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Abstract

We study online task assignment problem with reusable re-
sources, motivated by practical applications such as rideshar-
ing, crowdsourcing and job hiring. In the problem, we are
given a set of offline vertices (agents), and, at each time, an
online vertex (task) arrives randomly according to a known
time-dependent distribution. Upon arrival, we assign the task
to agents immediately and irrevocably. The goal of the prob-
lem is to maximize the expected total profit produced by com-
pleted tasks. The key features of our problem are (1) an agent
is reusable, i.e., an agent comes back to the market after com-
pleting the assigned task, (2) an agent may reject the assigned
task to stay the market, and (3) a task may accommodate mul-
tiple agents. The setting generalizes that of existing work in
which an online task is assigned to one agent under (1).
In this paper, we propose an online algorithm that is 1/2-
competitive for the above setting, which is tight. More-
over, when each agent can reject assigned tasks at most ∆
times, the algorithm is shown to have the competitive ratio
∆/(3∆ − 1) ≥ 1/3. We also evaluate our proposed algo-
rithm with numerical experiments.

Introduction
Online task assignment problem has attracted extensive at-
tention recently in combinatorial optimization and artificial
intelligence. The problem models practical situations that
assign agents to tasks arriving online. For example, in a
rideshare platform (Dickerson et al. 2021; Dong et al. 2021;
Lowalekar, Varakantham, and Jaillet 2020; Nanda et al.
2020) such as Uber and Lyft, we match drivers to riders
where requests from riders arrive one by one. Other applica-
tions include crowdsourcing (Assadi, Hsu, and Jabbari 2015;
Ho and Vaughan 2012; Xu et al. 2017) and job hiring (Anag-
nostopoulos et al. 2018; Dickerson et al. 2019).

In this paper, we study online task assignment problem
under known adversarial distributions. In the problem, we
are given a time horizon T and a bipartite graph G =
(U, V ;E), where U corresponds to a set of agents and V
represents types of tasks. A type of a task is usually defined
by attributes of the task, e.g., pick-up/drop-off locations of
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a rider in a rideshare platform and language skills required
to complete a task in a crowdsourcing platform. An edge
(u, v) ∈ E means that u has ability to process an online
task v. In the problem, the set U of agents is known in ad-
vance (offline vertices), while we are given a vertex with
a type v ∈ V (an online vertex) at each time, randomly
according to a time-dependent distribution Dt over V . We
identify an online vertex with its type v. On arrival of v,
we immediately and irrevocably either assign some agents
to v, or discard the chance of processing v. Then we obtain
a profit produced by an assigned agent if she completes a
task. The goal is to design an online algorithm that maxi-
mizes the total profit. We here assume that Dt is known in
advance, which is called a Known Adversarial Distribution
(KAD) model (Dickerson et al. 2021); see also (Alaei, Haji-
aghayi, and Liaghat 2012). If Dt is the same for all t, it is
called a Known I.I.D. (KIID) model.

Motivated by practical applications, it has been studied
to generalize the online task assignment problem with ad-
ditional specific conditions. An example is reusability of
agents (Dickerson et al. 2021). In the standard online task
assignment problem, when an agent is assigned a task, she
will leave immediately from the market. However, if agents
are reusable, an agent comes back to the market after com-
pleting the task, and she can be matched to a new task
again. Such situation especially arises in a rideshare plat-
form with drivers and riders. Another example is rejections
by agents (Nanda et al. 2020). It is natural that an agent is al-
lowed to reject an assigned task if it is not satisfactory. More-
over, each agent may have an upper bound on the number of
rejections, that is, when she rejects an assigned task ∆ times,
then she must leave from the market. It should be noted that
the previous work mentioned above studied the online bi-
partite matching where only one agent can be assigned to
an online task, and it is not straightforward to extend1 the
results to the online task assignment problem.

1We can consider a simple reduction that replaces an online
vertex v with capacity bv as bv vertices with capacity 1 arriving
sequentially. Such reduction, however, would not work in the KI-
ID/KAD model because an online vertex is chosen independently
at each time.
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In this paper, we introduce the online task assignment
problem in the KAD model with all the constraints men-
tioned above, that is, the problem with the following con-
straints:
A. (Reusability) an agent comes back to the market after

she completes a task, where the occupation time is drawn
from a known distribution,

B. (Rejections) an agent u rejects an assignment with some
probability, and has to leave after rejecting ∆u times, and

C. (Task capacity) an online vertex v can accommodate at
most bv offline vertices.

See the next section for a formal problem definition.

Our Contribution
Our main result is to propose an online algorithm for the
above problem. We prove that our algorithm has the follow-
ing theoretical guarantees:
• 1/2-competitive for the unlimited rejection case, i.e.,

when ∆u is +∞ for all u (Theorem 1),
• ∆/(3∆ − 1)-competitive for the general case (Theo-

rem 2), where ∆ = maxu∈U ∆u.
We here evaluate the performance of online algorithms with
the common measure called competitive ratio. We say that
an algorithm is α-competitive if the expected profit obtained
by the algorithm is at least α times the offline optimal value.
The formal definition is given in the next section.

Our results and existing results are summarized in Ta-
ble 1. Note that our algorithm is useful for the problem with-
out reusability. In fact, we prove that our algorithm has the
competitive ratio (1 − 1/e2)/2 > 0.432 in the KIID model
without reusability, which improves on the competitive ratio
1/e (Nanda et al. 2020) for the same setting (Theorem 3).

