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Abstract

Neural network controllers have become popular in control
tasks thanks to their flexibility and expressivity. Stability is a
crucial property for safety-critical dynamical systems, while
stabilization of partially observed systems, in many cases, re-
quires controllers to retain and process long-term memories of
the past. We consider the important class of recurrent neural
networks (RNN) as dynamic controllers for nonlinear uncer-
tain partially-observed systems, and derive convex stability
conditions based on integral quadratic constraints, S-lemma
and sequential convexification. To ensure stability during the
learning and control process, we propose a projected policy
gradient method that iteratively enforces the stability condi-
tions in the reparametrized space taking advantage of mild
additional information on system dynamics. Numerical ex-
periments show that our method learns stabilizing controllers
while using fewer samples and achieving higher final perfor-
mance compared with policy gradient.

1 Introduction

Neural network decision making and control has seen a huge
advancement recently accompanied by the success of rein-
forcement learning (RL) (Sutton and Barto 2018). In particu-
lar, deep reinforcement learning (DRL) has achieved super-
human performance with neural network policies (also re-
ferred to as controllers in control tasks) in various domains
(Mnih et al. 2015; Lillicrap et al. 2016; Silver et al. 2016).
Policy gradient (Sutton et al. 1999) is one of the most
important approaches to DRL that synthesizes policies for
continuous decision making problems. For control tasks, pol-
icy gradient method and its variants have successfully syn-
thesized neural network controllers to accomplish complex
control goals (Levine et al. 2018) without solving potentially
non-linear planing problems at test time (Levine et al. 2016).
However, most of these methods focus on maximizing the
reward function which only indirectly enforce desirable prop-
erties. Specifically, global stability of the closed-loop system
(Sastry 2013) guarantees convergence to the desired state of
origin from any initial state and therefore is a very impor-
tant property for safety critical systems (e.g. aircraft control
(Chakraborty, Seiler, and Balas 2011)) where not a single
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diverging trajectory is acceptable. However, the set of param-
eters corresponding to stabilizing controllers is in general
nonconvex even in the simple setting of linear systems with
linear controllers (Fazel et al. 2018), which poses signifi-
cant computational challenges for neural network controllers
under the general setting of nonlinear systems.

Thanks to recent robustness studies of deep learning, we
have seen attempts on giving stability certificates and/or en-
suring stability at test time for fully-observed systems con-
trolled by neural networks. Yet stability problems for neural
network controlled partially observed systems remain open.
Unlike fully-observed control systems where the plant states
are fully revealed to the controller, most real-world control
systems are only partially observed due to modeling inaccu-
racy, sensing limitations, and physical constraints (Braziunas
2003). Here, sensible estimates of the full system state usu-
ally depend on historical observations (Callier and Desoer
2012). Some partially observed systems are modeled using
partially observed Markov decision process (POMDP) (Mon-
ahan 1982) where an optimal solution is NP hard in general
(Mundhenk et al. 2000).

Paper contributions. In the paper, we propose a method
to synthesize recurrent neural network (RNN) controllers
with exponential stability guarantees for partially observed
systems. We derive a convex inner approximation to the
non-convex set of stable RNN parameters based on inte-
gral quadratic constraints (Megretski and Rantzer 1997),
loop transformation (Sastry 2013, Chap. 4) and a sequential
semidefinite convexification technique, which guarantees ex-
ponential stability for both linear time invariant (LTT) systems
and general nonlinear uncertain systems. A novel framework
of projected policy gradient is proposed to maximize some
unknown/complex reward function and ensure stability in the
online setting where a guaranteed-stable RNN controller is
synthesized and iteratively updated while interacting with
and controlling the underlying system, which differentiates
our works from most post-hoc validation methods. Finally,
we carry out comprehensive comparisons with policy gradi-
ent, and demonstrate that our method effectively ensures the
closed-loop stability and achieves higher reward on a variety
of control tasks, including vehicle lateral control and power
system frequency regulation.

Paper outline. In Section 2, we outline related works on
addressing partial observability, and enforcing stability in
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Figure 1: Feedback system of plant G and RNN controller my

reinforcement learning. Section 3 discusses our proposed
method for synthesizing RNN controllers for LTI plants with
stability guarantees, and Section 4 extends it to systems with
uncertainties and nonlinearities. Section 5 compares the pro-
posed projected policy gradient method with policy gradient
through numerical experiments.

