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Abstract

Recent work has shown the potential benefit of selective pre-
diction systems that can learn to defer to a human when the
predictions of the AI are unreliable, particularly to improve
the reliability of AI systems in high-stakes applications like
healthcare or conservation. However, most prior work as-
sumes that human behavior remains unchanged when they
solve a prediction task as part of a human-AI team as op-
posed to by themselves. We show that this is not the case by
performing experiments to quantify human-AI interaction in
the context of selective prediction. In particular, we study the
impact of communicating different types of information to
humans about the AI system’s decision to defer. Using real-
world conservation data and a selective prediction system that
improves expected accuracy over that of the human or AI sys-
tem working individually, we show that this messaging has a
significant impact on the accuracy of human judgements. Our
results study two components of the messaging strategy: 1)
Whether humans are informed about the prediction of the AI
system and 2) Whether they are informed about the decision
of the selective prediction system to defer. By manipulating
these messaging components, we show that it is possible to
significantly boost human performance by informing the hu-
man of the decision to defer, but not revealing the prediction
of the AI. We therefore show that it is vital to consider how
the decision to defer is communicated to a human when de-
signing selective prediction systems, and that the composite
accuracy of a human-AI team must be carefully evaluated us-
ing a human-in-the-loop framework.

Introduction
Despite significant progress in machine learning-based AI
systems, applications of AI to high stakes domains remains
challenging. One of the main challenges is in assessing the
reliability of predictions made by a trained machine learn-
ing system, particularly when there is a distribution shift be-
tween the data the system was trained with and data encoun-
tered at deployment. In such situations, communicating the
uncertainty associated with ML predictions appropriately is
critical (Kompa, Snoek, and Beam 2021; Grote 2021).

Given the difficulty of communicating probabilities to
human users (Galesic and Garcia-Retamero 2010; Zhang
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and Maloney 2012), a pragmatic alternative is to determine
whether an AI system is more likely to make an erroneous
prediction than a human, and defer to a human in such cases.
A number of such settings have been studied in the literature,
including selective prediction (Wiener and El-Yaniv 2013),
learning to defer (Mozannar and Sontag 2020) and classi-
fication with a reject option (Chow 1970). While there are
nuances that differentiate these works, in this paper, we will
collectively refer to this body of literature as selective pre-
diction and only emphasize the differences where relevant to
our work. A related line of work considers human-AI teams
in which humans receive AI assistance but make the final
decision (Bansal et al. 2021), and systems in which the AI
makes the final decision with human input (Wilder, Horvitz,
and Kamar 2020). These prior works either: a) Assume that
the human behaves identically even when they know that
they are part of a human-AI team or b) Assume a utility-
maximizing model for a human decision maker.

However, it has been documented that human-AI interac-
tion may be more complex due to a range of cognitive phe-
nomena. For example, humans have been shown to rely ex-
cessively on AI predictions (anchoring bias) (Rastogi et al.
2022; Logg, Minson, and Moore 2019), or even distrust
AI predictions after observing AI mistakes (Dietvorst, Sim-
mons, and Massey 2015). Some work has begun to investi-
gate solutions to these issues (Buçinca, Malaya, and Gajos
2021; Rastogi et al. 2022), however they have not focused
on selective prediction systems, and context is critical.

In this work, we focus on binary classification tasks and
study selective prediction systems (Fig. 1) that determine
whether to rely on the outputs of an AI or defer to a hu-
man. To evaluate the overall performance of such a selective
prediction system, it is important to model how the mes-
saging, hereafter referred to as selective prediction messag-
ing (SPM), that communicates the decision to defer impacts
human accuracy. We run experiments with human subjects
solving a challenging binary prediction task (that of detect-
ing whether an animal is present in a camera trap image) and
study the impact of different choices for communicating the
deferring AI system’s decision. We then perform statistical
analysis on the human responses under various choices of
SPM, and show that the choice of SPM significantly impacts
human performance. Our results isolate two ingredients for
a statistically effective communication strategy, that is, com-
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Figure 1: Deferral workflow: (1) obtain AI model prediction for given input; (2) use model score as input to deferral model to
decide whether to defer; (3) defer to humans if necessary, using SPM based on the prediction and deferral status.