In addition, we show that no (adaptive) algorithm can
achieve the competitive ratio better than 1/2. This is im-
plied by a well-known example for the prophet inequality
problem (Krengel and Sucheston 1977, 1978). We note that
this hardness result is applied even in the setting of (Dick-
erson et al. 2021). Thus our result complements their result,
which considers only non-adaptive algorithms.

Due to the space limitation, we omit some results and the
details of the proofs; see the full version (Sumita et al. 2022).
Below let us describe technical highlights of the proof of our
algorithms.

Technique To design an online algorithm, we first con-
struct an offline linear program (LP) that gives an upper
bound on the offline optimal value. This is a similar ap-
proach to the online bipartite matching in the KIID/KAD
model (Alaei, Hajiaghayi, and Liaghat 2012; Dickerson
et al. 2021; Nanda et al. 2020). Our LP has variables xuv,t
for each (u, v) ∈ E and t, and has linear inequalities that in-
corporate the constraints (A)–(C) above. See the next section
for the formal definition of our LP. Intuitively, each variable
xuv,t corresponds to a probability that v arrives at time t and
u is assigned to v. We shall use an LP optimal solution x∗uv,t
to determine how to assign agents to v at each time. There
are, however, several difficulties to obtain our results as de-
scribed below.

The first difficulty is to handle the task capacity condi-
tion, i.e., that we choose a set of agents each time. Given
LP optimal solution x∗e,t for each edge e, we would like to
have a distribution of feasible sets so that the probability of
choosing e at time t is x∗e,t. For the online bipartite match-
ing, this is easy; we just choose an edge e with probabil-
ity proportional to x∗e,t at time t. However, for the online
task assignment problem, such independent choice of edges
may violate the task capacity condition. To avoid it, we use
Carathéodory’s theorem in convex analysis. The theorem al-
lows us to decompose x∗e,t to a polynomial number of feasi-
ble sets, which can be regarded as a probability distribution
on feasible sets.

Another difficulty is that the LP optimal value may give a
loose upper bound on the offline optimal value. In this case,
finding a feasible set based on LP is not sufficient; we may
select an agent which should not be chosen. In fact, there
exists a problem instance such that an algorithm similarly
to Nanda et al. (2020) that just assigns an agent according
to an LP optimal solution would fail to obtain the competi-
tive ratio more than 1/3 (See the full version for a specific
example). To overcome this difficulty, we adapt the idea of
Alaei, Hajiaghayi, and Liaghat (2012), who analyzed a dif-
ferent online matching problem in the KAD model. Specifi-
cally, after finding a feasible set S based on x∗e,t, we decide
whether to assign a task v to u for each agent u ∈ S. We
compute the expected profit that u earns at and after the cur-
rent time t by assigning u to v, and, if it is larger than the
one when not assigning, then we decide to assign u to v.

To prove that the proposed algorithm admits desired com-
petitive ratio, we evaluate the expected profit that each vertex
u earns. Let Rd

u,t be the expected profit that u earns at and
after time t, when u has a remaining budget d. Then Rd

u,t
can be represented recursively with respect to t and d. Since
the recursive equation is linear, we can bound Rd

u,t by in-
troducing another linear program and its dual. We note that
when ∆u is infinite, the recursive equation becomes simpler
depending on only t, that gives a better competitive ratio.

Let us describe the differences from (Dickerson et al.
2021; Nanda et al. 2020). The algorithm of Dickerson et al.
(2021) assumes that the algorithm can access a probability
that u ∈ U is available at time t, i.e., u is not occupied
by a task at time t. This assumption may be problematic
because it is not easy to obtain such information precisely.
In contrast, we adopt expected profit after t to decide the
assignment, which can be computed deterministically and
efficiently by dynamic programming. Our algorithm is also
different from Nanda et al. (2020), as their algorithm just
uses x∗e,t as a probability mentioned above, which works
only for the KIID model. Our algorithm is shown to admit
a better competitive ratio in their setting, which improves
on the competitive ratio 1/e by Nanda et al. (2020) (Theo-
rem 3).

Experiments We evaluate the performance of our algo-
rithm through experiments. We use a synthetic dataset and
the real-world dataset of taxi trip records, similarly to pre-
vious work (Dickerson et al. 2021; Nanda et al. 2020). Our
algorithm performs the best in most cases, and runs practi-
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Reusability # Rejections # Assigned agents Online vertices Comp. ratio Hardness
This work X +∞ ≥ 1 KAD 1/2

1/2This work X ≤ ∆ ≥ 1 KAD ∆/(3∆− 1)
(Dickerson et al. 2021) X NA 1 KAD 1/2 (1/2)

This work ≤ ∆ ≥ 1 KIID > 0.432
(Nanda et al. 2020) ≤ ∆ 1 KIID 1/e 1− 1/e

Table 1: Summary of our results and previous work. The algorithm (Dickerson et al. 2021) requires to know in advance the
probability that an agent is available at each time.

cally fast enough. The results imply the superiority of our
algorithm.

Related Work
The online task assignment problem is a generalization of
the online bipartite matching (where each vertex can match
to at most one neighbor). Nowadays there exist a large body
of literature on online matching. We here mention some of
them closely related to our problem. See Mehta (2013) for
the detailed survey.

The online bipartite matching was introduced by Karp,
Vazirani, and Vazirani (1990). They considered the adver-
sarial input model, that is, the model that online vertices
arrive in an adversarial order, and proposed a randomized
(1−1/e)-approximation algorithm for the unweighted case.
It is known that the ratio is tight (Birnbaum and Mathieu
2008; Mehta et al. 2007). When online vertices arrive inde-
pendently according to a distribution (i.e., the KIID model),
Manshadi, Gharan, and Saberi (2012) proposed a 0.702-
competitive algorithm and showed that the ratio cannot be
better than 0.823. For the edge-weighted case, a 0.667-
competitive algorithm is known (Haeupler, Mirrokni, and
Zadimoghaddam 2011).

