Shan, and Furukawa 2018) to
train a separate model for each device attachment in RIDI
and OxIOD datasets. For the rest of the datasets, we train
a unified model for each dataset separately, since attach-
ments during data acquisition in these datasets are mixed.

• Robust Neural Inertial Navigation (RoNIN): We use the
original implementation (Herath, Yan, and Furukawa
2020) to evaluate all three RoNIN variants (i.e., R-
LSTM, R-ResNet, and R-TCN) on all datasets.

Evaluation Metrics
Usually, positions in trajectory can be calculated by per-
forming integration of velocity predicted by CTIN. The ma-
jor metric used to evaluate the accuracy of positioning is a
Root Mean Squared Error (RMSE) with various definitions

of estimation error: RMSE =
√

1
m

∑m
t=1 ‖ Et(xt, x̃t) ‖,

where m means the number of data points; Et(xt, x̃t) rep-
resents an estimation error between a position (i.e.,xt) in the
ground truth trajectory at timestamp t and its corresponding
one (i.e., x̃t) in the predicted path. In this study, we define
the following metrics (Sturm et al. 2011):

• Absolute Trajectory Error (ATE) is the RMSE of esti-
mation error: Et = xt − x̃t. The metric shows a global
consistency between the trajectories and the error is in-
creasing by the path length.
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(a) (b)

Figure 2: Performance Comparison of CTIN and RoNIN variant models on CTIN dataset

(a) (b)

Figure 3: The effectiveness of proposed attention layers on CTIN dataset. “*-atts” means CTIN or R-ResNet models with
attention functionalities; “*-Conv” represents the models using a conventional spatial convolution instead.

• Time-Normalized Relative Traj. Error (T-RTE) is the
RMSE of average errors over a time-interval window
span (i.e., ti = 60 seconds in our case). The estimation er-
ror is defined formally as Et = (xt+ti − xt)− (x̃t+ti −
x̃t). This metric measures the local consistency of esti-
mated and ground truth path.

• Distance Normalized Relative Traj. Error (D-RTE)
is the RMSE across all corresponding windows when
a subject travels a certain distance d, like d is set to
1 meter in our case. The estimation error is given by
Et = (xt+td − xt) − (x̂t+td − x̂t) where td is the time
interval needed to traverse a distance of d.

• Position Drift Error (PDE) measures final position
(at timestamp m) drift over the total distance traveled
(i.e., traj. len): (‖ xm − x̂m ‖) / traj. len

Overall Performance
Table 2 shows experimental trajectory errors across entire
test datasets. It demonstrates that CTIN can achieve the best
results on most datasets in terms of ATE, T-RTE, and D-RTE
metrics, except for two cases in RoNIN and RIDI datasets.
R-TCN can get a smaller T-RTE number than CTIN in the
RIDI-unseen test case; R-ResNet reports the smallest ATE
of 3.99 for RoNIN-seen. In particular, CTIN improves an
average ATE on all seen test datasets by 34.74%, 21.78%,
and 37.46% over R-LSTM, R-ResNet, and R-TCN, respec-
tively; the corresponding numbers for all unseen test datasets
are 34.73%, 3.97%, and 29.47%.

The main limitation of RoNIN variants (i.e., R-LSTM, R-
ResNet, and R-TCN) is that they do not capture the spectral
correlations across time-series which hampers the perfor-

mance of the model. Therefore, it is convincing that CTIN
achieves better performance over these baselines. Table 2
also shows that CTIN generalizes well to unseen test sets,
and outperforms all other models on test sets. PDR shows a
persistent ATE due to the consistent and precise updates ow-
ing to the jerk computations. This mechanism leads to PDR
failure on long trajectories. Over time, the trajectory tends
to drift owing to the accumulated heading estimation and the
drift would increase dramatically, which results in decentral-
ized motion trajectory shapes. R-LSTM does not show sat-
isfactory results over large-scale trajectories. The margin of
the outperforms of CTIN compared to R-LSTM and R-TCN
is notable. The results for SINS show a large drift that high-
lights the noisy sensor measurements from smartphones.

Ablation Study
Model Behaviors. The experimental results about perfor-
mance comparisons between CTIN and three RoNIN vari-
ants are shown in Figure 2 and Table 3. In Figure 2a, each
plot shows the cumulative density function (CDF) of the
chosen metric on the entire test datasets. The blue line of
CTIN is steeper than other plots, which indicates that CTIN
shows significantly lower overall errors than all RoNIN vari-
ants for all presented metrics. As shown in Figure 2b, al-
though CTIN’s overall MSE is higher than R-Resnet and
smaller than R-LSTM and R-TCN, its position drift error
(i.e., PDE (%)) is the smallest (i.e., the best). In Table 3,
we show the number of parameters for each model, GFLOPs
performed by GPU during testing, the average GPU execu-
tion time for testing a sequence of IMU samples (excluding
the time to load data and generate trajectories after model
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Figure 4: The performance of CTIN network with different
loss functions evaluated on CTIN dataset.

