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Abstract

Counterfactual regret minimization (CFR) is the most com-
monly used algorithm to approximately solving two-player
zero-sum imperfect-information games (IIGs). In recen-
t years, a series of novel CFR variants such as CFR+, Lin-
ear CFR, DCFR have been proposed and have significant-
ly improved the convergence rate of the vanilla CFR. How-
ever, most of these new variants are hand-designed by re-
searchers through trial and error based on different motiva-
tions, which generally requires a tremendous amount of ef-
forts and insights. This work proposes to meta-learn novel
CFR algorithms through evolution to ease the burden of man-
ual algorithm design. We first design a search language that
is rich enough to represent many existing hand-designed CFR
variants. We then exploit a scalable regularized evolution al-
gorithm with a bag of acceleration techniques to efficiently
search over the combinatorial space of algorithms defined by
this language. The learned novel CFR algorithm can general-
ize to new IIGs not seen during training and performs on par
with or better than existing state-of-the-art CFR variants. The
code is available at https://github.com/rpSebastian/AutoCFR.

Introduction
Games in extensive form provide a mathematical framework
for modeling sequential decision-making problems with
imperfect information. Solving such imperfect-information
games (IIGs) requires reasoning under uncertainty about the
opponents’ hidden information. The hidden information is
omnipresent in real-world strategic interactions, such as ne-
gotiation, business, and security, making the research on I-
IGs crucial both theoretically and practically.

In this work, we focus on solving two-player zero-sum
IIGs. For these games, the common goal is to find an (ap-
proximate) Nash equilibrium (NE) (Nash 1950) in which no
player can improve by deviating from this equilibrium. As
a popular method of computing NE, counterfactual regret
minimization (CFR) (Zinkevich et al. 2007) has attracted ex-
tensive attention due to its sound theoretical guarantee and
strong empirical performance. CFR iteratively minimizes
the regrets of both players so that the time-averaged strat-
egy gradually approximates the NE. Over the past decade,
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Figure 1: Convergence speed of four CFR-type algorithms
and our learned one in four games. Different CFR-type algo-
rithms perform distinctively in these games. Our framework
learns a new CFR variant performing consistently well.

many novel CFR variants have been proposed (Tammelin
2014; Brown and Sandholm 2019; Li et al. 2020; Farina
et al. 2019) with faster convergence than the vanilla CFR.
For example, CFR+ (Tammelin 2014; Bowling et al. 2015)
was the key to solve the heads-up limit Texas Hold’em pok-
er. Discount CFR (DCFR) (Brown and Sandholm 2019) is
a family of algorithms that assigns more weights to the lat-
er iterations and obtains competitive performance compared
with other CFR variants. Linear CFR (Brown and Sandholm
2019; Brown et al. 2019) is a simplified version of DCFR
and performs well in practice.

Despite the great success of CFR and its existing variants,
most of them are hand-designed by researchers based on d-
ifferent motivations, which usually requires a lot of efforts
and insights. CFR-type algorithms have many design choic-
es, e.g., regrets accumulation, average strategy calculation,
etc. Therefore, it is difficult to systematically consider the
space of all CFR variants to design effective ones that can
efficiently solve across a wide variety of IIGs. As shown in
Figure 1, it is clear that CFR variants perform differently
in various IIGs, and no one performs consistently well in
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all cases. Moreover, the actual convergence rates of CFR-
type algorithms are sometimes different from their theoreti-
cal properties. Some variants converge much faster in prac-
tice despite having worse theoretical bounds (e.g., CFR+).
These gaps between theoretical properties and practical per-
formance further increase the difficulty of manually design-
ing effective CFR variants.