Online stochastic matching, introduced by Mehta and
Panigrahi (2012), is the problem that an offline vertex ac-
cepts an assignment with a probability. This can be viewed
as that infinite number of rejections are allowed in the pro-
cess. For the problem in the adversarial input model, Mehta,
Waggoner, and Zadimoghaddam (2015) presented a 0.534-
competitive algorithm for the unweighted case when edge
probabilities go to 0. For the KIID model, Brubach et al.
(2016) gave a (1−1/e)-competitive algorithm, which works
also in the edge-weighted case.

Online bipartite matching in the KAD model was intro-
duced by Alaei, Hajiaghayi, and Liaghat (2012) under a
name of prophet-inequality matching, as the problem in-
cludes the prophet inequality problem (Krengel and Suche-
ston 1977, 1978) as a special case. Alaei, Hajiaghayi, and
Liaghat (2012) extended the problem so that an offline ver-
tex has a capacity. When offline vertices have capacities, the
online bipartite matching is often called the AdWords prob-
lem (Mehta et al. 2007). This variant is also studied exten-
sively (Devanur and Hayes 2009; Lowalekar, Varakantham,
and Jaillet 2020).

Recently, online task assignment with the reusability con-
dition receives attention. Dickerson et al. (2021) gave a
1/2-competitive algorithm for the KAD model, and vari-
ants of the problem have been studied (Dong et al. 2021;

Gong et al. 2021; Goyal, Iyengar, and Udwani 2021; Rus-
mevichientong, Sumida, and Topaloglu 2020); see also ref-
erences therein. Our problem can be viewed as a general
framework that unifies the problem of Dickerson et al. and
online stochastic matching with limited number of rejec-
tions. We also mention that our condition of the task capacity
is close to the setting of the online assortment optimization
(see e.g. (Gong et al. 2021)). In this problem, an online ver-
tex is offered a set of offline vertices (an assortment), and
the online vertex selects one of them.

Nanda et al. (2020) discussed the online bipartite match-
ing problem that maximizes fairness, instead of the total
profit. Here, the fairness means the smallest acceptance ratio
in tasks. Note that our results can easily be extended to their
setting to balance a trade-off between profit and fairness.

Model
In this section, we describe a formal definition of our prob-
lem. For a positive integer k, we denote [k] = {1, . . . , k}.
We are given a bipartite graph G = (U, V ;E) with edge
weight we ≥ 0, where U is the set of offline vertices and
V is the set of types of online vertices. We are also given
a time horizon T . Each offline vertex u ∈ U has a positive
integer ∆u, which is a budget of allowed rejections in the
process. In addition, each edge (u, v) ∈ E has a random
variable Ce ∈ [T ] that represents the occupation time for u
to complete the task v. In other words, when u accepts v,
u is absent from the market, and will be available at time
t+Ce, where Ce is drawn from a given distribution. We say
that an offline vertex u is available at time t if u is in the
market (i.e., not being occupied by some task) and u has not
rejected online vertices ∆u times.

For each time t ∈ [T ], an online vertex v arrives accord-
ing to a probability distribution {pv,t}v .2 Upon arrival of a
vertex v, we immediately and irrevocably either assign at
most bv neighbors to v that are available, or discard v. When
u ∈ U is assigned, u either accepts v with probability qe or
rejects v with probability 1− qe, where e = (u, v). When u
accepts v, we obtain a profit we and u becomes absent from
the market during the occupation time Ce.

We note that we may assume ∆u > 0 for all u ∈ U . When
no rejection is allowed for u, i.e., ∆u = 0, only edges e with
qe = 1 can be matched to u. Therefore, we can remove all
the edges e such that e is incident to u and qe < 1, and set
∆u to 1.

2Nothing arrives at time t with probability 1−
∑

v∈V pv,t.
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Our goal is to design an online (randomized) algorithm
that maximizes the expected total profit. The performance of
an online algorithm is evaluated by the competitive ratio. In
the subsequent sections, we define the offline optimal value
and the competitive ratio.

We note that our model includes the online bipartite
matching problem studied in (Dickerson et al. 2021; Nanda
et al. 2020) as special cases. We assume that bv = 1 for
each v ∈ V . When ∆u = +∞ for any u ∈ U and the
acceptance probability qe is one for each e ∈ E, we can
ignore the constraint on rejections, and hence our model is
identical to the one in (Dickerson et al. 2021). On the other
hand, when probability distribution {pv,t}v is the same for
all t ∈ [T ] and Pr[Ce = T ] = 1 for any e ∈ E, our model
is the exactly one in the KIID model without reusable re-
sources, which was studied in (Nanda et al. 2020). We also
note that our model and the problem of Alaei, Hajiaghayi,
and Liaghat (2012) have no inclusion relationships.

Offline Optimal Algorithms
Given a problem instance, a sequence of online vertices is
determined according to probability distributions {pv,t}v,t.
We denote by I the probability distribution over all in-
put sequences of online vertices. In the offline setting, we
suppose that we know the sequence I of online vertices
in advance. An offline algorithm that maximizes the ex-
pected profit is called an offline optimal algorithm for I .
We note that the algorithm does not know whether each of-
fline vertex accepts or rejects an online vertex at each time.
We denote the expected profit of the offline optimal algo-
rithm for I by OPT(I). Define the offline optimal value
by EI∼I [OPT(I)]. Thus we consider the best algorithm for
each I in the offline optimal value.