municating that an AI system deferred (deferral status) and
the AI system’s predictions. Manipulating these leads to a
boost in overall accuracy. We provide some plausible expla-
nations for this phenomenon and suggest avenues for further
work. Our contributions are therefore as follows:
• We develop and implement a balanced experimental de-

sign that can be used to measure the impact of SPM on
the accuracy of selective prediction systems.
• We investigate the consequences of SPM on joint human-

AI performance in a conservation prediction task, as op-
posed to prior work which assumes human behavior re-
mains static during deferral.
• We discover two separable SPM ingredients, deferral sta-

tus and prediction, which have distinct, significant effects
on human performance, and demonstrate that manipulat-
ing these ingredients leads to improved human classifi-
cations in a human-AI team, implying that the setup and
the information given to humans during such tasks has a
large impact on the performance of a human-AI team.
• We suggest that our results may relate to a more gen-

eral property of naturalistic datasets, that in conditions
that are ambiguous, sharing AI model predictions with
humans can be detrimental.

Related Work
We start by describing prior work considering different po-
tential roles in human-AI teams, namely, decision aids and
systems in which an AI model defers to a human on chal-
lenging cases only. We then discuss supporting human-AI
decision-making and selective prediction algorithms.

Decision Aids: Potential deployment scenarios for
human-AI teams that have been discussed in the literature
vary greatly depending on the application. One increasingly
common scenario, particularly in high-risk domains, is that
of AI systems serving as decision aids to humans making
a final decision. For example, Green and Chen (2019)
explore the scenario of human decision-makers using a risk
assessment model as a decision aid in financial lending and
criminal justice (specifically, pretrial detention) settings.
They found that humans were biased and that they failed to
properly evaluate or take model performance into account,
across different messaging conditions communicating the

model’s predicted risk. A decision aid for risk assessment
is similarly studied in De-Arteaga, Fogliato, and Choulde-
chova (2020), particularly in the real-world domain of child
maltreatment hotline screening. Humans indeed changed
their behavior based on the risk assessment tool, but they
were able to identify model mistakes in many cases. Gaube
et al. (2021) conduct experiments to measure the interaction
between medical AI systems and clinicians. Radiologists
who participated reported AI advice as lower quality than
human advice, though all advice truly came from humans.
Furthermore, clinician diagnostic accuracy was reduced
when they were given incorrect predictions from the AI
system. Even with humans making the final decision in each
case, there is a great deal of variability between these AI
systems, their impacts, and their application domains.

Deferral: AI systems have also played a slightly different
role by making decisions in straightforward cases and de-
ferring to human decision makers otherwise, which is most
similar to our scenario. Wilder, Horvitz, and Kamar (2020)
defer to an expert on cases that are best suited for human
decision-making compared to model-based decision-making
(determined using end-to-end learning), yet the final system
is evaluated on historical human data, meaning humans did
not know they were part of a human-AI team while labeling.
Keswani, Lease, and Kenthapadi (2021) propose deferral to
multiple experts, including a classifier, by learning about
the experts from their decisions. While Amazon Mechani-
cal Turk was used to collect labels from participants to train
and evaluate this model, it is similar to using historical hu-
man labels, as the humans again completed the task without
knowing the deferral status or model prediction. Such de-
ferral models are not yet widely deployed, nor have their
impacts on humans been studied.