To ease the burden and limitation of manual algorithm de-
sign, we propose AutoCFR, a framework that learns to de-
sign better CFR variants than researchers could design man-
ually. More specifically, we formulate the problem of de-
signing new CFR variants as one of meta-learning: an outer
loop searches over the space of CFR-type algorithms, and an
inner loop performs equilibrium finding using the learned
algorithm on the meta-training IIGs. The objective of the
outer loop is to minimize the distance between the strategy
obtained by the inner loop and the NE in each meta-training
IIG. Our ultimate goal is to discover novel CFR variants that
can generalize across many different IIGs, instead of specif-
ic to the particular training domain. To this end, we design a
search language that can express general symbolic function-
s applied to any IIGs. This language is expressive enough
to represent many previously proposed hand-designed CFR
variants (e.g., CFR+, DCFR, Linear CFR, etc.). Since ef-
ficiently searching over the space of algorithms defined by
this language is generally difficult, we exploit the scalable
regularized evolution (Real et al. 2019) algorithm with a bag
of carefully designed acceleration techniques for the outer
loop optimization. Regularized evolution can scale with the
number of compute nodes and has been shown effective for
searching supervised learning and reinforcement learning al-
gorithms (Real et al. 2020; Co-Reyes et al. 2020). We adap-
t this method to design algorithms for equilibrium finding
in IIGs automatically. We believe that by performing meta-
learning in such a rich, combinatorial, open-ended space of
algorithms, we will discover highly general, efficient CFR-
type equilibrium-finding algorithms.

To summarize, this paper makes three novel contributions:
• We propose AutoCFR, the first framework to meta-learn

novel CFR-type algorithms.
• We design an expressive language to describe the space

of CFR-type algorithms and exploit an efficient search
algorithm to make the search feasible.
• We automatically discover a new CFR variant with

strong generalization ability, achieving competitive per-
formance on new IIGs not seen during training.

Preliminary
Here we present some background knowledge needed for
the rest of the paper. In this section, we first provide some
notations to formulate IIGs. Next, we introduce some im-
portant concepts like best response, Nash equilibrium, and
exploitability. Finally, we discuss the vanilla CFR algorithm
and its typical variants.

Notations
IIGs are usually described by a tree-based formalism called
extensive-form games (Osborne and Rubinstein 1994). In an

extensive-form game, there is a finite setN = {1, 2, . . . , N}
of players, and there is also a special player c called chance
with a fixed known stochastic strategy. History h consists of
all actions taken by players and all possible histories in the
game tree form the set H. Z ⊆ H are terminal histories
for which no actions are available. g v h refers to the fact
that g is equal to or a prefix of h. A(h) = {a : ha ∈ H}
denotes the actions available in the history, and P(h) is the
unique player who takes action in the history. For each play-
er i ∈ N , there is a utility function ui(z) : Z → R. ∆i

is the range of payoffs reachable by player i, i.e., ∆i =
maxz∈Z ui(z)−minz∈Z ui(z) and ∆ = maxi∈N ∆i.

In IIGs, imperfect information is represented by infor-
mation sets Ii for each player i ∈ N . If h, h′ are in the
same information set Ii ∈ Ii, player i cannot distinguish
between them. Take poker as an example, all histories in an
information set differ only in the private card of other play-
ers. So we can define A(Ii) = A(h) and P(Ii) = P(h)
for arbitrary h ∈ Ii. We define |I| = maxi∈N |Ii| and
|A| = maxi∈N maxIi∈Ii |A(Ii)|.

A strategy σi(Ii) assigns a distribution over A(Ii).
σi(Ii, a) is the probability of player i taking action a. S-
ince all histories in an information set belonging to player
i are indistinguishable, the strategies in each of them are i-
dentical. Therefore, for any h1, h2 ∈ Ii, we have σi(Ii) =
σi(h1) = σi(h2). A strategy profile σ = {σi|σi ∈ Σi, i ∈
N} is a specification of strategies for all players, where Σi
refers to the set of all possible strategies for player i, and
σ−i denotes the strategies of all players other than player i.
ui(σi, σ−i) is player i’s expected payoff if player i plays
according to σi and the other players play according to σ−i.
πσ(h) denotes the history reach probability of h if al-

l players play according to σ. It can be decomposed in-
to each player’s contribution, i.e., πσ(h) = πσi (h)πσ−i(h),
where πσi (h) =

∏
h′avh,P(h′)=i σi(h

′, a) is player i’s con-
tribution and πσ−i(h) =

∏
h′avh,P(h′)6=i σP(h′)(h

′, a) is all
players’ contribution except player i. The information set
reach probability is defined as πσ(Ii) =

∑
h∈Ii π

σ(h).
The interval history reach probability from history h′ to
h is defined as πσ(h′, h) = πσ(h)/πσ(h′) if h′ v h.
πσi (Ii), π

σ
−i(Ii), π

σ
i (h, h′), πσ−i(h, h

′) are defined similarly.