Notation. S, S ,S” | denote the sets of n-by-n symmet-
ric, positive semidefinite and positive definite matrices, re-
spectively. D7, D7, denote the set of n-by-n diagonal posi-
tive semidefinite, and diagonal positive definite matrices. The
notation || - || : R™ — R denotes the standard 2-norm. We de-
fine ¢35, to be the set of all one-sided sequences z : N — R™.
The subset ¢35 C (3, consists of all square-summable se-
quences. When applied to vectors, the orders >, < are applied
elementwise.

2 Related Work

Partially Observed Decision Making and Output Feed-
back Control. In many problems (Talpaert et al. 2019; Barto,
Bradtke, and Singh 1995), only specific outputs but not the
full system states are available for the decision maker. There-
fore, memory in the controller is required to recover the full
system states (Scherer, Gahinet, and Chilali 1997). Control
of these partially observed systems is often referred to as
output feedback control (Callier and Desoer 2012), and has
been studied extensively from both control and optimization
perspectives (Doyle 1978; Zheng, Tang, and Li 2021). Under
the setting with convexifiable objectives (e.g., H, or Hy per-
formances), the optimal linear dynamic (i.e. with memory)
controller can be obtained by using a change of variables or
solving algebraic Riccati equations (Gahinet and Apkarian
1994; Zhou et al. 1996). However, for more sophisticated
settings with unknown and/or flexibly defined cost functions,
the problems become intractable for the aforementioned tra-
ditional methods, and RL techniques are proposed to reduced
the computation cost and improve overall performance at test
time, including the ones (Levine and Koltun 2013; Levine
et al. 2016) with static neural network controllers, and the
ones (Zhang et al. 2016; Heess et al. 2015; Wierstra et al.
2007) with dynamic controllers, represented by RNNs/long
short-term memory neural networks.

Stability Guarantees For Neural Network Controlled
Systems. As neural networks become popular in control
tasks, safety and robustness of neural networks and neural
network controlled systems has been actively discussed (Mo-
rimoto and Doya 2005; Luo, Wu, and Huang 2014; Friedrich
and Buss 2017; Berkenkamp et al. 2017; Chow et al. 2018;
Matni et al. 2019; Han et al. 2019; Recht 2019; Choi et al.
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Figure 2: RNN as an interconnection of P, and ¢

2020; Zhang, Hu, and Basar 2020; Fazlyab, Morari, and Pap-
pas 2020). Closely related to this work are recent papers
on robustness analysis of memory-less neural networks con-
trolled systems based on robust control ideas. Yin, Seiler,
and Arcak (2021); Yin et al. (2021); Pauli et al. (2021); Jin
and Lavaei (2020) conduct stability analysis of neural net-
work controlled linear and nonlinear systems and propose
verification methods by characterizing activation functions
using quadratic constraints. Donti et al. (2020) adds addi-
tional projection layer on the controller to ensure stability for
fully observed systems. (Revay, Wang, and Manchester 2020)
studies the stability of RNN itself when fitted to data but does
not consider any plant to control by such RNN. The most
related works are those that study dynamic neural network
controllers. Anderson et al. (2007); Knight and Anderson
(2011) adapt RNN controllers through RL techniques to ob-
tain stability guarantees. However, in these works, the reward
function is assumed to be known, and conservative updates of
controller parameters projected to a box neighborhood of the
previous iterate are applied due to the non-convexity in their
conditions. In contrast, our work enables much larger and
more efficient updates thanks to jointly convex conditions
derived through a novel sequential convexification and loop
transformation approach unseen in these works.

3 Partially Observed Linear Systems
Problem Formulation

Consider the feedback system (shown in Fig. 1) consisting
of a plant G and an RNN controller 7y which is expected to
stabilize the system (i.e. steer the states of G to the origin). To
streamline the presentation, we consider a partially observed,
linear, time-invariant (LTT) system G defined by the following
discrete-time model:

x(k+1) = Ag z(k) + Bg u(k) (1a)

y(k) = Cq x(k) (1b)

where x(k) € R"C is the state, u(k) € R" is the control
input, and y(k) € R" is the output. Ag € R"¢*"¢, B €
R"™6 %" and Cg € R™ "G, Since the plant G is partially

observed, the observation matrix C; may have a sparsity
pattern or be column-rank deficient.