Model
#Params

(106)
GFLOP
(109/s)

Avg. GPU
time (ms)

Trajectory Error (meter)
ATE T-RTE D-RTE

CTIN 0.5571 7.27 65.96 1.28 1.29 0.08
R-LSTM 0.2058 7.17 704.23 2.22 2.10 0.11
R-TCN 2.0321 33.17 19.05 2.02 1.73 0.11

R-ResNet 4.6349 9.16 75.89 2.39 2.01 0.16

Table 3: Models’ Evaluation Performance on CTIN dataset

prediction) and trajectory errors. Overall, CTIN possesses a
significantly smaller number of parameters than R-TCN and
R-ResNet, and more parameters than R-LSTM, achieving a
competitive runtime performance with lower trajectory er-
rors in a real deployment. Therefore, CTIN performs better
than all RoNIN variants.

Attention Effectiveness. In this paper, we propose a
novel attention mechanism to exploit local and global de-
pendencies among the spatial feature space, and then lever-
age the multi-head attention layer to combine spatial and
temporal information for better accuracy of velocity predic-
tion. To evaluate their effectiveness, we conduct a group of
experiments using CTIN/R-ResNet and their variant with-
out/with the capability of attention mechanism. The experi-
mental results are shown in Figure 3. Figure 3a shows that
CTIN-Atts and R-ResNet-Atts models outperform the mod-
els without attention layer. Furthermore, CTIN-Atts perform
the best for all metrics, and the performance of CTIN-Conv
is better than all R-ResNet variants. In Figure 3b, CTIN-Atts
and R-ResNet-Atts have lower average MSE loss of velocity
prediction and smallest PDE than CTIN-Conv and R-ResNet-
Conv. Overall, CTIN and R-ResNet can benefit from the pro-
posed attention mechanism.

Loss function. In this section, we evaluate the perfor-
mance of multi-task loss (i.e., IVL+CNL) by performing
a group comparison experiments using different loss func-
tions, such as mean square error (MSE), Integral Veloc-
ity Loss (IVL) and Covariance NLL Loss (CNL), to train
the models. As shown in Figure 4, CTIN with a loss of
IVL+CNL achieves the best performance for ATE and D-
RTE metrics.

Related Work
Conventional Newtonian-based solutions to inertial nav-
igation can benefit from IMU sensors to approximate po-
sitions and orientations (Kok, Hol, and Schön 2017). In
a strap-down inertial navigation system (SINS) (Savage
1998), accelerometer measurements are rotated from the
body to the navigation frame using a rotation matrix pro-
vided by an integration process of gyroscope measurements,
then subtracted the earth’s gravity. After that, positions
can be obtained from double-integrating the corrected ac-
celerometer readings (Shen, Gowda, and Roy Choudhury
2018). However, the multiple integrations can lead to ex-
ponential error propagation. To compensate for this cumula-
tive error, step-based pedestrian dead reckoning (PDR) ap-
proaches rely on the prior knowledge of human walking mo-

tion to predict trajectories by detecting steps, estimating step
length and heading, and updating locations per step (Tian
et al. 2015).

Data-Driven approach. Recently, a growing number of
research works leverage deep learning techniques to extract
information from IMU measurements and achieve com-
petitive results in position estimation (Chen et al. 2018,?;
Herath, Yan, and Furukawa 2020; Dugne-Hennequin,
Uchiyama, and Lima 2021). IoNeT (Chen et al. 2018) first
proposed an LSTM structure to regress relative displacement
in 2D polar coordinates and concatenate to obtain the posi-
tion. In RIDI (Yan, Shan, and Furukawa 2018) and RoNIN
(Herath, Yan, and Furukawa 2020), IMU measurements are
first rotated from the body frame to the navigation from us-
ing device orientation. While RIDI regressed a velocity vec-
tor from the history of IMU measurements to optimize bias,
then performed double integration from the corrected IMU
samples to estimate positions. RoNIN regressed 2D velocity
from a sequence of IMU sensor measurements directly, and
then integrate positions.

In addition to using networks solely for pose estimates,
an end-to-end differentiable Kalman filter framework is pro-
posed in Backprop KF (Haarnoja et al. 2016), in which the
noise parameters are trained to produce the best state esti-
mate, and do not necessarily best capture the measurement
error model since loss function is on the accuracy of the fil-
ter outputs. TLIO provides a neural model to regress the ve-
locity prediction and uncertainties jointly (Liu et al. 2020).
In IDOL (Sun, Melamed, and Kitani 2021) two separate
networks in an end-to-end manner are exploited. The first
model is used to predict orientations to circumvent the inac-
curacy in the orientation estimations with smartphone APIs.
Next, the IMU measurements in the world frame are used to
predict the velocities using the second model.

Conclusion
In this paper, we propose CTIN, a novel robust contextual
Attention-based model to regress accurate 2D velocity from
segments of IMU measurements. We first design a ResNet-
based encoder to capture spatial contextual information from
IMU measurements, further fuse these spatial representa-
tions with temporal knowledge by leveraging attention in
the Transformer decoder. Finally, multi-task learning using
uncertainty is leveraged to improve learning efficiency and
prediction accuracy of 2D velocity. Through extensive ex-
periments over a wide range of inertial datasets, CTIN is
very robust and outperforms state-of-the-art models.
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