Best Response and Nash Equilibrium
The best response to σ−i is any strategy BR(σ−i) such
that ui(BR(σ−i), σ−i) = maxσ′i∈Σi ui(σ

′
i, σ−i). The Nash

Equilibrium is a strategy profile σ∗ = (σ∗i , σ
∗
−i) where

everyone plays a best response: ∀i ∈ N , ui(σ∗i , σ∗−i) =
maxσ′i∈Σi ui(σ

′
i, σ
∗
−i). The exploitability of a strategy σi

is defined as ei(σi) = ui(σ
∗
i , σ
∗
−i) − ui(σi,BR(σi)). In

an ε-Nash equilibrium, no player has exploitability high-
er than ε. The exploitability of a strategy profile σ is e(σ) =∑
i∈N ei(σi)/|N |. It can be interpreted as the approxima-

tion error to the Nash equilibrium.

Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) is an iterative
algorithm for computing approximate Nash equilibrium
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in extensive-form IIGs (Zinkevich et al. 2007). CFR fre-
quently uses counterfactual value, which is the expect-
ed payoff of an information set given that player i tries
to reach it. Formally, for player i at an information set
I ∈ Ii given a strategy profile σ, the counterfactual val-
ue of I is vσi (I) =

∑
h∈I(π

σ
−i(h)

∑
z∈Z(πσ(h, z)ui(z)).

The counterfactual value of an action a in I is vσi (I, a) =∑
h∈I(π

σ
−i(h)

∑
z∈Z(πσ(ha, z)ui(z)).

CFR typically starts with a uniform random strategy σ1.
On each iteration T , CFR first recursively traverses the game
tree using the strategy σT to calculate the instantaneous re-
gret rTi (I, a) of not choosing action a in an information set
I for player i, i.e., rTi (I, a) = vσ

T

i (I, a) − vσ
T

i (I). Then
CFR accumulates the instantaneous regret to obtain the cu-
mulative regret RTi (I, a) =

∑T
t=1 r

t
i(I, a) and uses regret-

matching (Hart and Mas-Colell 2000; Cesa-Bianchi and Lu-
gosi 2006) to compute the new strategy for the next iteration:

σT+1
i (I, a) =


RT,+i (I,a)∑

a′∈A(I) R
T,+
i (I,a′)

,
∑
a′ R

T,+
i (I, a′) > 0

1
|A(I)| , otherwise

(1)
where RT,+i (I, a) = max(RTi (I, a), 0). In two-player zero-
sum IIGs, if both players play according to CFR on each
iteration then their average strategies σ̄T converge to an ε-
Nash equilibrium inO(|I|2|A|∆2/ε2) iterations (Zinkevich
et al. 2007). σ̄T is calculated as:

C
T
i (I, a)=

T∑
t=1

(
π
σt

i (I)σ
t
i(I, a)

)
, σ̄
T
i (I, a)=

CTi (I, a)∑
a′∈A(I) C

T
i (I, a′)

, (2)

where CTi (I, a) denotes player i’s cumulative strategy for
action a in information set I on iteration T .

CFR Variants
Since the birth of CFR, many novel CFR variants have been
proposed based on different motivations and greatly im-
proved the convergence rate of the vanilla CFR. CFR+ (Tam-
melin 2014; Bowling et al. 2015) is like CFR with two small
but effective modifications and converges an order of mag-
nitude faster than CFR. First, to immediately reuse an action
when it shows promise of performing well instead of waiting
for the cumulative regret to become positive, CFR+ sets any
action with negative cumulative regret to zero on each itera-
tion. Second, CFR+ uses a weighted average strategy where
iteration T is weighted by T rather than using a uniformly-
weighted average strategy as in CFR. DCFR (Brown and
Sandholm 2019) is a family of algorithms which discounts
prior iterations’ cumulative regrets and dramatically accel-
erates convergence especially in games where some actions
are very costly mistakes. Specifically, on each iteration T , D-
CFR multiplies positive cumulative regret by Tα/(Tα + 1),
negative cumulative regret by T β/(T β + 1), and cumulative
strategy by (T/(T + 1))γ . We choose the hyperparameters
α=1.5, β=0, and γ=2, as suggested by the authors. Linear
CFR (Brown and Sandholm 2019) is a special case of D-
CFR where iteration T ’s contribution to cumulative regret-
s and cumulative strategy is proportional to T . ECFR (Li
et al. 2020) is based on the motivation that instantaneous re-
gret reflects the advantage of one action over other actions,

and actions with higher instantaneous regrets should be giv-
en higher weights. In practice, ECFR weights action a by
w(I, a) = exp(ri(I, a)− 1/|A(I)|

∑
a∈A(I) ri(I, a)).