Assumption 1. We assume that (Ag, Bg) is stabilizable,
and (Ag,Cg) is detectable'.

Assumption 2. We assume Aq, Bg, and Cq are known.

!The definitions of stabilizability and detectability can be found
in (Callier and Desoer 2012).
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Assumption 2 is partially lifted in Section 4 where we only
assume partial information on the system dynamics.

Problem 1. Our goal is to find a controller 7 that maps the
observation y to an action u to both maximize some unknown
reward R = Zg:o ri(x(k), u(k)) over finite horizon T and
stabilize the plant G.

The single step reward r(x(k), u(k)) is assumed to be
unknown and potentially highly complex to capture the vast
possibility of desired controller. e.g. In many cases, to ensure
extra safety, the reward is set to i (x(k), u(k)) = 0,Vk > 1
if there is a state violation at step [. This cannot be captured
by any simple negative quadratic functions.

Controllers Parameterization

Output feedback control with known and convexifiable re-
ward has been studied extensively (Scherer, Gahinet, and
Chilali 1997), and linear dynamic controllers suffice for this
case. However, in our problem setting, since the reward is
unknown and nonconvex, and systems dynamics will become
uncertain and nonlinear in Section 4, we consider a dynamic
controller in the form of an RNN, which makes a class of
high-capacity flexible controllers.

We model the RNN controller 7wy as an interconnection
of an LTI system P, and combined activation functions
¢ : R" — R™ as shown in Fig. 2. This parameterization is
expressive, and contains many widely used model structures
(Revay, Wang, and Manchester 2020). The RNN 7y is defined
as follows

Ek+1) = Ak &(k) + Bgr w(k) + Br2 y(k)
P, { u(k) = Ck1&(k) + Dg1 w(k) + Dg2 y(k)

v(k) = Ck2 (k) + Dgs y(k)

w(k) = ¢(v(k)) @

where ¢ € R"¢ is the hidden state, v,w € R™¢ are the

input and output of ¢, and matrices Ak, ..., D3 are pa-
Axg Bgi1 Bk

rameters to be learned. Define 0 = | Cxi Dx1 Dk2 | as
Cr2 0 Dks

the collection of the learnable parameters of my. We as-
sume the initial condition of £ to be zero £(0) = 0y, x1.

2
[T Bs — A ¢
- A+ By
Qb 2
z(k) v(k)
P, A ; By
L | Be — Ay
2 P,
— —>
y(k) u(k)

Figure 4: Loop transformation. If ¢ € sector [cvy, B4, then b€
sector [—1p,x1, L, x1]-

5387

The combined nonlinearity ¢ is applied element-wise, i.e.,
¢ == [p1(v1), s Pn, (Vn, )] T, Where ; is the i-th scalar
activation function. We assume that the activation has a fixed
point at origin, i.e. ¢(0) = 0.

Quadratic Constraints for Activation Functions

The stability condition relies on quadratic constraints (QCs)
to bound the activation function. A typical QC is the sector
bound as defined next.

Definition 3.1. Let o < (3 be given. The function ¢ : R — R
lies in the sector [, ] if:

(p(v) —av)- (Br =) 20 WweR.  (3)

The interpretation of the sector [«, /3] is that ¢ lies between
lines passing through the origin with slope a and 5. Many
activations are sector bounded, e.g., leaky ReLU is sector
bounded in [a, 1] with its parameter a € (0, 1); ReLU and
tanh are sector bounded in [0, 1] (denoted as tanh € sector
[0, 1]). Fig. 3 illustrates different activations (blue solid) and
their sector bounds (green dashed).

Sector constraints can also be defined for combined ac-
tivations ¢. Assume the i-th scalar activation @; in ¢ is
sector bounded by [a, Bi], ¢ = 1,...,ny, then these sec-
tors can be stacked into vectors ag, 84 € R™¢, where
ag = [o1,...,an,] and By = [B1, ..., B, ], to provide QCs
satisfied by ¢.

Lemma 3.1. Let o,y € R be given with agy < fg.
Suppose that ¢ satisfies the sector bound oy, 5] element-
wise. For any A € D', and for all v € R™ and w = ¢(v),

it holds that

v T —2A¢B¢A
w (A¢ + B¢)A —2A

where Ay = diag(ag), and By = diag(By).
A proof is available in (Fazlyab, Morari, and Pappas 2020).

