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Abstract

In this paper, we study the problem of eliciting preferences
of agents in the house allocation model. For this we build
on a recently introduced model and focus on the task of
eliciting preferences to find matchings which are necessar-
ily optimal, i.e., optimal under all possible completions of
the elicited preferences. In particular, we investigate the elic-
itation of necessarily Pareto optimal (NPO) and necessarily
rank-maximal (NRM) matchings. Most importantly, we an-
swer an open question and give an online algorithm for elic-
iting an NRM matching in the next-best query model which
is 3/2-competitive, i.e., it takes at most 3/2 as many queries
as an optimal algorithm. Besides this, we extend this field of
research by introducing two new natural models of elicitation
and by studying both the complexity of determining whether
a necessarily optimal matching exists in them, and by giving
online algorithms for these models.

1 Introduction
One of the key settings in the area of matching under prefer-
ences is the so-called house allocation or assignment prob-
lem. In this problem we are given two sets, a set of agents
A and a set of houses H with agents having preferences
over houses. This simple setting has found multiple real
life applications, for instance in the allocation of people
to jobs (Hylland and Zeckhauser 1979), papers to review-
ers (Garg et al. 2010), or students to student dorms (Chen
and Sönmez 2002). Over the years, various solution con-
cepts have been designed for the house allocation problem,
for instance Pareto optimality (Abdulkadiroğlu and Sönmez
1998) (Abraham et al. 2004), popularity (Abraham et al.
2007) or rank-maximality (Irving et al. 2006).

However, most of the work on house allocation problems
assumes the preferences of the agents to be given in their
entirety, while in many real-world applications only partial
preferences might be known and eliciting complete rankings
from agents might be costly.

As an expository (non-serious) example (based on a real
life story), imagine a group of AI researchers meeting in
their office kitchen to celebrate the acceptance of multiple
papers. For this occasion, the researchers decide to eat some
ice pops. However, after opening the freezer, they notice that
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only one ice pop of each kind is left, causing discussion on
how to fairly divide the ice. Quickly, the group agrees that
a rank-maximal allocation would be the fairest they could
currently think of. Now there is just one problem left, due
to time constraints and hunger, the researchers do not want
to all give their whole ranking to each other. Instead, they
agree that they should start off with naming the ice pop they
like the most. But how should they continue after this, and
who should be asked for their second favorite ice?

To deal with this problem Hosseini, Menon, Shah, and
Sikdar (2021) initiated the study of finding matchings that
are necessarily optimal by eliciting partial preferences from
the agents. In their model Hosseini et al. (2021) use so-called
top-k preferences in which each agent has only elicited a
prefix of their true preferences. To obtain these preferences,
they introduce the next-best query model, in which agents
can be asked to reveal the top house they have not revealed
yet. The goal in this setting is to ask as few queries as possi-
ble in order to find a matching that is necessarily optimal,
i.e., optimal under every possible linear extension of the
top-k preferences. The performance of such an elicitation
algorithm is then measured in terms of the so-called com-
petitive ratio, i.e., the ratio between the number of queries
of the algorithm and the number of queries of an optimal
algorithm with knowledge of the complete preferences. As
their main results, Hosseini et al. (2021) gave an O(

√
n)-

competitive elicitation algorithm for finding a necessarily
Pareto optimal matching, showed that no elicitation algo-
rithm for finding a necessarily Pareto optimal matching can
be o(

√
n)-competitive, and proved that no elicitation algo-

rithm for finding a necessarily rank-maximal matching can
be 4

3−ε-competitive for any ε > 0. Further, they conjectured
that an online algorithm with a constant competitive ratio
for eliciting necessarily rank-maximal matchings is possi-
ble, and left this as their most important open question.