Learning Novel CFR Variants
In this section, we first describe the overall framework of our
proposed AutoCFR. We then describe the search language
which enables the learning of general CFR-type algorithms
and the tailored evolution algorithm, which can efficiently
search over the algorithm space defined by this language.

The AutoCFR Framework
As mentioned earlier, CFR and its variants have obtained
remarkable performance in solving IIGs. This success was
possible due to decades of persistent efforts by researchers in
the game theory and machine learning communities. How-
ever, there are so many design choices in CFR-type algo-
rithms, making it difficult to consider all of them systemat-
ically. Manual algorithm design requires many insights and
efforts, and we believe that there are better CFR variants that
humans have not discovered.

Based on the above consideration, we propose AutoCFR,
a meta-learning framework that learns to design novel CFR
algorithms. We use A to denote the space of CFR-type algo-
rithms. Given a training set of IIGs G = {Gi}Ni=1, the goal
of AutoCFR is to explore this large space of algorithms for
an optimal and generalizable A∗ ∈ A, which not only per-
forms well on G but also generalizes to the unknown testing
IIGs Ĝ. Formally, AutoCFR’s training objective function is:

A∗ = arg max
A∈A

[∑
G∈G

WG Eval(A,G)

]
, (3)

where Eval(A,G) is the inner loop procedure that evaluates
algorithm A’s performance in the training IIG G. WG repre-
sents the weight ofG, which is proportional to the game size.
To calculate Eval(A,G), we first use A to iterate M times
in G and calculate the exploitability EGA of the obtained av-
erage strategy. We then use the normalized exploitability to
summarize the performance (score) of A, i.e.,

Eval(A,G) = min

(
SG,

logEGCFR − logEGA
logEGCFR − logEGDCFR

)
, (4)

where EGCFR is the baseline vanilla CFR’s exploitability,
EGDCFR is the state-of-the-art DCFR’s exploitability inG. SG
is the predefined maximum score under gameG, proportion-
al to the game size. We exploit the logarithmic function be-
cause CFR converges asymptotically at a logarithmic rate.
The minimum function is used to avoid A overfitting to G.

In summary, AutoCFR’s outer loop searches over the s-
pace of CFR-type algorithms (i.e., A). Its inner loop per-
forms equilibrium finding using the algorithm A ∈ A pro-
posed by the outer loop on the meta-training IIGs G. The
objective is to find algorithm A∗ with a maximal weighted
score over the set of training games. We believe that by per-
forming meta-learning in such a rich space of algorithms and
diverse training IIGs, we will automatically discover novel,
efficient, and generalizable CFR variants.
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Search Language
Each iteration T of the CFR-type algorithms consists of two
steps, i.e., policy evaluation and policy improvement. In the
first step, the algorithm traverses the game tree using the cur-
rent strategy σT to collect the instantaneous regrets rT (I, a)
and some auxiliary information such as the reach probabili-
ties, etc. The second step exploits the collected data to obtain
a new strategy σT+1 for the next iteration. For example, in
vanilla CFR, the second step accumulates regrets and com-
putes a new strategy using regret-matching. The main differ-
ence among CFR variants is mostly in the second step, i.e.,
calculating the cumulative regret, the new strategy, and the
cumulative strategy.

To better describe the space of CFR-type algorithms, the
search language should be rich enough to represent existing
CFR variants while enabling the learning of new algorithms
that generalize to a wide range of IIGs. Similar to (Alet et al.
2019; Co-Reyes et al. 2020), we describe the CFR-type algo-
rithms as general computer programs with a domain-specific
language. The programs are comprised of two-component
functions, i.e., PE (policy evaluation), and PI (policy im-
provement). More specifically, we express A ∈ A as a
computational graph, i.e., a directed acyclic graph of nodes.
There are three kinds of nodes:

• Input nodes represent the input to the program A and
include the current strategy σT , the cumulative regret
RT−1, the cumulative strategy CT−1, the current itera-
tion T , constant numbers, etc.
• Operation nodes define the mathematical operations

which compute outputs given inputs from parent nodes.
This includes operators from basic math, linear algebra,
probability, and statistics.
• Output nodes are the outputs of program A which in-

cludes the new strategy σT+1, the updated cumulative
regret RT , and the updated cumulative strategy CT .