Supporting Human-AI Decision-Making: To mitigate
some of the known negative impacts of AI on human
decision-making, it may be beneficial to present humans
with further information, such as uncertainty. Bhatt et al.
(2021) find that humans may unreliably interpret uncertainty
estimates, but that the estimates may increase transparency
and thereby performance. In a system used by people with-
out a background in statistics, for example, presenting cat-
egories (such as deferral status) may make it easier to in-
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terpret. Bhatt et al. (2021) advocate for testing this with
humans, including of different skill levels and in different
domains. Further suggestions for positive human-AI inter-
action are presented in Amershi et al. (2019), including to
“Show contextually relevant information,” and “Scope ser-
vices when in doubt.” We are interested in finding the best
way to implement these ideas with SPM.

Selective Prediction: Selective prediction can be traced
back to the seminal work of Chow (1970), where theoreti-
cal properties of classifiers that are allowed to “reject” (re-
frain from making a prediction) and ideal rejection strate-
gies for simple classifiers are investigated. In these settings,
the main metrics are the accuracy of the classifier on the
non-rejected inputs and the rate of rejection, and the natural
trade-off between these. A recent survey of theoretical work
in this area can be found in Wiener and El-Yaniv (2013). We
omit an extensive review of selective prediction literature,
but acknowledge there is additional work in this area.

More relevant to our work is the work on learning to de-
fer (Madras, Pitassi, and Zemel 2017; Mozannar and Sontag
2020). Madras, Pitassi, and Zemel (2017) propose to defer to
a human decision maker selectively in order to improve ac-
curacy and fairness of a base classifier. Mozannar and Son-
tag (2020) develop a statistically consistent loss function to
learn a model that both predicts and defers. Geifman and El-
Yaniv (2017) develop deferral strategies purely based on the
confidence estimate of an underlying classifier.

None of these works model the impact of deferral (or its
communication to a human decision maker) on the accu-
racy of a human decision maker. Since this is the primary
object of study in our work, we do not include a full selec-
tive prediction literature review. We use a simple confidence-
based deferral strategy inspired by the work of Geifman and
El-Yaniv (2017), but our experimental design is compatible
with any selective prediction system.

Background
The primary goal of our work is to evaluate the impact of
SPM on human performance in selective prediction systems.
We design an experiment to evaluate this impact and base
both our design and the questions we study on the psycho-
logical literature on joint decision-making.

Psychology Literature on Human Decision-Making:
The psychology literature has extensive studies on decision-
making in human teams. Three psychological phenomena
stand out as being relevant to our work: 1) Humans are sen-
sitive to the specific way that a task is framed (Tversky and
Kahneman 1981), 2) Humans are capable of flexibly deploy-
ing greater attentional resources in response to changing task
demands and motivation (Kool and Botvinick 2018), and 3)
When deciding how best to integrate the decisions of others,
humans take into account their own decision confidence as
well as the inferred or stated confidence of other decision
makers (Boorman et al. 2013; Bahrami et al. 2010).

This suggests that SPM may impact how humans perceive
their task, how much they trust the AI system, and ultimately
how accurate their final prediction is, which is directly re-
lated to the composite performance of a selective prediction

Figure 2: Example camera trap image with distant (circled)
animals.

system. We consequently propose an experimental design
where we take four natural choices for SPM and estimate
their impact on the accuracy of human labelers.

Dataset: The dataset we use in this work is composed
of images from camera traps, which are cameras triggered
to capture images when there is nearby motion. These can
be used to capture images of animals to understand animal
population characteristics and even animal behavior, both of
which are useful for conservation planning purposes. The
volume of images generated in this manner is too high for
manual inspection by rangers and scientists directly involved
in conservation and monitoring efforts.

To alleviate this burden, the Snapshot Serengeti1 project
was set up to allow volunteers to apply rich labels to cam-
era trap images2. These labels are publicly available3, and
ground truth comes from label consensus from multiple in-
dividuals (Swanson et al. 2015). Given these labels, AI mod-
els have been developed that automatically classify and/or
detect animals in camera trap images (Norouzzadeh et al.
2018; Tabak et al. 2019; Beery et al. 2020).