Our Results
We contribute to this line of research in the following way.
First, we confirm the conjecture of Hosseini et al. (2021)
and show that an online algorithm with a 3

2 -competitive ra-
tio for eliciting a necessarily rank-maximal matching does
exist in the next-best query model. Further, we show that
this algorithm is optimal and no online-algorithm can have
a competitive ratio better than 3

2 . Besides this, our many fo-
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LB UB LB UB LB UB
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3
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Table 1: Overview over the lower (LB) and upper bounds
(UB) on the possible competitiveness of online algorithms
derived for eliciting Pareto optimal and rank-maximal
matchings in the different query models. Results marked
with † were shown by Hosseini et al. (2021).

cus lies on the hybrid-query model in which agents can be
asked to either elicit a house of a given rank or to return the
rank of a given house. In this model, we give an online al-
gorithm with a constant competitive ratio for eliciting a nec-
essarily rank-maximal matching, as well as, for any ε > 0,
an O(n

1
3+ε)-competitive algorithm for eliciting a necessar-

ily Pareto optimal matching which almost meets the lower
bound of Ω(n

1
3 ). To add on to this, we also give a poly-

nomial time algorithm for determining whether an NRM
matching exists and show that the same problem becomes
NP-complete for Pareto optimal matchings.

Finally, we also introduce the set-compare model in
which agents can be asked to give their top-choice element
out of a set. Here, we show that this model is already power-
ful enough to obtain a 1-competitive elicitation algorithm
for Pareto optimal matchings. We show that determining
whether an NPO matching under this preference model ex-
ists, is NP-complete as well, and that the 3

2 lower bound
obtained for the next-best model is also valid for the set-
compare model. For a brief overview over the competitive-
ness bounds derived in this paper, we refer the reader to Ta-
ble 1.

Related Work
The house allocation or assignment problem is one of
the key matching settings in both computer science and
economics. Besides the aforementioned classical works of
for instance (Bogomolnaia and Moulin 2001; Hylland and
Zeckhauser 1979; Shapley and Scarf 1974) recent papers
on house allocation include work on envy-free house al-
location (Gan, Suksompong, and Voudouris 2019; Beynier
et al. 2019) on diversity constrains (Benabbou et al. 2018),
incorporating cardinal queries in ordinal preferences (Ma,
Menon, and Larson 2021) or closely related to us on Pareto
optimal house allocation under probabilistic uncertainty
(Aziz, Biró, de Haan, and Rastegari 2019).

Rank-maximal matchings were first introduced by Irv-
ing (2003) and were subsequently studied and character-
ized by Irving et al. (2006). Following these two initial pa-
pers, several works studied algorithmic aspects of various
variants of the problem (Kavitha and Shah 2006; Michail
2007; Paluch 2013; Ghosal, Nasre, and Nimbhorkar 2019;
Nasre, Nimbhorkar, and Pulath 2019). Besides this Be-
lahcène, Mousseau, and Wilczynski (2021) studied rank-
maximality (and popularity) in a variant of the house allo-
cation problem, where not only the allocation of the houses,

but also the selection of the allocated houses, i.e., which
houses are matched and which are unmatched, matter. Very
recently Aziz and Sun (2021) used rank-maximality and al-
gorithmic techniques of Irving et al. (2006) for the school
choice problem with diversity constraints.

Besides the aforementioned works by Hosseini et al.
(2021); Aziz et al. (2019) uncertainty in matching markets
has been incorporated in several papers in the literature on
two-sided matchings for instance by Rastegari et al. (2013);
Liu et al. (2014). Besides this, Drummond and Boutilier
(2014) studied preference elicitation for the stable matching
problem or (Genc et al. 2017; Mai and Vazirani 2018; Chen,
Skowron, and Sorge 2019) who studied stable matchings un-
der various aspects of robustness, e.g., stable under proba-
bilistic perturbations or after a certain number of swaps in
the input rankings. Finally, very closely related to our work
is also the study of possible and necessary winners in com-
putational social choice, where given partial preferences of
voters, a candidate winning every election or some election
is required. See (Lang 2020) for a recent survey on this topic.

2 Preliminaries
For a, b ∈ N let [a, b] = {a, a+ 1, . . . , b} and [a] = [1, a].

Throughout the paper, we let A = {a1, . . . , an} denote
our set of agents and H = {h1, . . . , hn} our set of houses.
A matching in our setting is simply a subset M ⊆ A × H
such that no agent and no house appear in more than one
pair. If (ai, hj) ∈ M for some agent ai ∈ A and house
hj ∈ H we say that ai is matched to hj .