Figure 2 visualizes the computational graphs of CFR, CFR+,
and DCFR. Our search language is highly flexible and can
represent many state-of-the-art CFR variants, as well as
many other potential alternatives, which lays the foundation
for discovering better CFR variants. To limit the search s-
pace and prioritize more interpretable and computational-
efficient algorithms, we limit the total number of operation
nodes of the computation graph to 30.

Evolutionary Search Algorithm
The outer loop of AutoCFR is to find CFR variants A∗ that
work effectively in the training games G. However, evaluat-
ing thousands of algorithms from the space A over a wide
range of games in G is prohibitively expensive. Moreover,
changing a single node in the computational graph can dras-
tically change an algorithm’s behavior, making the objective
function (Eqn. 3) non-smooth, and therefore the space hard
to search. We use the regularized evolution algorithm (Real
et al. 2019) as the search method due to its simplicity and
efficiency for this type of search problems, which has made
remarkable breakthroughs (Piergiovanni et al. 2019; Faust,
Francis, and Mehta 2019; Co-Reyes et al. 2020; Franke et al.

Figure 2: Our designed search language can represent ex-
isting CFR variants. (a)(b)(c) visualizes the computational
graphs of CFR, CFR+, and DCFR. Moreover, this language
enables the description of potentially better CFR variants.

2020; Ci et al. 2021) in the AutoML community recently.
Regularized evolution uses a queue to maintain a popula-
tion of P programs which can be randomly initialized or
initialized by several known programs. The population is
improved through cycles. In each cycle, T < P programs
are first selected, and the program with the highest score is
chosen as the parent program. Then the parent program is
mutated to obtain the child program. The child program is
added to the queue while the oldest program in the queue is
removed. We use a simple type of mutation, i.e., randomly
select a node for replacement, randomly select an operation
with the same output type as that node, and finally choose
the inputs for this operation randomly.

There exists a combinatorially large number of algorithms
in A. Furthermore, the inner loop of evaluating a single algo-
rithm A in a game G, i.e., calculating Eval(A,G), requires
multiple CFR-type iterations, which can take up a significan-
t amount of time. Avoiding needless computation and par-
allelism is essential to make the outer loop more tractable.
By taking inspiration from efforts in the AutoML communi-
ty (Hutter, Kotthoff, and Vanschoren 2019), we extend reg-
ularized evolution with a bag of tailored acceleration tech-
niques to make the outer loop optimization more efficient.
The complete training procedure is outlined in Algorithm 1.

Program validity check. We perform basic checks to rule
out and skip evaluating invalid mutated programs. Specif-
ically, we randomly generate 100 valid samples and input
them into the mutated program A. If A fails to satisfy the
following rules, we discard it and mutate the parent program
again. For example, illegal values (e.g., nan, inf) and excep-
tions should not be generated when executing A; the action
probabilities of the current and average strategies produced
by A should be greater than zero and sum to one, etc.

Functional equivalence check. Since our search lan-
guage is highly flexible, there are many non-obvious ways of
getting functionally equivalent programs. To find duplicates,
we generate a hash code for each program. Specifically, we
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Algorithm 1: AutoCFR’s training procedure.
Input: training games G, game weights WG, hurdle

game Gh, CFR variants {Â}, cycle number N ,
population size P , tournament size T

1 Initialize population |P| = P with an empty queue;
2 Initialize history set H← ∅;
3 for algorithm Â in {Â} do
4 Â.score←

∑
G∈GWG Eval(Â, G) .(Algorithm 2);

5 Add Â to H and P;
6 for n = 0 to N do
7 tournament set T← ∅;
8 while |T| < T do
9 randomly pick a candidate Ac from P;

10 add Ac to T;
11 parent algorithm A← highest-scored one in T;
12 child algorithm A′ ←Mutate(A);
13 A′.valid← ValidityCheck(A′);
14 A′.hurdle score← Eval(A′, Gh);
15 A′.hash← HashEncoding(A′);
16 hurdle threshold η← Percentile(P, 75th);
17 if A′.valid and A′.hurdle score >= η then
18 if ∃Atemp ∈ H, Atemp.hash==A′.hash then
19 A′.score← Atemp.score;
20 else
21 A′.score←