We denote the set of edges incident to u byEu = {(u, v) |
(u, v) ∈ E} for each u ∈ U , and similarly Ev for v ∈ V .
We introduce an offline LP whose optimal value is an upper
bound of the offline optimal value:

(Off)

max
∑
t∈[T ]

∑
e∈E

weqexe,t

s.t.
∑
t′<t

∑
e∈Eu

xe,t′qe Pr[Ce ≥ t− t′ + 1]

+
∑
e∈Eu

xe,tqe ≤ 1 (u ∈ U, t ∈ [T ]) (1)

∑
t∈[T ]

∑
e∈Eu

xe,t (1− qe Pr[Ce ≤ T − t]) ≤ ∆u

(u ∈ U) (2)∑
e∈Ev

xe,t ≤ pv,tbv (v ∈ V, t ∈ [T ]) (3)

0 ≤ xe,t ≤ pv,t (v ∈ V, e ∈ Ev, t ∈ [T ]) (4)

For each edge e = (u, v) and time t, a variable xe,t corre-
sponds to a probability that e is chosen at time t. Intuitively,
constraints (1)–(3) corresponds to the constraints (A)–(C)
mentioned in the introduction, respectively.

Lemma 1. The optimal value of LP (Off) is at least the
offline optimal value EI∼I [OPT(I)].

Proof. For each input sequence I , an offline optimal algo-
rithm for I determines a probability that, when an online
vertex v arrives at time t, v is assigned to offline vertices u
for each e = (u, v) ∈ E and t ∈ [T ]. By taking expectations
over I, we set xe,t to be the probability that an online ver-
tex v arrives at t and an offline vertex u is assigned to v for
each e = (u, v) ∈ E and t ∈ [T ]. We show that x defined
above is a feasible solution to the LP. By definition, xe,t is
nonnegative and at most the probability pv,t, and hence (4)
is satisfied.

Let us see that the first constraint (1) is valid. Fix an in-
put sequence I , u ∈ U , and t ∈ [T ]. Let vt

′
be an online

vertex arriving at time t′ < t (if exists). For any realiza-
tion of acceptances/rejections and Ce’s, we have any one of
the following: u has no assignment, or u is occupied by vt

′

for some t′ < t with occupation time at least t − t′ + 1.
Since acceptances/rejections and Ce’s are sampled indepen-
dently, the expected number of online vertices occupying
u is Pr[u accepts vt | I] +

∑
t′<t Pr[u accepts vt

′
at t′ |

I] Pr[C(u,vt′ ) ≥ t − t′ + 1]. Since Pr[u accepts vt | I] =
x(u,v)q(u,v) and the expected number is at most 1, (1) holds.

To see the second constraint (2), let us fix an input se-
quence I and u ∈ U . For any realization of acceptances/re-
jections and Ce’s, the number of rejections plus assign-
ments with u never coming back (i.e., Ce being at least
T − t + 1) is at most ∆u. Then the expected number of
rejections is

∑
t∈[T ] Pr[u rejects some v ∈ V at t | I] =∑

e∈Eu
xe,t(1 − qe). The number of assignments that u

never returns is
∑

t∈[T ] Pr[u never comes back | I] =∑
t∈[T ]

∑
e∈Eu

xe,tqe Pr[Ce ≥ T − t+ 1]. Hence, we have∑
t∈[T ]

∑
e∈Eu

(xe,t(1−qe)+xe,tqe Pr[Ce ≥ T −t+1]) ≤
∆u, and (2) holds.

The third constraint (3) is satisfied because the expected
number of assignments made for an online vertex v is at
most pv,tbv . Therefore, the solution x defined from offline
optimal algorithms is feasible to the LP.

Note that the LP (Off) is a non-trivial extension of those
in the previous papers (Dickerson et al. 2021; Nanda et al.
2020). The constraints on rejections can be naturally ex-
pressed as

∑
t∈[T ]

∑
e∈Eu

xe,t(1 − qe) ≤ ∆u, similarly to
the offline LP in (Nanda et al. 2020). However, this is not
enough to show our result, and we need a stronger formula-
tion (2) of the constraints.
Example 1. Let us consider the following instance. Let U =
{u}, V = {v1, v2, v3} and E = {(u, v) | v ∈ V }. Let
also T = 3, ∆ = 1 and ε � 1. Assume that, at time t,
only a vertex vt can arrive, whose probability is pt. For our
notational convenience, we identify an edge (u, vt) with t.
Let p1 = p2 = 1, p3 = ε, q1 = q2 = 1/2, q3 = 1, w1 =
4/9, w2 = 6/9, and w3 = 4/(9ε). We set Pr[Ct = 1] =
1/2, Pr[Ct = 2] = 1/2, Pr[Ct = 3] = 0 for all t.

We demonstrate the calculation of the expected profit for
an adaptive online algorithm. Consider an adaptive algo-
rithm that we always assign an arriving vertex to u if pos-
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sible. Then, at time 1, we obtain a profit 4
9 ·

1
2 = 2

9 in ex-
pectation. The probability that u is available at time 2 is
q1 Pr[Ct = 1] = 1

4 because it is equal to the probability
that u accepts v1 and C1 takes 1. Thus the probability that
v2 is assigned to u at time 2 is Pr[(u is available at time 2)∧
(v2 arrives at time 2)] = 1

4 . Hence the expected profit at
time 2 is 6

9 ·
1
4 ·

1
2 = 1

12 . By a similar discussion, the ex-
pected profit at time 3 is 5

36 . Therefore, the expected profit in
total is 2

9 + 1
12 + 5

36 = 4
9 .