Further, we assume that each agent ai ∈ A has a strict
preference list �i over all houses in H . If hj �i hk for two
houses hj and hk we say that ai prefers hj to hk. When hj
appears in the kth place in the preference list of ai we say
that the rank of hj in the preference list of ai is k and write
rank(ai, hj) = k. For a given subset H ′ ⊆ H and agent ai,
we call maxi(H

′) the maximum element of H ′ with regard
to�i, i.e., the house in H ′ which ai likes the most. We refer
to the collection of preference lists as a preference profile�.

We are now ready to define the two problems we investi-
gate in our paper.

Pareto optimality. We begin with the classical notion
of Pareto optimal matchings (Abdulkadiroğlu and Sönmez
1998). Given a matching M , we say that another matching
M ′ dominates M if

• for every agent ai ∈ A it holds that M ′(ai) �i M(ai) or
M ′(ai) = M(ai) ;

• for at least one agent ai ∈ A it holds that M ′(ai) �i

M(ai).

Now, a matchingM is Pareto optimal if there is no matching
M ′ which dominates M .

Rank-maximality. As our second optimality concept we
consider rank-maximality. For a given matching M let
rMl := |{ai ∈ A | rank(ai,M(ai)) = l}| for any l ∈ [n].
Now a matching is rank-maximal if and only if there is no
other matching M ′ and l ∈ [n] such that rMk = rM

′

k for all
k ∈ [l − 1] and rMl < rM

′

l , i.e., the vector (rM1 , . . . , rMn )

5165



is lexicographically maximal among all matchings. If such
a matching M ′ were to exist, we also say that M ′ rank-
dominates M . Thus, a matching M is rank-maximal if it
first maximizes the number of agents matched to their first
choice, subject to that maximizes the number of agents
matched to their second choice and so on.

Elicitation Protocols. Now, we turn to the three different
elicitation protocols we study in our work. For the definition
of the models, we assume that we are given a fixed instance
of the house allocation problem with preference profile �.

• First, we investigate the next-best query model as defined
by Hosseini et al. (2021). In this model, we are only al-
lowed to ask one type of query. Namely, we can query
a single agent, who will return the house they rank the
highest, which has not been revealed yet, i.e., if this is
the kth query asked to the agent, the query returns the
house ranked kth by the agent in �. For any agent a ∈ A
we denote such a query as Q(a) and we refer to the set
of agents revealed to by A as rev(a).

• Next we study the hybrid-query model. Here we can ask
two types of queries. Firstly, a rank queryQ(ai, k) for an
agent ai ∈ A and k ≤ n returns the house hj ∈ H with
rank(ai, hj) = k and secondly a house query Q(ai, hj)
for an ai ∈ A and a house hj ∈ H returns rank(ai, hj).
Similarly to the next-best query model, for any a ∈ A we
refer to rev(a) as the set of houses h ∈ H for which we
know rank(a, h).

• As our third model, we study a less restricted version of
the next-best query model, which we call the set-compare
query model. Here a queryQ(ai, H

′) consists of an agent
ai ∈ A and a subset of houses H ′ ⊆ H and returns
maxi(H

′), i.e., the house ai likes best in H ′. This model
is inspired by recent works of learning rankings in the
area of machine learning (Chen, Li, and Mao 2018; Ren,
Liu, and Shroff 2019; Saha and Gopalan 2019, 2020).

For any of the three aforementioned query models, let
Q1, . . . ,Qk be a sequence of queries with answers
α1, . . . , αk (we also refer to this as partial preferences
throughout the paper). We call a preference profile � con-
sistent with these queries if the output of these queries
on � would be α1, . . . , αk as well. A matching M is
now necessarily Pareto optimal(NPO) (necessarily rank-
maximal(NRM)) for a given sequence of queries if M is
Pareto optimal (rank-maximal) for all preference profiles
consistent with these queries. The goal is now to design an
online-algorithm which can ask queries according to one
of the three aforementioned models and outputs a match-
ing that is either necessarily Pareto optimal or necessarily
rank-maximal according to the queries the algorithm asked.
We assume that the online-algorithm only has access to the
agents, houses and the answers to the queries, but not to the
underlying preferences themselves.