Loop Transformation

To derive convex stability conditions for their efficient en-
forcement in the learning process, we first perform a loop



transformation on the RNN as shown in Fig. 4. Through loop
transformation, we obtain a new representation of the con-
troller 75, which is equivalent to the one shown in Fig. 2:

2 =[]
z(k) = ¢(v(k)).

The newly obtained nonlinearity , defined in Fig. 4, is sector
bounded by [—1,,,x1, 1n,x1], and thus it satisfies a simpli-

fied QC: for any A € D'}?, it holds that

v T A

z 0

The transformed system 157,, defined in Fig. 4, is of the
form:

(5a)

(5b)

0

B A} M >0, Vv € R™ and z = ¢(v). (6)

€k+1) = Ag &(k)+ Br1 22522 2(k) + Bra y(k)
u(k) = Cx1 &(k) + Dk 1B¢ A¢ 2(k) + Do y(k)
v(k) = ez (k) + Dics y(k)

where

5211( = Ak + Br154Ck2, ?KQ =
Ck1=Ckr1 4+ Dg154Ck2, Dk =
Ay+B
Sg 1= =22,

Bgka 4+ Bg1S¢Dxks,
Dgs + Dr1S¢Dks,

@)

The derivation of P, can be found in Appendix A. We de-
AK Br1 BK2
Cx1 Dk1 Dk2
. . Ck2 0 Dks
Since there is an one-to-one correspondence (7) between the
transformed parameters 6 and the original parameters 6, we
will learn in the reparameterized space and uniquely recover

the original parameters accordingly.

fine the learnable parameters of 7; as 6 = [

Convex Lyapunov Condition

The feedback system of plant G and RNN controller in 7
(5) is defined by the following equations

C(k+1)=AC¢(k)+ B z(k) (8a)
v(k) = C((k)+ D z(k) (8b)
(k) = p(v(k)) (8¢)

where ¢ = [z, ¢]T gathers the states of G and P, and

_ N A
A = | ActBeDPk2Cc BeCr1 | B — BeDk1 ‘b ¢
Bk2Cqa Ag ’ Bxk1 Bo— A<75 ’
C:[DKSCG CKz], :anbxmp'

Note that matrices A, I3, C, D are affine in 6. The following
theorem incorporates the QC for ¢ in the Lyapunov condition
to derive the exponential stability condition of the feedback
system using the S-Lemma (Yakubovich 1971; Boyd et al.
1994)

Theorem 3.1 (Sequential Convexification). Consider the
feedback system of plant G in (1), and RNN controller m;
in (5). Given a rate p with 0 < p < 1, and matrices P €
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— . . . n<
R™*"¢ and A € R™¢*"™¢  if there exist matrices Q1 € Sy

and Qo € Didjr, and parameters 6 such that the following
condition holds

p?(2P — PTQ.P) 0 AT CT
0 2A—ATQ.A BT DT
A B Q 0|=%©®
c D 0 Qo

then for any z(0), we have ||z(k)|| < /cond(P)p"|z(0)
for all k, where cond(P) is the condition number of P, and
P = Ql_l i.e., the feedback system is exponentially stable
with rate p.

The above convex relaxation of the non-convex condition
(22) leverages a “hnearlzln§ semi- deﬁmte > inequality based
on a previous guess of Ql and Q2 (as P and A). A com-
plete proof is provided in Appendix A. The linear matrix
inequality (LMI) condition (9) is jointly convex in the deci-
sion variables 0, QQ1, @2, where Q1 and Q> are the inverse
matrices of the Lyapunov certificate and the multiplier in
(22), and this allows for its efficient enforcement in the rein-
forcement learning process. Denote the LMI (9), Q1 € Siﬂr,
and Q2 € D'}’ altogether as LMI(Q1, Q2,6, P, A), which
will later be incorporated in the policy gradient process to
provide exponential stability guarantees.