The offline optimal value can be calculated as follows.
When we know v3 arrives at time 3 in advance, the best strat-
egy is that we discard v1 and v2 but assign v3 to obtain a
profit 4

9ε . On the other hand, suppose that v3 does not arrive
and we know it. We describe that the expected profit when
we assign v1 at time 1 is at most 11

36 . We obtain the expected
profit q1w1 = 2

9 from v1. Since v2 is the last vertex to arrive,
we should assign v2 if u is available at time 2. The probabil-
ity that u is available at time 2 is q1 Pr[Ct = 1] = 1

4 because
it is equal to the probability that u accepts v1 and C1 takes
1. Thus the probability that v2 is assigned to u at time 2 is
Pr[(u is available at time 2) ∧ (v2 arrives at time 2)] = 1

4 .
Hence the expected profit at time 2 is 6

9 ·
1
4 ·

1
2 = 1

12 . There-
fore, the expected profit in total is 2

9 + 1
12 = 11

36 . On the
other hand, the expected profit obtained when we discard v1

is 1
3 , and thus we see that it is better to discard v1. Since the

probability that v3 arrives is ε, the offline optimal value is
ε · 4

9ε + (1− ε) · 3
9 = 7−3ε

9 .
Let us see a corresponding feasible solution x to the of-

fline LP. We denote xuvt,t = xt for t = 1, 2, 3 for simplic-
ity. Then as in the proof of Lemma 1, xt corresponds to the
probability that vt is assigned to u. Since v1 is not chosen
in any offline optimal algorithm, x1 is 0. Moreover, x2 is
ε · 0 + (1− ε) · 1 = 1− ε since we choose v2 if v3 does not
arrive. Finally, x3 is ε · 1 + (1− ε) · 0 = ε. The LP objective
value for this solution x is 2

9x1 + 3
9x2 + 4

9εx3 = 7−3ε
9 .

Competitive Ratio
We evaluate the performance of an online algorithm by
a competitive ratio. Let ALG(I) be the expected profit
of an online algorithm ALG when the input sequence is
I . We say that an online algorithm is α-competitive if
EI∼I [ALG(I)] ≥ αEI∼I [OPT(I)] for any instance.

Proposed Algorithm
In this section, we present our algorithm, and then analyze
the competitive ratio in subsequent subsections.

The overview of our proposed algorithm is described as
follows. We first find an optimal solution x∗ to LP (Off).
Then we use x∗e,t to determine a probability that v comes
at time t and we assign u to v where e = (u, v). That
is, we choose a set S of at most bv vertices in U so that
Pr[u ∈ S, v arrives at time t] = x∗e,t. Then, for each u ∈ S,
we compute the expected profit earned at and after t by as-
signing u to v, and, if it is larger than the one by not assign-
ing, then the algorithm tries to assign u to v.

Our algorithm is summarized in Algorithm 1. We now ex-
plain how to implement each step in more detail.

Finding a Set of Offline Vertices We first explain how to
design a probabilistic distribution to find a set of offline ver-
tices when v arrives at time t. We note that it is easy when
bv = 1, as we can just choose a vertex u in U with proba-
bility x∗uv,t/pv,t. However, when bv ≥ 2, an independently
random choice of offline vertices may violate the feasibility
constraint. To avoid it, we construct a probability distribu-
tion over feasible vertex sets and choose a feasible vertex set
according to the distribution.

Let Sv = {S ⊆ Ev | |S| ≤ bv}. For S ∈ Sv , its charac-
teristic vector is a vector χS ∈ {0, 1}Ev such that (χS)e = 1
if and only if e ∈ S. Consider the convex hull Pv of all char-
acteristic vectors χS (S ∈ Sv). Then the convex hull coin-
cides with the polytope {y ∈ [0, 1]Ev |

∑
e∈Ev

yuv ≤ bv}.
In addition, every vertex in Pv is an integral vector, which
corresponds to a characteristic vector χS for some S ∈ Sv .

For an optimal solution x∗ of LP (Off), define yv,t =
(x∗e,t/pv,t)e∈Ev . Then we can see that yv,t ∈ Pv since x∗
satisfies (3). It follows from well-known Carathéodory the-
orem that yv,t can be decomposed as a convex combination
of at most |Ev| + 1 vertices in Pv . Since every vertex in Pv

corresponds to a characteristic vector of a feasible set, there
exist Sv

k ∈ S and λv,tk (k = 1, . . . , |Ev|+ 1) such that

yv,t =
∑|Ev|+1

k=1 λv,tk χSv
k
, (5)

where
∑

k λ
v,t
k = 1 and λv,tk ≥ 0 for any k ∈ [|Ev|+ 1].

We regard λv,tk (k = 1, . . . , |Ev| + 1) as a probability
distribution over Sv . That is, we choose a set Sk ∈ Sv with
probability λv,tk . Then the probability that u is chosen when

v arrives at t is
∑

k:u∈Sv
k
λv,tk = yv,tuv =

x∗uv,t

pv,t
.

We note that λv,tk ’s can be obtained in polynomial time by
the constructive proof of Carathéodory theorem. See the full
version for the detailed description.

Remark 1. In the above, we use only the fact that a subset
of a feasible set is also feasible. Thus our algorithm would
work even for more general constraints. We note, however,
that it is required to solve linear programming problem over
the convex hull Pv with constraints (1), (2), and (4). This
implies that, to run our algorithm in polynomial time, we
need to describe Pv efficiently. An example is a matroid con-
straint, that is, each online vertex v has a matroid on the
ground set U and v chooses an independent set of the ma-
troid. We note that a cardinality constraint is a special case
of a matroid constraint.