In order to compare the performance of these algorithms,
we measure their competitive ratio in comparison to an op-
timal algorithm which also knows the underlying preference
profile. For any instance, such an optimal algorithm asks the
minimum number of queries, after which a necessarily opti-

mal matching with regard to these queries, asked by the op-
timal algorithm, can be given. We call an online algorithm
α-competitive if for any preference profile � the online al-
gorithm asks at most α ·OPT� queries, where OPT� is the
number of queries of the optimal algorithm on this instance.

Finally, we note that partial preferences in the next-best
query model can be equivalently expressed by an incomplete
preference profile �′ (with induced rank function rank′),
in the hybrid-query model, by an incomplete rank function
rank′ (with induced partial preference profile �′) in which
each agent only lists ranks for a subset of houses, and in the
set-compare model, by having a partial order �′i for each
agent ai.

3 Pareto-optimal Matchings
We start off with Pareto-optimal matchings. Here, Hos-
seini et al. (2021) managed to give an asymptotically tight
O(
√
n)-competitive elicitation algorithm for the next-best

query model. As our main results, we first give a 1-
competitive algorithm for eliciting NPO matchings in the
set-compare model, followed by a classification of NPO
matchings in the hybrid-query model together with an
O(n

1
3+ε)-competitive elicitation algorithm for any ε > 0.

Before we turn to our elicitation algorithms, we quickly
recap the famous serial dictatorship mechanism (Abdulka-
diroğlu and Sönmez 1998) and its relation to Pareto optimal
matchings.

Definition 1 (Serial Dictatorship Mechanism). The serial
dictatorship mechanism takes as input a permutation σ of
the agents together with a preference profile � and returns
a matching SD�(σ) which iteratively matches agent σ(i) to
their most preferred house in � not matched to by an agent
in σ(1), . . . , σ(i− 1).

As shown by Abdulkadiroğlu and Sönmez (1998) the se-
rial dictatorship mechanism is already enough to classify all
Pareto optimal matchings.

Theorem 1 (Abdulkadiroğlu and Sönmez (1998)). Given
a preference profile � a matching M is Pareto optimal if
and only if there is a permutation of the agents σ such that
M = SD�(σ).

This immediately brings us to the set-compare query
model where we can show that this model is already suf-
ficient to simulate the serial dictatorship mechanism, which
allows us to construct a 1-competitive algorithm.

Theorem 2. There exists a 1-competitive algorithm in the
set-compare model for computing a necessarily Pareto-
optimal matching.

Proof. Our algorithm is a simple adaption of the serial dic-
tatorship mechanism to the set-compare model. It works it-
eratively by constructing a matching M . In iteration i let Hi

be the set of houses already matched by M in previous it-
erations. Then in iteration i we query h := Q(ai, H \ Hi)
and add (ai, h) to M . Note that we do not need to query in
iteration n since only one agent/house pair is left. It is easy
to see that for all possible preference extensions, in itera-
tion i agent ai is matched to the currently unmatched house
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they prefer the most. Therefore, this algorithm simulates the
serial dictatorship mechanism and thus produces a (neces-
sarily) Pareto optimal matching. Furthermore, the algorithm
only uses n−1 queries and is therefore 1-competitive, since
at most 1 agent can be left unqueried by the optimal algo-
rithm.

We further note that this proof can also be generalized
to the setting where the set H in each query can contain at
most k houses, e.g., if k = 2 this would mean that only
pair-wise comparisons could be asked to the agents. For a
proof sketch, we refer to the full version. For the hybrid-
query model, we start off with the complexity of determining
whether an NPO matching exists. While it is still polynomial
time checkable if a given matching is NPO, we also show
that it is NP-complete to determine the existence of an NPO
matching.

Theorem 3. Given a matching M and partial preferences
rank′ in the hybrid-query model, it can be determined in
polynomial time whether M is necessarily Pareto optimal.