Whether relying on an AI model or volunteers, this pro-
cessing is still difficult. Roughly seven out of ten images
contain no animals, as they are the result of false triggers,
e.g., due to heat and/or wind. However, it can be challeng-
ing to determine which images contain an animal at all, let
alone the species, because of challenges like animal cam-
ouflage, distance to the camera, or partial visibility in the
camera’s field of view. An example camera trap image with
animals on the horizon is shown in Fig. 2.

We consider a binary task where the bulk of blank im-
ages are first removed before images are uploaded to be la-
beled by volunteers or a species-identifying AI model. We
investigate the use of a selective prediction model to filter
out blank images, while prioritizing images for human re-
view for which the blank/animal AI model is uncertain. This
is similar to Willi et al. (2019); Norouzzadeh et al. (2021),
as they also involve human-AI teams and remove blank im-
ages before species identification. However, 1) The human-

1https://www.zooniverse.org/projects/zooniverse/snapshot-
serengeti

2https://lila.science/datasets/snapshot-serengeti
3https://lilablobssc.blob.core.windows.net/snapshotserengeti-

v-2-0/zooniverse metadata/raw data for dryad.csv.zip
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AI teams differ, e.g., Norouzzadeh et al. (2021) does not in-
volve humans to remove blank images, but uses active learn-
ing for species identification, and 2) They do not focus on
human behavior. To begin our workflow (Fig. 1), we obtain
model scores from an ensemble of AI models that filters out
blank images, then develop a deferral mechanism.

Deferral Mechanism: We use a selective prediction al-
gorithm which finds the optimal threshold(s) for AI model
scores to defer, as illustrated in Fig. 1. Concretely, consider a
binary classification task with inputs x and labels y ∈ {0, 1}.
We assume that we are given a pretrained ensemble of AI
models m and have access to the predictions made by a hu-
man h as well. Given inputs x (for example, pixels of an
image), we obtain a continuous score m(x) ∈ [0, 1] that
represents the confidence of the ensemble that the label cor-
responding to x is 1.

The deferral mechanism we use is a simple rule-based
system that identifies ranges of the model score where the
model is less likely to be accurate than a human and defers
on these. In particular, we use a deferral model that identifies
one continuous interval in the model score space to defer on.

The deferral model is parameterized by two real numbers
0 ≤ θ1 ≤ θ2 and is defined as

defer(x; θ) =
{
1 if m(x) ∈ [θ1, θ2]

0 otherwise

defer(x) = 1 represents the decision to defer on input x and
defer(x) = 0 represents the decision to predict. Given θ, the
AI model prediction x and the prediction made by a human
h(x), the selective prediction system is given by

sp(x; θ) =
{
h(x) if defer(x; θ)
m(x) otherwise

Given a dataset D of inputs, corresponding model scores,
ground truth labels, and human labels, we choose θ by solv-
ing the following optimization problem:

max
θ

Accuracy(D; θ) subject to DeferralRate(D; θ) ≤ r

where Accuracy(D; θ) refers to the accuracy of the selec-
tive prediction system sp with parameters θ on the dataset,
DeferralRate(D; θ) refers to the fraction of points in the
dataset for which defer(x; θ) = 1, and r is a bound on the
deferral rate, reflecting the acceptable level of human effort
or budget constraints on hiring human decision makers.

This optimization problem can be solved in a brute force
manner by considering a discrete grid on the [0, 1] interval
and going over all possible choices for the two thresholds θ.