Assigning Offline Vertices We next describe how to de-
cide whether we assign each online vertex u ∈ Sv

k to v.
Let Rd

u,t be the expected profit that u earns at and af-
ter time t, when u has a remaining budget d. By definition,
R0

u,t = 0. Also, for our notational convenience, we assume
that Rd

u,t = 0 for all d > T . If we assigned an online ver-
tex v to u with remaining budget d > 1 at time t, then the
expected profit that u earns at and after t would be

Qd
e,t := qe

(
we +

∑T−t
`=1 Pr[Ce = `]Rd

u,t+`

)
+ (1− qe)Rd−1

u,t+1.
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Algorithm 1: Proposed online algorithm

1: Solve LP (Off) to obtain an optimal solution x∗
2: for t = 1, . . . , T do
3: Let v be a vertex that arrives at time t (if none, skip)
4: Choose Sv

k with probability λv,tk by (5)
5: for u ∈ Sv

k do
6: Let d be the remaining budget of u
7: if Qd

uv,t ≥ Rd
u,t+1 and u is available then

8: Assign u to v
9: else

10: Do nothing for u

Otherwise, the expected profit will be Rd
u,t+1.

In our algorithm, for each vertex u ∈ Sv
k , we compare

Qd
uv,t and Rd

u,t+1. If the former is larger, then this means
that assigning u to v makes larger profit than not assign-
ing, and thus we assign u to v. Otherwise, i.e., if assign-
ing u to v does not make enough profit, then we do not as-
sign u to v. Thus the expected profit for a vertex u ∈ Sv

k is
max

{
Qd

uv,t, R
d
u,t+1

}
.

Since the probability that v arrives at time t and u is cho-
sen by v is x∗e,t for each e = (u, v) ∈ Ev and t ∈ [T ], Rd

u,t
can be represented recursively by

Rd
u,t =

∑
e∈Eu

x∗e,t max
{
Qd

e,t, R
d
u,t+1

}
+
(
1−

∑
e∈Eu

x∗e,t
)
Rd

u,t+1.
(6)

Our algorithm needs to compute Rd
u,t for each d, u ∈ U

and t ∈ [T ]. This can be done efficiently in advance by dy-
namic programming with the above recursive equation (6).

Modifying Instance
We first observe that the total expected profit of the algo-
rithm is equal to

∑
u∈U R

∆u
u,1 . Since LP (Off) gives an up-

per bound on EI∼I [OPT(I)] by Lemma 1, we aim to de-
termine the ratio between

∑
u∈U R

∆u
u,1 and the LP optimal

value
∑

u∈U
∑

e∈Eu

∑
t weqex

∗
e,t. To this end, we fix a ver-

tex u in U , and we evaluate the ratio αu between R∆u
u,1 and∑

e∈Eu

∑
t weqex

∗
e,t. Then the competitive ratio of Algo-

rithm 1 is at least minu αu.
To obtain a lower bound of R∆u

u,1 , we modify a given in-
stance to a simpler one with LP optimal solution x∗. We will
show that the expected profit for the modified instance gives
a lower bound on that for the original instance.

The new instance is defined as follows. We define G′ =
(U ′, V ′;E′) where U ′ = {u}, V ′ = {vt | t ∈ [T ]}, and
E′ = {(u, vt) | t ∈ [T ]}. In this instance, we have only one
offline vertex u, and, at each t ∈ [T ], only one vertex vt may
arrive with edge (u, vt). We set the parameters3 for vt in the
new instance as follows:
• the probability of arrival: p′t =

∑
e∈Eu

x∗e,t;
• the probability of acceptance: q′t =

∑
e∈Eu

x∗e,tqe/p
′
t if

p′t > 0, and q′t = 0 otherwise;

3For ease of notation, we use simpler subscripts, e.g., p′t instead
of puvt,t, as we have only one online vertex at time t.

• the profit: w′t =
∑

e∈Eu
x∗e,tqewe/(p

′
tq
′
t) if p′tq

′
t > 0 and

0 otherwise;
• the distribution of occupation time (denoted by Ct):

Pr[Ct = `] =

∑
e∈Eu

x∗e,tqe Pr[Ce = `]

p′tq
′
t

(` ∈ [T ])

if p′t, q
′
t > 0, and otherwise, Pr[Ct = T ] = 1;

• the capacity: b′t = 1.
The budget ∆u of u is set the same value as in the original
instance. Since x∗ is a feasible solution to LP (Off), it holds
that p′t ≤ 1 and q′t ≤ 1 by (4), and moreover,

T∑
`=1

Pr[Ct = `] =

∑
e∈Eu

x∗e,tqe
∑

` Pr[Ce = `]

p′tq
′
t

= 1.

Note also that
∑

t∈[T ] w
′
tq
′
tp
′
t =

∑
e∈Eu

∑
t weqex

∗
e,t.

Let us execute Algorithm 1 for the modified instance,
where we use p′t instead of LP optimal solution x∗. Let R̃d

t
be the expected profit that u earns on and after t when u has
a remaining budget d at time t. Similarly to (6) for Rd

u,t, it
holds that

R̃d
t = p′t max

{
Qd

t , R̃
d
t+1

}
+ (1− p′t)R̃d

t+1, (7)

where

Qd
t = q′t

(
w′t +

∑T−t
`=1 Pr[Ct = `]R̃d

t+`

)
+ (1− q′t)R̃d−1

t+1 .
(8)

We show that the modification does not increase the profit.