Proof. This follows fairly simply by adapting the algorithm
of Hosseini et al. (2021) for determining whether a match-
ing M is NPO in the next-best model. We create an aux-
iliary directed graph G = (A,E) in which we add an arc
from agent ai to agent aj if it is possible for ai to pre-
fer M(aj) to M(ai). Then a cycle in G implies that a
matching dominating M exists in a preference extension
of rank′. To be more precise, we add an edge from ai to
aj if M(ai),M(aj) ∈ rev(i) and rank′(ai,M(aj)) <
rank′(ai,M(ai)); or if M(ai) ∈ rev(i),M(aj) /∈ rev(i)
and there is a rank k < rank(ai,M(ai)) with no revealed
house for ai; or if M(ai) /∈ rev(i),M(aj) ∈ rev(i) and
there is a rank k > rank(ai,M(aj)) with no revealed house
for ai; or if M(ai),M(aj) /∈ rev(i). It is easy to see that
there is a preference profile consistent with the partial pref-
erences in which ai prefers M(aj) to M(ai) if and only if
there is an edge from ai to aj . Thus, a cycle in G would in-
deed imply that we could extend the preferences in such a
way, that we could construct a matching M ′ dominating M ,
by swapping the houses along the cycle. On the other hand,
if a matching M ′ dominates M in some preference exten-
sion, there has to be a cycle of agents a1, . . . , ak, ak+1 = a1
with agent ai preferring M(ai+1) to M(ai) for this prefer-
ence extension and thus also forming a cycle in G.

This algorithm also translates into an algorithm for deter-
mining whether a matching M is necessarily Pareto optimal
in the set-compare model, again by adding edges from one
agent to another, if there is any extension where one agent
could prefer the house of the other agent.

Corollary 1. Given a matching M and partial preferences
�′ in the set-compare model it can be determined in polyno-
mial time whether M is necessarily Pareto optimal.

Using the simple algorithm in Theorem 3 we can also give
a succinct classification of necessarily Pareto optimal match-
ings in the hybrid-query model using the Serial Dictatorship
mechanism.

Lemma 1. Given partial preferences rank′ in the hybrid-
query model a matching M is necessarily Pareto optimal
if and only if there is a permutation σ of A such that for
all possible preference extensions � of rank′ it holds that
M = SD�(σ) .

Proof. Let M be an NPO matching and G the graph con-
structed in Theorem 3 for M . Since M is NPO the graph G
is acyclic. Therefore, there exists a topological ordering of
G. Let σ be a reversed topological ordering of G. Then for
every i ∈ [n] and every possible preference extension (and
thus also in�), the agent σ(i) could only possibly prefer the
houses already matched to the agents σ(1), . . . , σ(i − 1) if
they were assigned their partner in M . Therefore, SD�(σ)
would set SD�(σ)(σ(i)) = M(σ(i)). Thus, by induction,
we get that SD�(σ) = M .

This however does not translate to an algorithm for find-
ing an NPO matching or determining that one exists. To
show the NP-completeness of this problem we reduce from
the NP-complete (2,2)-E3-SAT problem, (Berman, Karpin-
ski, and Scott 2003). In an instance of the (2,2)-E3-SAT
problem we are given a set of variables X and a set of
clauses C over X with each clause in C having length ex-
actly 3 such that each variable in X appears exactly twice in
negated form and twice in positive form in C.

Theorem 4. Given partial preferences rank′ in the hybrid-
query model it is NP-complete to determine whether an
NPO matching exists.

The proof of this theorem and all further missing proofs
are in the full version of the paper. Using this result, we can
also show that the same problem is NP-complete in the set-
compare model. For this we simply show how to, given an
instance in the hybrid-query model, construct an instance in
the set-compare model, such that a matching is NPO in the
former model if and only if is also NPO in the latter.

Theorem 5. Given partial preferences �′ in the set-
compare model, it is NP-complete to determine whether a
necessarily Pareto-optimal matching exists.

Even though it is inherently hard to find an NPO matching
given partial preferences in the hybrid query model, we can
still give an elicitation algorithm improving upon the com-
petitive ratio for the next-best query model. Before proving
this, we give a useful lower bound on the number of queries
asked to an agent by using the serial dictatorship characteri-
zation of NPO matchings.