Choosing a Deferral Model: We now describe how we
choose a deferral model on the Serengeti dataset. Our goal
is to find a model such that the accuracy of the sp classi-
fier is higher than the human h or the AI ensemble m. A
large fraction of the camera trap images are false positives,
where the camera trap was triggered by a stimulus that was
not an actual animal. In order to create a balanced dataset
for tuning the deferral model, we subsample these empty
images with no animal present. We implement a penalty for

Figure 3: Tradeoff of expected accuracy and deferral rate.
More deferral improves performance, but we still gain per-
formance even when deferring less at the circled point.

deferral for the sp classifier, which leads to varied perfor-
mance at different deferral rartes, as seen in Fig. 3. In Fig. 3,
individual human accuracy (as opposed to consensus accu-
racy, which is 1.0) is 0.961, and AI model accuracy is 0.972
(based on choosing one operating point to turn the contin-
uous model scores into binary predictions that maximizes
accuracy of the AI-only classifier). We also include the ideal
performance if we had a perfect oracle to decide, for each
image, whether to defer to a human or rely on the model
(given historical human labels). This perfect selective pre-
diction would achieve an accuracy of 0.994.

Given these results, we choose a deferral rate of 1% as an
acceptable level of withholding (see Appendix for details)
that still improves expected accuracy by a significant margin
relative to AI-only or human-only classifiers.

Experiment Design
We hypothesize that the accuracy of a human decision maker
in a human-AI team is affected by the SPM in the last step
of our workflow (Fig. 1). We specifically consider present-
ing information about the AI’s prediction and deferral sta-
tus. The AI prediction refers to the class returned by the AI
model, e.g., animal or no animal. The deferral status refers to
the result of selective prediction, in which we threshold the
model score to determine whether to ask a human to review
an image (defer), or rely on the AI prediction. We there-
fore design a human participant experiment with all possi-
ble combinations of these two details: 1) Neither message
(NM), 2) Deferral status only (DO), 3) Prediction only (PO),
and 4) Both messages (BM), as shown in Fig. 4. We create
a survey to host this experiment, consisting of the following
sections: 1) Information and consent, 2) Camera trap train-
ing and explanation, in which participants are introduced to
camera trap images and given an example with an explana-
tion for the best label, 3) Adding AI assistance, in which par-
ticipants are told about adding an AI model and deferral to
assist in the task of sorting camera trap images, 4) AI assist
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Figure 4: The four possible SPM conditions in our experi-
ment, along with a challenging example image. The animal
is circled in the image here for the reader’s convenience, but
in our experiment the circle was not present.

practice and explanations, which consists of 10 examples (9
correct, 1 incorrect) drawn from the Serengeti validation set
with AI model assistance, 5) Post training questions asking
participants to describe the model strengths and weaknesses,
6) Labeling, and 7) Post dataset questions. Several of these
design choices align with the guidelines from Amershi et al.
(2019), including describing the AI performance, and pro-
viding examples and explanations.

In the labeling section, we display 80 model-deferred im-
ages (like Fig. 4) under the four SPM conditions (yielding
20 images per condition, which we believe balances a rea-
sonable number of examples with a manageable amount of
participants’ time). Each includes a request for labels of an-
imals present or not, with a Likert scale as in Fig. 4. The im-
ages are randomly allocated across the four communication
conditions. We did not inform participants that all images
were deferred, we only relied on the different SPM con-
ditions. Each participant judged images across all four con-
ditions, and no single image was presented more than once
to the same participant. The set of 80 images are sampled
so as to balance the number of true positive, false positive,
true negative, and false negative model classifications, and
therefore additionally ensure a balance in the number of im-
ages across classes. To ensure that there are no effects due
to the specific order or allocation to a condition of each
image, four separately seeded random allocations are car-
ried out and each participant is randomly assigned to one
of them. To test if the effects of the experimental condi-

Figure 5: Accuracy of human participants on deferred im-
ages, across different SPM conditions. Each bar shows the
participant classification accuracies across the entire dataset,
errorbars show 95% confidence intervals on the mean. Par-
ticipants’ responses are more accurate when the images are
accompanied by the context that the images are deferred
(DO and BM vs. NM and PO). Showing the model’s pre-
diction of the label has a negative effect on accuracy. The
horizontal dashed grey line indicates chance performance
(50%).

tions on accuracy exceed variation expected by chance, the
data are analysed in a 2x2x2 within-subject repeated mea-
sures ANOVA with the factors “deferral status” (with the
levels: “shown” and “not shown”), “prediction” (with the
levels: “shown” and “not shown”) and “model accuracy”
(with the levels: “model correct” and “model incorrect”). We
received approval from an internal ethics review board, and
then recruited 198 participants from Prolific to take part in
the experiment. Responses from all 198 participants were
included in the ANOVA. Aggregated data are available at
https://github.com/deepmind/HAI selective prediction/.