Based on the stability condition (9), define the convex
stability set C(P, A) as

{é : 301,09, s.t. LMI(Q1, Qs, 0, P,]\)} .
(10)

C(P,A) :=

Given matrices P and A, any parameter ¢ drawn from
C(P, ) ensures the exponential stability of the feedback
system (8). The set C(P, A) is a convex inner-approximation
to the set of parameters that renders the feedback system
stable, and the choice of P and A affects the conservatism in
the approximation. One way of choosing (P, A) is provided
in Algorithm 1.

Remark 3.1. Although only sector bounds (6) are used to de-
scribe the activation functions, we can further reduce the con-
servatism by using off-by-one integral quadratic constraints
(Lessard, Recht, and Packard 2016) to also capture the slope
information of activation functions as done in (Yin, Seiler,
and Arcak 2021).

Remark 3.2. Note that although we only consider LTI plant
dynamics, the framework can be immediately extended to
plant dynamics described by RNNs, or neural state space
models provided in (Kim, Patrén, and Braatz 2018).

Projected Policy Gradient

Policy gradient methods (Sutton et al. 1999; Williams 1992)
enjoy convergence to optimality under the tabular setting and
achieve good empirical performance for more challenging
problems. However, with little assumption about the prob-
lem setting, they do not offer any stability guarantee for the
closed loop system. We propose the projected policy gradi-
ent method that enforces the stability of the interconnected
system while the policy is dynamically explored and updated.
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Policy gradient approximates the gradient with respect to
the parameters of a stochastic controller using samples of
trajectories via (11) without any prior knowledge of plant
parameters and the reward structures. Gradient ascent is then
applied to refine the controller with the estimated gradients.

Vs;R(mp) :/Xdﬁé(x)/L{Véwé(u|x)Q”§(x,u)dudm

= Ej omar ey [Q7 (7, u) Vg log mg (ulz)]. (1)
In the above, 6 represents the parameters of 7;. R(7j)
is the expected reward (negative cost) of the controller 7.
d™ () is the distribution of states x € X under 75, where X’
is a set of states. Q™ (x, u) is the reward-to-go after executing
control u € U at state x under 75, where I/ is a set of actions.
Like any gradient method, policy gradient does not ensure
the controller is in some specific set of preference (the set of
stabilizing controller in our setting). To that end, a projection
to the stability set C(P,A), (Q1,Q2,0) < I¢(p 5)(0), is
applied between gradient updates, where 6’ is the updated
parameter, and the projection operator Il¢(p ) (0") is defined

as the following convex program,

_ ! : Ql P 1:|

Hep 5)(87) € arg i ‘ {QQ] {A—l
s.t. LMI(Q1, Q2,6, P, A). (12)

Through the recursively feasible projection step (i.e. the fea-
sibility is inherited in subsequent steps, summarized in Theo-
rem A.1 in Appendix A), we conclude with a projected policy
gradient method to synthesize stabilizing RNN controllers as
summarized in Algorithm 1 and illustrated in Fig. 5.

In the algorithm, the gradient step performs gradient ascent
using the estimated gradient V5 R(7(#)). The projection step
projects the updated parameters ’¢ from the gradient step
to the convex stability set C(P?, A’), where P* and A’ are
computed using Q¢ and Q% from the previous projection step.
We choose A° = I, and construct P? based on the method
in (Scherer, Gahinet, and Chilali 1997).

Remark 3.3. The projection step (12) is a semi-definite pro-
gram (SDP) involving O((ng¢ + ng) X (ne + ng)) variables.
The complexity of interior point SDP solvers usually scales

2

+10-¢'11%
F
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Figure 6: Uncertain plant and its corresponding constrained extended system

Algorithm 1: Projected Policy Gradient

Input: Matrices P° and A° s.t. C(P°, A°) is not empty,
learning rate o > 0.
1: 10
2: while not converged do

3: 0" — 0 + oVsR(m;:) > gradient step
4: Q41 Qz2+1., Oty HC(PiyAi)‘(ell) > proj. step
s P e ()T A (@)

6: i i+ 1

7: end while

Output: 75

cubically with the number of variables, potentially bringing
computational burden when (ng + ng) is large. Luckily, most
high dimensional problems admit low dimension structures
(Wright and Ma 2021) and such overhead is only paid at
training without further operations at deployment.