Lemma 2. Let rank′ be partial preferences and M be an
NPO matching in the hybrid-query model. Then there exists
a permutation of agents σ such that for all i ∈ [n] agent σ(i)
has revealed at least min(rank′(σ(i),M(σ(i))), n − i) of
their preference list if M(σ(i)) ∈ rev(σ(i)). If M(σ(i)) /∈
rev(σ(i)) the agent must have revealed at least n−i houses.

Proof. By Lemma 1 we know that there has to be a permu-
tation of agents σ such that M = SD�(σ) for all possi-
ble preference extensions � of rank′. Then since for every
preference extension SD�(σ) matched σ(i) to M(σ(i)) we
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Algorithm 1: Elicitation algorithm for Pareto optimal match-
ings in the hybrid query model
Input: Set of agents A, set of houses H , parameter c0 > 1

3 .
Output: A necessarily Pareto optimal match-
ing.

1: set E ← ∅,M ← ∅, j ← 0
2: for i = 1, . . . , n do
3: for all a ∈ A do
4: E ← E ∪ {{a,Q(a, i)}}
5: end for
6: M ← maximum size Pareto-optimal matching in

(A ∪H,E)
7: if i = dncje then
8: if |M | ≥ n−

⌈
n(cj+1)/2

⌉
then

9: break for loop
10: else
11: j ← j + 1, cj ← (3cj−1 + 1)/2 + c0 − 1
12: end if
13: end if
14: end for
15: H ′ ⊆ H ← subset matched by M
16: A′ ⊆ A← subset matched by M
17: for all a ∈ A \A′ do
18: h← arg minh∈H\H′ Q(a, h)

19: M ←M ∪ {{a, h}}
20: H ′ ← H ′ ∪ {h}
21: end for

know that all houses matched to σ(i + 1), . . . , σ(n) must
be ranked lower than M(σ(i)) in all preference extensions.
Thus, we either know the preferences of all houses matched
to σ(i + 1), . . . , σ(n) and have thus revealed at least n − i
of the preference list of σ(i) or there is at least one house
matched to σ(i + 1), . . . , σ(n) we do not know the prefer-
ence of. Then we must have queried the preferences of all
houses ranked at least as high as M(σ(i)) thus requiring us
to reveal at least rank′(σ(i),M(σ(i))) houses in the prefer-
ence list of σ(i).

The crucial idea behind our Algorithm 1 for eliciting an
NPO matching is now as follows. Assume that we want to
construct an algorithm with competitive ratio nc for some
constant c > 0 and that we know that at least k agents must
be matched to a house of at least rank r with k ≥ r, for
instance by knowing that the maximum matching in the top-
r preferences has size n−k. Then by Lemma 2 we know that
at least k

2 agents must be asked at least min(r, k2 ) queries,
since at least k

2 of the agents matched to a house with a rank
of at least r must be listed between r and n− k

2 by σ. Thus,
we know that any optimal algorithm must ask at least Ω(kr)
queries which allows our online algorithm to ask O(nckr)
queries. The trick behind Algorithm 1 is now to choose these
values of c, k, and r appropriately. To give some further idea
behind the value of 1

3 we show that c0 > 1
3 implies that the

(cj) series in Algorithm 1 is increasing.

Lemma 3. The series (cj)j∈N with cj+1 = (3cj + 1)/2 +

c0 − 1 is increasing if c0 > 1
3 .

Using this Lemma, we can now turn to the correctness of
Algorithm 1.

Theorem 6. For any c > 1
3 Algorithm 1 is an O(nc0)-

competitive algorithm for eliciting a necessarily Pareto op-
timal matching in the hybrid-query model.

As an easy corollary, this implies that for any ε > 0, we
can reach a competitive ratio of O(n

1
3+ε). Further, we can

also show that this competitive ratio is almost asymptotically
optimal by showing that no online algorithm can be o(n

1
3 )-

competitive.