∑
G∈GWG Eval(A′, G);

22 Add A′ to H and the circular queue P;

Output: A∗ with the highest score

input 20 random samples into the program and concatenate
the outputs as its code. If A’s code is the same as the code of
the previously evaluated program A′, we no longer evaluate
A and use A′ saved score as A’s. Since programs with the
same code may have different structures, we still add A to
the population to potentially mutate into functionally differ-
ent programs in the future.

Early hurdles. AutoCFR’s ultimate goal is to find pro-
grams that perform well on many different IIGs, both simple
and complex. If the program performs poorly in small sim-
ple games, there is no need to evaluate it in large complex
games. We use Kuhn poker as an early hurdle game Gh and
maintain the 75th percentile η of the scores of all algorithms
in the population on Gh. If Eval(A,Gh) < η, we early-stop
evaluation A on other games and discard it immediately.

Learning from bootstrapping. AutoCFR can learn from
scratch by initializing the population with random algo-
rithms or bootstrap the population with known algorithms.
Learning from scratch is less biased toward human-designed
algorithms and is more likely to discover completely differ-
ent algorithms. However, it may take a long time to converge
to practical algorithms. Bootstrapping from existing algo-
rithms can make the search start from a good starting point
and reduce the time required for convergence. We initialize
the population with CFR and its typical variants, including
CFR+, Linear CFR, and DCFR.

Algorithm 2: Inner loop procedure Eval(A,G).
Input: Candidate algorithm A, training game G,

iterations M , exploitability EGCFR, E
G
DCFR,

maximum score SG
1 Initialize strategy σ1(I, a)← 1/|A(I)|;
2 Initialize cumulative regret R0(I, a)← 0;
3 Initialize cumulative strategy C0(I, a)← 0 ;
4 for T = 1 to M do
5 πσ

T

, rT ← A.PE(G, σT );
inputs = {σT , RT−1, πσ

T

, CT−1, rT , T, . . .};
σT+1, RT , CT ← A.PI(inputs);

6 σ̄M ← Normalize(CM );
7 EGA ← σ̄M ’s exploitability on G;

Output: Eval(A,G)← min
(
SG,

logEGCFR−logEGA
logEGCFR−logEGDCFR

)

Parallelism. In our actual implementation, the outer and
inner loop are executed in parallel. We use a distributed gen-
erator to implement the outer loop, which inputs the par-
ent programs and outputs the mutated programs. Similar-
ly, we implement the inner loop as a distributed evaluator,
which inputs programs and training games and outputs the
scores. These tasks are distributed among multiple processes
on multiple machines, communicating through queues.

Experiments
We first describe the experimental setup, including training
games, testing games, and training details. We then analyze
the characteristics of the learned algorithm and compare it
with state-of-the-art CFR variants. Finally, we conduct some
ablations to understand the settings of our framework.

Experimental Setup
Training and testing games: The choice of training games
G (e.g., game sizes, payoff ranges, etc.) dramatically affects
the learned algorithm and its performance. The more diverse
G is, the better the generalization performance of the result-
ing algorithm. Besides, the training games should not be too
large to solve as AutoCFR will evaluate thousands of CFR-
type algorithms during training.

We use some commonly used extensive-form games in
the IIG research community. Kuhn Poker is a simplified for-
m of poker, with three cards in a deck and one chance to bet
for each player. Leduc Poker is a larger game with a 6-card
deck and two rounds. In Liar’s Dice (x), each player gets
an x-sided dice, rolls them at the start, and then takes turn-
s placing bets on the outcome. Goofspiel (x) is a card game
where each player has x cards and tries to obtain more points
by making sealed bids in x rounds. HUNL Subgame (x) 1 is
a heads-up no-limit Texas hold’em (HUNL) sub-game gen-
erated by Libratus (Brown and Sandholm 2017, 2018).

In addition, we manually design some normal-form
games (NFG-{1-4}). For example, NFG-1 is a simple two-
action game where players decide between two actions.