Experiment Results and Analysis
SPM Affects Human Accuracy
As can be seen in Fig. 5, the information provided to human
participants about the model affected participants’ accuracy.
The human-AI communication method that yields the high-
est human performance is DO. Accuracy in this condition
is significantly greater than either humans classifying im-
ages by themselves without any information about the model
(mean of DO: 61.9%, mean of NM: 58.4%, p < 0.001), or
the model operating alone (mean of DO: 61.9%, mean of
model alone: 50%, p < 0.001). Model performance is 50%
since the images presented to humans are subsampled from
the set of model-deferred images. Furthermore, across all
responses, participants are significantly more accurate when
the deferral status is shown (conditions DO and BM) than
when it is not (conditions PO and NM) (mean of deferral sta-
tus: 60.4%, mean of no deferral status: 57.4%, p < 0.001).
We believe this effect of deferral status may be driven by par-
ticipants inferring that the images are likely to be quite diffi-
cult, and therefore concentrating harder. By contrast, partic-

5290



all high low
Confidence

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Co
nf

or
m

ity

Figure 6: Conformity is the relative increase in agreement
when the model predictions are present. For each image, we
show how much the agreement between the set of human
predictions and model prediction changes from the NM to
the PO conditions. Conformity is significantly higher when
humans are less confident, indicating that humans are influ-
enced by model predictions more when they are less certain
about their judgement.

ipants are significantly less accurate when the prediction is
shown (mean of prediction: 57.8%, mean of no prediction:
60.2%, p = 0.003). Overall, therefore, we find that provid-
ing the deferral status, while avoiding the provision of model
predictions, leads to the highest accuracy in human decision-
making in this context.

Model Predictions Influence Human Decisions

While the preceding results clearly suggest that participants
use the model predictions at least some of the time, the ev-
idence is indirect. We therefore conduct a more direct anal-
ysis targeting this question. Specifically, for each image, we
compute the proportion of raters who agree with the model
prediction under 1) NM and 2) PO. As each image is pre-
sented under both conditions, we subtract these two scores to
assess how much humans increase their agreement with the
model when the model prediction is present. We refer to this
as the “conformity” score, and plot it in Fig. 6. Across the set
of images, we find an average conformity score of 0.08 (i.e.,
raters are influenced on 8% of trials), which is significantly
greater than zero (p < 0.0001), demonstrating that raters
use the model information when present. We further test a
hypothesis suggested by Bahrami et al. (2010); Boorman
et al. (2013), that people are more likely to use model infor-
mation when they are less confident in their own decisions
(as measured by Likert ratings in this case). We separately
compute the conformity score for low and high confidence
human decisions, and find that, as expected, conformity is
higher when rater confidence is low (mean of low confi-
dence: 0.116, mean of high confidence: 0.045, p = 0.014).
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Figure 7: Accuracy of human participants on deferred im-
ages, split by whether the model correctly or incorrectly
classified the associated images. (Left) Results split by
whether the model correctly classified the image. Notably,
images where the model is incorrect has lower participants’
accuracy across all conditions, generally at chance (dashed
grey line). Crucially, participants are significantly below
chance in the PO condition, for which the model prediction
misleads humans. (Right) Human accuracy for each image
in the NM and DO conditions, split by whether the model
labels the image correctly. Participants’ accuracy is signifi-
cantly reduced (to around chance) for the subset of images
which the model fails to label correctly. Together, both show
a congruence between what images the model and humans
find difficult to label correctly.