4 Partially Observed Nonlinear Systems with
Uncertainty

In the context of RL, we often need to handle systems with
nonlinear dynamics and/or unmodeled dynamics. Here we
model such a nonlinear and uncertain plant F,(G, A) (shown
in Fig. 6a) as an interconnection of the nominal plant G, and
the perturbation A representing the nonlinear, and uncertain
part of the system. Therefore, in this new problem setting,
we only require system dynamics to be partially known, and
we use A to cover the difference between the original real
system dynamics, and partially known dynamics G. The plant
F.(G, A) is defined by the following equations:

x(k+1) = Ag z(k) + B q(k) + Baa u(k)
y(k) = Caz x(k)
q(*) = A(p()) (13)

where z(k) € R"¢, u(k) € R™, and y(k) € R™ are the
state, control input, and output of the nominal plant G, and
p(k) and q(k;z are the input and output of A. The perturbation
A : 057 — 057 is a causal and bounded operator.
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The perturbation A can represent various types of uncer-
tainties and nonlinearities, including sector bounded non-
linearities, slope restricted nonlinearities, and unmodeled
dynamics. Thus considering A extends our framework to
the class of plants beyond LTI plants. The input-output re-
lationship of A is characterized with an integral quadratic
constraint (IQC) (Megretski and Rantzer 1997), which con-
sists of a filter ¥ applied to the input p and output g of A,
and a constraint on the output r of W. The filter W is an LTI

system with the zero initial condition ¥(0) = 0,,,,,:
(k+1) = Ay (k) + Byr p(k) + Byz q(k),
r(k) = Cy ¥(k) + Dy1 p(k) + Dy2 q(k).

(14a)

To enforce exponential stability of the feedback system, we
characterize A using the time-domain p-hard IQC, which is
introduced in (Lessard, Recht, and Packard 2016), and its
definition is also provided below.

Definition 4.1. Let ¥ be an LTI system defined in (14), and
M € S™. Suppose 0 < p < 1. A bounded, causal operator
A ly? — 057 satisfies the time-domain p-hard IQC defined
by U, M, and p, if the following condition holds for all
p € by, qg=A(p),and N >0

N
> (k)
k=0

where 1 is the output of U driven by inputs (p, q).

TMr(k) > 0. (15)

Remark 4.1. For a particular perturbation A\, there is typ-
ically a class of valid p-hard IQCs defined by a fixed filter
U and a matrix M drawn from a convex set M. Thus, in
the stability condition derived later, M € M will also be
treated as a decision variable. A library of frequency-domain
p-1QCs is provided in (Boczar et al. 2017) for various types
of perturbations. As shown in (Schwenkel et al. 2021), a gen-
eral class of frequency-domain p-IQCs can be translated into
time-domain p-hard IQC by a multiplier factorization.
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et al. 2016).

When deriving the stability condition, the perturbation A
will be replaced by the time-domain p-hard IQC (15) that
describes it, and the associated filter ¥, as shown in Fig. 6b.
Therefore, the stabilizing controller will be designed for the
extended system (an interconnection of G and W) subject
to IQCs, instead of the original F;,(G,A). This controller
will also be able to stabilize the original F,,(G, A). Define
the extended state as . = [z, ' ']T, and the dynamics
of the extended system are given in Appendix A. Define
¢=[z], €T]T to gather the states of the extended system
and the controller. The feedback system of the extended
system and the controller has the dynamics

C(k+1) =AC(k)+ Biq(k) + Ba z(k

v(k) = C1 ((k) + D1 q(k) + D2 z(k) (16)
r(k) = Ca ((k) + D3 q(k) + Dy z(k),

where
_ | Ac+Be2Dy2Ces BeaC _ | Be
A - Bkjgek:A 2 zkk1:| ) Bl - |:0n,£><nqi| )
o]
BQ — Be;Dkéd) Ad) :| , Cl = [DMCCQ Ckz],
k1 2

Dy = On¢><nqa Dy = 0n¢xn¢7 C2 = [C"‘l Onpxng ]a
DS :Deh D4 :Onrxn,¢7

and the state space matrices (Ae, Be1, ..., De1) of the ex-
tended system are defined in Appendix A. The next theorem
merges the QC for ¢ and the time-domain p-hard IQC for A
with the Lyapunov theorem to derive the exponential stability
condition for the uncertain feedback system.