1https://github.com/CMU-EM/LibratusEndgames
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Player 1’s payoff is 2 if takes the first action, and is 20,000
or 1 if takes the second action, depending on player 2. It is
an abstraction of some situations in real-world games that
include highly sub-optimal actions, e.g., all-in irrationally
leads to huge losses in poker. Although these norm-form
games seem trivial, some of them are very challenging to
solve efficiently, e.g., the vanilla CFR requires 15,000 itera-
tions to solve NFG-1.

In particular, the training games G include four normal-
form games (NFG-{1-4}) and four small extensive-form
games, i.e., Kuhn Poker, Goofspiel (3), Liar’s Dice (3), and
Liar’s Dice (4). These training games are computationally
inexpensive to solve but cover a diverse set of problems. The
testing games include four relatively large extensive-form
games, i.e., Goofspiel (4), Leduc Poker, HUNL Subgame (3),
and HUNL Subgame (4). These testing games are diverse in
size and nontrivial to solve, which are very suitable for test-
ing the generalization performance of the learned algorithm.
Training details: We search over a program space contain-
ing a maximum of 30 operation nodes. The population size
P is 300, and the tournament size T is 25, the same as those
used in (Co-Reyes et al. 2020). The parent program mutates
with 0.95 probability and remains the same otherwise. We
train AutoCFR on a distributed server with 250 CPU cores
and run for about 8 hours, at which point around 10,000 al-
gorithms have been evaluated. For the inner loop evaluation
procedure Eval(A,G), we set iteration M to 1,000 in all
games, except for in Liar’s Dice (4), where M is 100 since
it is a relatively large game.

Learned CFR Variant: DCFR+
We focus on one particularly interesting new CFR variant,
i.e., DCFR+, that was learned by our AutoCFR framework,
and that has good generalization performance on different
imperfect-information games:

R
T
i (I, a) = max

(
0, R

T−1
i (I, a) ∗

(T − 1)1.5

(T − 1)1.5 + 1.5
+ r

T
i (I, a)

)
,

C
T
i (I, a) = C

T−1
i (I, a) ∗

T − 1

T
+ π

σT

i ∗ T 3 ∗ σTi (I, a),

σ
T+1
i (I, a) =

RT,+i (I, a)∑
a′∈A(I) R

T,+
i (I, a′)

.

(5)

DCFR+’s improvement over existing CFR variants shown
in Figures 3 and 4 is due to two core enhancements: the max-
imum function and a new discounting method. Here, we pro-
vide some intuitive explanations of why they improve the
performance: 1) The most prominent feature of DCFR+ is
the use of max(0, ·) to rectify the cumulative regrets, which
is similar to regret-matching+ in CFR+. When the best ac-
tion suddenly changes, CFR may take a long time to over-
come the accumulated negative regret. In contrast, DCFR+
will play the best action immediately since its accumulat-
ed negative regret is forgotten thanks to the max(0, ·) op-
erator. 2) Similar to DCFR, DCFR+ also discounts the pre-
vious iterations and gives higher weights to the later itera-
tions when accumulating strategies and regrets, albeit in a
very different way. This discounting mechanism is benefi-
cial when encountering highly suboptimal actions, i.e., ac-

AutoCFR AutoCFR-4 AutoCFR-S

Kuhn Poker 1.1489e-4 5.7798e-5 1.4492e-4

Goofspiel (4) 1.0431e-6 2.7402e-6 3.3271e-4

Leduc Poker 1.4592e-6 2.8801e-6 1.1364e-2

Subgame (3) 2.2016e-5 4.3293e-5 4.8060e-3

Subgame (4) 9.8044e-6 4.3926e-5 7.5901e-3

Table 1: Performance comparison of the best algorithms
learned by three AutoCFR variants.

tions that cause huge mistakes. It is worth noting that D-
CFR’s authors have tried to combine CFR+ with DCFR, but
they found that the combined algorithm resulted in poor per-
formance. Our AutoCFR framework can automatically dis-
cover DCFR+ through evolutionary search without manual
algorithm design, which finds a new way to combine the key
insights of CFR+ and DCFR effectively.