Model Accuracy Affects Human Accuracy
While the preceding analysis demonstrates that people do in-
deed use the model predictions, this in itself does not explain
why we find a decrease in human accuracy when model pre-
dictions are available. This suggests a potential bias, such
that people tend to use the model information more when it
is actually incorrect. To explore this possibility, we focus on
the effect of the provided SPM only on the images that the
model classifies incorrectly (Fig. 7). We observe that partici-
pants’ accuracy in the PO condition is significantly reduced.
While participants perform at chance in the other condi-
tions, participants perform significantly below chance in the
PO condition (mean of other conditions: 50.6%, mean of
PO: 41.9%, p < 0.001). In this condition, the label provided
by the model is most salient, and critically it provides wrong
information. Participants appear to integrate this information
as they perform 8.7% worse in the PO condition compared
to the NM condition, on the images that are misclassified
by the model. In contrast, on images that are correctly clas-
sified by the model, and therefore the model can provide
a correct prediction message, participants gain 5.1% of ac-
curacy between the NM and PO conditions. This asymme-
try, that incorrect model prediction messages are integrated
more by the participants than correct model prediction mes-
sages, appears to lie at the heart of why we observe an over-
all negative effect of the prediction message. This pattern
is consistent with the observation that participants and the
model tend to err on the same images, as shown in the violin
plots of Fig. 7. Specifically, participants are correct 66.3%
of the time on images shown in the NM and DO conditions
and that the model correctly classifies, but only 50.5% on
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images in these same conditions that the model classifies in-
correctly (p < 0.05). Additionally, there is a positive corre-
lation between average human Likert scores in the NM and
DO conditions and model scores on the same images, sug-
gesting that humans and models learn similar semantic task
dimensions (Pearson’s r = 0.27, p = 0.021).

Asymmetry in Human-AI Agreement
Our results demonstrate a differential change in human accu-
racy in the presence of model information, based on whether
the model is correct or incorrect. When we subdivide the
data based on whether the model is correct or incorrect, we
see that human accuracy tends to be lower when the model
is incorrect (Fig. 7, left). Additionally, exposing humans to
incorrect predictions of an AI makes them even more likely
to be incorrect. We confirm that human accuracy tends to
be lower when the model is incorrect by directly comput-
ing the image-wise agreement between human and model
ratings on images where the model is correct vs. incorrect
(Fig. 7, right). This analysis is performed only on the tri-
als under the NM condition, as we want to investigate inde-
pendent agreement. As expected, we find that agreement is
significantly higher for the correctly labelled images (mean
agreement of model correct: 69.6%, mean of model incor-
rect: 44.9%, p = 0.007). This difference in prior agreement
over images has potentially important repercussions when
introducing model predictions. Specifically, as the subset of
images where the model is correct already has high prior
agreement with the human raters, there is much less poten-
tial for the model to influence human judgments, and hence
increase accuracy. By contrast, because the images that are
misclassified by the model have a lower prior agreement
level with human raters, there is greater potential for model
influence, which in this case will decrease accuracy. This
asymmetry in potential model influence between correct and
incorrect trials is likely to account for the overall drop in hu-
man accuracy we see when model predictions are provided
to human raters. This is an important result, as it demon-
strates that the specific pattern of covariance between model
and human decisions can lead to significant downstream ef-
fects on joint decision-making when humans have access to
the model predictions.

Discussion
To summarize, we find that there are significant effects in the
way deferred images are presented to humans in a selective
prediction workflow. In particular, in this context, present-
ing deferral status is helpful, while presenting the uncertain
prediction, even when accompanied by a deferral status, can
be harmful, especially when the model is incorrect. From
this, it is clear that performance will not necessarily be what
is estimated from historical human labels. Together, these
findings illustrate the importance of considering the human-
AI team while designing selective prediction systems, as the
SPM can have a significant impact on performance.