Lemma 2. Rd
u,t ≥ R̃d

t for all d ∈ [∆u] ∪ {0} and t ∈ [T ].

By this lemma, it suffices to lower-bound R̃∆u
1 to obtain

a lower bound on R∆u
u,1 for the original instance.

Analysis for the Unlimited Rejection Case
In this section, we assume that the number of allowed re-
jections is unlimited, that is, ∆u = +∞ for u ∈ U . This
means that we can ignore the constraint (2) in LP (Off).
The main result of this section is to prove that Algorithm 1
is 1/2-competitive for this case. For that purpose, we first
modify the instance as in the previous section, and we will
bound R̃∆u

1 from below.
We observe that, when executing the algorithm for the

modified instance, the remaining budget d of the vertex u
is infinite in the whole process. For simplicity, we denote
Rt = R̃∞t and Qt = Q∞t . Then, by (8), it holds that

Qt = q′t

(
w′t +

T−t∑
`=1

Pr[Ct = `]Rt+`

)
+ (1− q′t)Rt+1.

Moreover, it follows from (7) that

Rt = max {p′tQt + (1− p′t)Rt+1, Rt+1} . (9)

We note that RT = p′T q
′
Tw
′
T . We can make the first term

in (9) simpler as Btw
′
t + AtRt+1 + Bt

∑T−t
`=2 Pr[Ct =

`]Rt+`, where Bt = p′tq
′
t and At = p′tq

′
t Pr[Ct = 1] +
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p′t(1 − q′t) + (1 − p′t) for each t ∈ [T ]. We note that
At = p′tq

′
t Pr[Ct = 1] + 1− p′tq′t = 1−Bt Pr[Ct ≥ 2].

A lower bound on R1 is obtained by minimizing R1 sub-
ject to the condition (9). The minimization problem can be
formulated as a linear programming problem as below. Note
that we do not need to solve the LP, but use it for analysis.4

min R1

s.t. Rt ≥ Btw
′
t +AtRt+1

+Bt

∑T−t
`=2 Pr[Ct = `]Rt+` (t ∈ [T − 1])

Rt ≥ Rt+1 (t ∈ [T − 1])
RT ≥ BTw

′
T

Rt ≥ 0 (t ∈ [T ]),
(10)

Then the optimal value of the above LP gives a lower bound
of R1. The dual of LP (10) is given by

max
∑T

t=1Btw
′
tαt

s.t. α1 + β1 ≤ 1
α2 + β2 ≤ A1α1 + β1

αt + βt ≤
∑t−2

`=1 α`B` Pr[C` = t− `]
+At−1αt−1 + βt−1 (3 ≤ t ≤ T − 1)

αT ≤
∑T−2

`=1 α`B` Pr[C` = T − `]
+AT−1αT−1 + βT−1

αt ≥ 0 (t ∈ [T ])
βt ≥ 0 (t ∈ [T − 1]).

(11)

To show a lower bound on LP (10), we construct a feasible
solution to the dual LP (11). Let γ ≤ 1/2. We set αt = γ for
t ∈ [T ], β1 = 1− γ, β2 = β1 − γ +A1γ, and βt = βt−1 −
γ +At−1γ +

∑t−2
`=1B` Pr[C` = t− `]γ (3 ≤ t ≤ T − 1).

Lemma 3. For 0 ≤ γ ≤ 1/2, αt and βt defined as above
are feasible to (11).

Therefore, αt and βt defined as above are feasi-
ble to (11). The objective value for this solution is∑

tBtw
′
tγ = γ

∑
t p
′
tq
′
tw
′
t. It follows from the LP du-

ality theorem that the optimal value of LP (10) is at
least γ

∑
t p
′
tq
′
tw
′
t. This is maximized when γ = 1/2,

and in this case, R1 is lower-bounded by 1
2

∑
t p
′
tq
′
tw
′
t.

Since
∑

t p
′
tq
′
tw
′
t =

∑
t

∑
e∈Eu

weqex
∗
e,t, we obtain R1 ≥

1
2

∑
t

∑
e∈Eu

weqex
∗
e,t.

Summarizing, we have
∑

u∈U R
∆u
1 ≥ 1

2E[OPT(I)] by
Lemma 1, which implies the following theorem.

Theorem 1. Algorithm 1 is 1/2-competitive for the problem
with unlimited rejections.

Analysis for the Limited Rejection Case
In this subsection, we prove that Algorithm 1 is ∆/(3∆−1)-
competitive for the general case with ∆ = maxu∈U ∆u. As
in the analysis for the unlimited rejection case (the previous
subsection), we present a lower bound on R̃d

t .
We first show the following lemma.

Lemma 4. R̃d−1
t ≥ d−1

d R̃d
t for each d ∈ [∆u] and t ∈ [T ].

4Such LP is called a factor-revealing LP.

By (7) with the above lemma, we have the following rela-
tionships:

R̃d
t ≥ max

{
ptQ̂

d
t + (1− pt)R̃d

t+1, R̃
d
t+1

}
, (12)

where Q̂d
t = qt(wt +

∑
`≥1 Pr[Ct = `]R̃d

t+`) + d−1
d (1 −

qt)R̃
d
t+1.

Recall that it suffices to give a lower bound on R̃∆u
1 to

obtain the competitive ratio of Algorithm 1. By (12), we can
construct a linear program to bound R̃∆u

1 in a similar way to
the previous subsection. See the full version for the details.
Theorem 2. Algorithm 1 is a ∆/(3∆ − 1)-competitive al-
gorithm, where ∆ = maxu∈U ∆u.