Theorem 4.1. Consider the feedback system of uncertain
plant F,,(G, A), and RNN controller ;. Assume A satisfies
the time-domain p-hard 1QC defined by ¥, M, and p, with
0 < p < 1 Given P e R*%* ™ gnd A € R**"s, [f
there exist matrices Q1 € Siﬂ_, Q2 € Dj_ﬂ, M e M, and
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Figure 9: (a) Inverted Pendulum (linear); (b) Inverted Pendulum (nonlinear); (c) Cartpole; (d) Pendubot; (e) Vehicle lateral
control; (f) IEEE 39-bus New England Power System frequency regulation. The error bars of reward plots characterize standard

deviation across 3 runs with different seeds. For (a) and (b),

gradient. Converging trajectories are rendered in green while

the left figures are from our method and right figures from policy
diverging ones in red. For (c), (d), (e), trajectories from our method

are given in blue while those from policy gradient are in orange. For (f), top figure is given by our method and bottom one by

policy gradient.

parameters 0 such that the Sfollowing condition holds

-
R'TR A B B

G Dr Def | gy
A B B Q1 0 -
C1 Dl Dg 0 QQ

where T' = diag(p?(2P — PTQ,P),2A — AT QoA, —M)
6 8 i ] Then for

D3 Dy
any x(0), we have ||z (k)|| < \/cond(P)p*||z(0)|| for all k,

Co
where P := Ql_l, i.e., the feedback system is exponentially
stable with rate p.

is a block diagonal matrix and R = {

The complete proof is provided in Appendix A. This

LMI (17) is jointly convex in 6,Q1, Q2 and M for any given
P and A. Based on this LMI, we define the convex robust
stability set Cr(P, A):

Cr(P,A) :=

{0:3Ques,, @eDl, MeM, stan}.

Any parameter § drawn from Cz(P, A) ensures the ex-
ponential stability of the feedback system of F}, (G, A) and
75, and this convex robust stability set can be used in the
projection step.

Remark 4.2. If we only require the feedback system to be
stable (p = 1 in (17)), a more general class of IQCs, the
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time-domain hard IQCs (Megretski and Rantzer 1997), can
be used to describe A.

5 Numerical Experiment

To compare our method against regular RNN controller
trained without projection, we consider 6 different tasks
involving control of partially observed dynamical systems,
including a linearized inverted pendulum and its nonlinear
variant, a cartpole, vehicle lateral dynamics, a pendubot, and
a high dimensional power system. Fig. 7 gives a demonstra-
tive visualization of tasks including vehicle lateral control
and IEEE 39-bus power system frequency regulation, whose
communication topologies are shown in Fig. 8. Experimental
settings and tasks definitions are detailed in Appendix B.

The experimental results including rewards and sample
trajectories at convergence are reported in Fig. 9. In all exper-
iments, our method achieves high reward after the first few
projection steps that ensures stability, greatly outperforming
the regular method which suffers from instability even after
converging. For pendubot and inverted pendulum tasks, our
method keeps perfecting the performance after the first pro-
jection steps which already give high performance. While for
cartpole, vehicle lateral control, and power system frequency
regulation tasks, our method converges to optimal perfor-
mance in one step. Our method gives converging trajectories
for all tasks and achieves faster converging trajectories on the
vehicle lateral control task. In comparison, policy gradient
has been greatly impacted by the partial observability and
converges to sub-optimal performance in cartpole, pendubot,
and power system frequency regulation tasks and requires
more steps to achieve optimal performance in inverted pen-
dulum and vehicle lateral control tasks. Without stability
guarantee, policy gradient fails to ensure converging trajec-
tories from some initial conditions for all tasks excluding
vehicle lateral control which is open-loop stable.

6 Conclusion

In this work, we present a method to synthesize stabilizing
RNN controllers, which ensures the stability of the feedback
systems both during learning and control process. We develop
a convex set of stabilizing RNN parameters for nonlinear and
partially observed systems. A novel projected policy gradient
method is developed to synthesize a controller while enforc-
ing stability by recursively projecting the parameters of the
RNN controller to the convex set. By evaluating on a vari-
ety of control tasks, we demonstrate that our method learns
stabilizing controllers with fewer samples, faster converging
trajectories, and higher final performance than policy gradi-
ent. Future directions include extensions to implicit models
(Bai, Kolter, and Koltun 2019; El Ghaoui et al. 2020), and
model-free RL (Jiang and Jiang 2012).
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