We believe these are important findings to direct future
research, and have several suggestions for open questions to
explore. First, this experiment could be expanded. While we

chose to leave this static, it would be helpful to determine
the amount and type of training that is most useful for par-
ticipants. We also chose to use two categories for deferral
status, either defer or not defer. However, it is possible that
finer-grained information about model uncertainty could be
helpful (Bhatt et al. 2021). We additionally focused on un-
derstanding why prediction hurt, but encourage collecting
further information, such as timing, to better understand
why deferral status helped. This may help inform further re-
search into designing selective prediction algorithms based
on human-AI teams, for example by exploring bounded ra-
tionality for training improved selective prediction models.

There are also questions about generalizability of these
results. These specific results (i.e., that deferral status helps
while prediction hurts performance) are not likely to be ro-
bust across datasets, different human-AI use scenarios (e.g.,
decision aids), or even participant expertise levels. For ex-
ample, in this study, we asked two domain experts working
with the Serengeti dataset to go through the same survey
provided to Prolific participants. We similarly find that each
individual has different performance in the four conditions,
and that the deferral status leads to improved performance in
both cases. However, the interactions are slightly different.
It is necessary to search for generalizable trends across these
cases in future work.

Finally, though we worked with humans in this study, it is
extremely important to consider specific deployment chal-
lenges in these contexts, such as how selective prediction
may change existing processes, e.g., in healthcare (Yang,
Steinfeld, and Zimmerman 2019), or how to best modify
the workflow and instructions in the case where there are
multiple human experts we could rely on. In all cases, we
stress the importance of remembering the human component
of human-AI teams.

Acknowledgments

We would like to thank the Prolific participants, Exavery
Kigosi from the Grumeti Fund, DeepMind HuBREC, and
the reviewers for their helpful feedback.

Ethics Statement

We received approval for this work from DeepMind’s ethics
review board, HuBREC 21 008. We did not collect person-
ally identifiable information, and we paid a flat rate of £7 for
the task, which took about 20-30 minutes. We believe it’s un-
likely that any of the participants were exposed to inappro-
priate imagery during the study. However, the camera trap
datasets are made up of animals, both adult and young, in the
wild, and thus could potentially include scenes of predator-
prey interactions that some raters may find distressing. We
included warnings about the species, behaviors, and possi-
ble human presence in the information sheet. Furthermore,
we ensured participants understood that they were under no
obligation to consent to participate, and that if they declined
to participate, there would be no negative repercussions.

5292



References
Amershi, S.; Weld, D.; Vorvoreanu, M.; Fourney, A.; Nushi,
B.; Collisson, P.; Suh, J.; Iqbal, S.; Bennett, P. N.; Inkpen,
K.; et al. 2019. Guidelines for human-AI interaction. In
Proceedings of the 2019 chi conference on human factors in
computing systems, 1–13.
Bahrami, B.; Olsen, K.; Latham, P. E.; Roepstorff, A.; Rees,
G.; and Frith, C. D. 2010. Optimally interacting minds. Sci-
ence, 329(5995): 1081–1085.
Bansal, G.; Nushi, B.; Kamar, E.; Horvitz, E.; and Weld,
D. S. 2021. Is the Most Accurate AI the Best Teammate?
Optimizing AI for Teamwork. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 11405–
11414.
Beery, S.; Wu, G.; Rathod, V.; Votel, R.; and Huang, J. 2020.
Context r-cnn: Long term temporal context for per-camera
object detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 13075–
13085.
Bhatt, U.; Antorán, J.; Zhang, Y.; Liao, Q. V.; Sattigeri,
P.; Fogliato, R.; Melançon, G.; Krishnan, R.; Stanley, J.;
Tickoo, O.; et al. 2021. Uncertainty as a form of trans-
parency: Measuring, communicating, and using uncertainty.
In Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society, 401–413.
Boorman, E.; O’Doherty, J.; Adolphs, R.; and Rangel, A.
2013. The Behavioral and Neural Mechanisms Underlying
the Tracking of Expertise. Neuron, 80(6): 1558–1571.
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