We also show that our algorithm can be 1
2

(
1− 1

e2

)
-

competitive in the KIID model with non-reusable agents.
Theorem 3. There is a ( 1

2−1/∆

(
1− 1

e2−1/∆

)
)-competitive

algorithm for the problem in the KIID model with non-
reusable resources, where ∆ = maxu∈U ∆u.

Note that 1
2−1/∆

(
1− 1

e2−1/∆

)
≥ 1

2

(
1− 1

e2

)
> 1

e . Thus,
our algorithm has a better competitive ratio than the 1

e -
competitive algorithm by Nanda et al. (2020).

Experiments
In this section, we present experimental results to evaluate
the performance of Algorithm 1. We describe the experi-
mental environment in the full version.

Instance Setting We focus on the following four settings
(a)–(d); see also the full version for other settings. The set-
ting (a) is the KIID model with non-reusable agents (i.e.,
Pr[Ce = T ] = 1 for all e ∈ E) and ∆u < T (∀u ∈ U ). This
coincides with that of Nanda et al. (2020). The settings (b)–
(d) are the KAD model with reusable agents. In the setting
(b), which is that of Dickerson et al. (2021), offline vertices
always accept assignments (i.e., qe = 1 for all e ∈ E), while
they may reject in (c) and (d). We set ∆u < T (∀u ∈ U ) in
(c) and ∆u = +∞ in (d). For each setting, we generate one
instance and 1000 input sequences, and focus on the average
profits and runtime for evaluation.

Baseline Algorithms We compare our algorithm with the
following baseline algorithms: (1) Random chooses offline
vertices uniformly at random. (2) Greedy assigns at most bv
available offline vertices u to v in the order of w(u,v)q(u,v).
(3) NAdap* is a simple extension of NAdap proposed by
Nanda et al. (2020). NAdap* solves LP (Off) and to assign
a set of offline vertices with probability λv,tk . When bv = 1
for all v, NAdap* coincides with NAdap in the setting (a),
and is also used in experiments in (Dickerson et al. 2021). In
our experiments, we do not evaluate the algorithm by Dick-
erson et al. (2021) due to its impractical assumption.

Synthetic Dataset
We generate synthetic datasets similarly to (Nanda et al.
2020) as follows. We set |U | = 30, |V | = 100, and
T = 200. For each u ∈ U and v ∈ V , an edge (u, v)
exists in E with probability 0.1. For each e ∈ E, we set
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Figure 1: The rates of average profits for synthetic datasets.

qe ∼ U(0.5, 1) (uniform distribution) and we ∼ U(0, 1),
respectively. For each u ∈ U and e ∈ Eu, the distribution
of Ce for reusability is defined as a binomial distribution
B(20, ηu), where ηu ∼ U(0, 1). For the settings (a) and (c),
∆u is drawn uniformly at random from {1, 2, 3} for each
u ∈ U . We set the same bv for all v from {2, 4, 6, 8, 10}.

Figure 1 plots the ratios between average profits and the
LP optimal values. We see that our algorithm (the black solid
line) performs the best in almost all cases. Moreover, it ob-
tains more than half of the LP optimal value, while Ran-
dom and Greedy sometimes fail. NAdap* performs almost
the same as us in (a), but is worse in (b)–(d).

All the algorithms run within less than 1 second for pro-
cessing online vertices. Our algorithm needs additionally
around 6 seconds on average because of the preprocess of
solving LP (Off) and computing the table of Rd

u,t’s. For the
detailed results, see the full version.

Real-world Dataset
We evaluate the performance for instances generated from
the New York City yellow cabs dataset5, which is used also
in existing work such as (Dickerson et al. 2021; Nanda et al.
2020). Using the data in January 2013 we set up a bipartite
graph with |U | = 30 and |V | = 100 and parameters simi-
larly to (Nanda et al. 2020). The detailed set-up is described
in the full version. We set T = 100k (k ∈ [4]) in setting (a)
and T = 288k (k ∈ [4]) in others.

Figure 2 shows the ratios between average profits and the
LP optimal values. Note that our algorithm earns more than
half of the LP optimal value in any cases. In settings (a) and
(c), Random and Greedy cannot obtain even half of the LP
optimal value for a large T . NAdap* performs as well as
ours in settings except (c), in which it performs worse than
our algorithm. Our algorithm may be too careful in (b) and

5http://www.andresmh.com/nyctaxitrips/
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Figure 2: The rates of average profits for real-world datasets.

(d), in which there is no need to care about the rejection con-
straint, and has less performance. On the other hand, since
offline vertices easily become unavailable in (a) and (c), our
algorithm, which considers a long-term effect of the current
assignment, performs the best.

All the algorithms run in less than 1 second for processing
even 1152 online vertices. The preprocess in our algorithm
completes in 400 seconds. Since the preprocess is done be-
fore arrival of online vertices, our algorithm makes decision
as fast as others. For the detailed results, see the full version.

Conclusion
In this paper, we studied the online task assignment problem
with reusable resources in the KAD model, which general-
izes the online bipartite matching in the KAD model. Our
problem incorporates practical conditions arising in applica-
tions such as ridesharing and crowdsourcing. We proposed
an online algorithm that is 1/2-competitive for the unlimited
rejection case, which is tight, and ∆/(3∆ − 1)-competitive
for the general case. Practical usefulness of our algorithm is
confirmed by numerical experiments.

For future work, as solving LP (Off) is time-consuming,
it would be interesting to obtain a constant competitive ratio
without solving the LP. One direction is to use an approx-
imate solution to the LP in our algorithm. Another future
work is to consider a model that, when a task is rejected, it
is allowed to re-assign some other agents.
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