Consider the simple two-action game NFG-1. The Nash
equilibrium of this game is to choose the first action with
100% probability. The CFR variants use the uniform random
strategy in the first iteration and result in cumulative regrets
of R1=-4,999, R2=4,999. CFR will take a long time to get
the optimal strategy, where R1>0 and R2<0. In contrast,
DCFR+ directly sets R1 to zero in the first iteration and dis-
countsR2 in the later iterations. As a result, it will take CFR
15,000 iterations, CFR+ 10,001 iterations, DCFR 1,217 iter-
ations, and DCFR+ only 540 iterations to approach the Nash
equilibrium. It demonstrates that DCFR+ can quickly elimi-
nate the negative effects of suboptimal actions.

Ablation Studies
Varying the number of training games: We consider how
the number of training games affects the learned algorith-
m. We compare learning with eight games versus with four
extensive-form games. The results are shown in Table 1.
AutoCFR-4, i.e., the learned algorithm using four games,
performs best in the training game Kuhn Poker; however,
it performs relatively poorly than AutoCFR, i.e., the learned
algorithm DCFR+ using eight games, in the testing games.
It is clear that training with four games suffers from some
over-fitting, and the additional four normal-form games in-
crease the learned algorithm’s generalization performance.
Learning from scratch versus bootstrapping: As dis-
cussed previously, a crucial step to accelerate AutoCFR’s
training process is learning from bootstrapping. We compare
learning from bootstrapping (AutoCFR) with learning from
scratch (AutoCFR-S) using the same eight training games.
As shown in Table 1, bootstrapping from existing CFR vari-
ants significantly improves the learning performance of Au-
toCFR over AutoCFR-S without bootstrapping. In Figure 5,
we further demonstrate the effectiveness of our search al-
gorithm. AutoCFR substantially enhances the performance
(from 1.00 to 1.15) over the state-of-the-art DCFR algo-
rithm. Meanwhile, AutoCFR-S efficiently finds an algorithm
that surpasses CFR by a large margin (from 0.0 to 0.5) even
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Figure 3: Comparison of DCFR+ against four CFR variants on eight training games. Another four training games are in Fig 1.

Figure 4: Comparison of DCFR+ against four CFR variants on four testing games.

by learning from scratch. Although there is still much room
for improvement in learning from scratch, we believe this is
mainly because AutoCFR-S only explores a tiny proportion
of the vast search space due to the limited budget available
for training machines. We plan to invest more computational
resources and improve the framework’s search efficiency to
discover better and more inspiring CFR variants.

Figure 5: Performance comparison between bootstrapping
(AutoCFR) and learning from scratch (AutoCFR-S).

Related Work
AutoML (Yao et al. 2019; He, Zhao, and Chu 2021) aims
to automate the machine learning process and has recently
become a hot topic in academia and industry. One notable
example is neural architecture search (Zoph and Le 2017;
Brock et al. 2018; Real et al. 2019) which has achieved great
success on computer vision tasks. More recently, AutoML-
Zero (Real et al. 2020) automatically finds machine learn-
ing algorithms from scratch using basic mathematical oper-
ations. AutoCFR shares similar ideas but is applied to search
equilibrium-finding algorithms in IIGs for the first time.
Evolutionary algorithm (Goldberg and Deb 1991) is a

generic population-based metaheuristic optimization algo-
rithm. It can effectively address complex problems that tra-
ditional optimization algorithms struggle to solve. Recen-
t progress using evolutionary algorithms has achieved im-
pressive results in playing games (Kelly and Heywood 2017;
Wilson et al. 2018; Silver et al. 2020), optimizing neural net-
works (Cui et al. 2018; Young et al. 2019), and finding novel
reinforcement learning algorithms (Franke et al. 2020; Co-
Reyes et al. 2020). In contrast, we use the evolutionary algo-
rithm with lots of acceleration techniques to search for novel
CFR-type algorithms for solving IIGs.

Conclusion and Future Work
This work presents an AutoCFR framework for learning to
design novel CFR variants. We formalize an expressive lan-
guage for representing CFR-type algorithms as computa-
tional graphs. We then exploit an optimized regularized evo-
lution algorithm to search over the space of computation-
al graphs efficiently. The learned DCFR+ algorithm obtains
good generalization performance over a wide range of test-
ing games. Currently, AutoCFR’s search space does not in-
clude the Monte Carlo CFR type algorithms, and the training
and testing games can be expanded to include more diverse
types of IIGs. We leave these directions for future research.
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