Theorem 7. There is no online algorithm in the hybrid-
query model for computing a necessarily Pareto optimal
matching with a competitive ratio of o(n

1
3 ).

This of course still leaves the possibility of an online al-
gorithm with a competitive ratio of Θ(n

1
3 ).

4 Rank-Maximal Matchings
In this section, we turn to the problem of eliciting rank-
maximal matchings. In their paper, Hosseini et al. (2021)
showed that no online algorithm for the rank-maximal
matching problem in the next-best query setting can be bet-
ter than 4

3 competitive. Here, we give an algorithm that is 3
2 -

competitive and improve the lower bound of Hosseini et al.
(2021) to 3

2 as well, thus showing that the competitive ratio
of our algorithm is tight. However, before defining this algo-
rithm, we first need to recap some results from the classical
work of Irving et al. (2006). First, we recall the definition of
the so-called Dulmage–Mendelsohn decomposition.

Theorem 8 (Irving et al. (2006), Manlove (2013)). Given a
bipartite graphG = (V,E) there exists a partition of V into
three sets O, E ,U such that

• Any maximum matching only contains edges between U
and U as well as between E and O.

• Any maximum matching matches every vertex in U and
in O.

• The cardinality of a maximum matching is |O|+ 1
2 |U|.

• There is no edge between E and E as well as between E
and U .

Further, it is shown by Irving et al. (2006) that E is the
set of vertices which can reach an unmatched vertex in any
maximum matching with an alternating path of even length,
vertices in O can reach an unmatched vertex with an alter-
nating path of odd length, and vertices in U cannot reach any
unmatched vertex using an alternating path. Using the Dul-
mage–Mendelsohn decomposition Irving et al. (2006) de-
fined the following iterative algorithm for finding a rank-
maximal matching. In each iteration i the algorithm main-
tains a graph Gi = (A ∪ H,Ei) and a matching Mi in G.
It is initialized with E0 = ∅,M0 = ∅,O0 = ∅ = U0 and
E0 = A ∪H . For each i = 1, . . . , n the algorithm

• adds all edges of rank i or less that have not been deleted
yet to Ei and computes a maximum matching Mi in
Gi = (A ∪H,Ei) by augmenting Mi−1;
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Algorithm 2: Elicitation algorithm for rank-maximal match-
ings in the next-best model
Input: Set of agents A, set of houses H .
Output: A necessarily rank-maximal matching

1: U ← A {set of unfinished agents}
2: V ← H {set of available houses}
3: E ← ∅, M ← ∅, F ← ∅
4: if |A| = 2 then
5: let h1 = Q(a1), return {{a1, h1}, {a2, h2}}
6: end if
7: for i in 1, . . . n− 1 do
8: for all a ∈ U do
9: h← Q(a)

10: if h ∈ V and {a, h} /∈ F then
11: E ← E ∪ {{a, h}}
12: end if
13: end for
14: augmentM to be a maximum matching in (A∪H,E)
15: compute Dulmage-Mendelsohn decomposition

U , E ,O for M
16: If an agent a ∈ A is in U or O remove a from U
17: If a house h ∈ H is in U or O remove h from V
18: Add any edges between O,O and O,U to F and re-

move them from E
19: end for
20: return M

• computes a Dulmage–Mendelsohn decomposition
Ui, Ei,Oi for Gi

• deletes all edges incident to a node in Ui and Oi with a
rank greater or equal to i, as well as all edges connecting
either two nodes inOi or a node inOi with a node in Ui;

The key observations of Irving et al. (2006) are now that
Lemma 4. • Every rank-maximal matching in the in-

stance restricted to top-k preferences is a maximum
matching in Gk.

• Every Mk is a rank-maximal matching in the instance
restricted to top-k preferences.

Using these observations, we can now simulate the algo-
rithm of Irving et al. (2006) by tracking the set of forbidden
edges F , i.e., the set of edges deleted in the third step of
(Irving et al. 2006) in each iteration, and by not asking any
queries to an agent who has been in Ui orOi for any i ∈ [n].
Please refer to Figure 1 for an example of Algorithm 2 be-
ing executed. To get a good bound on the competitive ra-
tio of Algorithm 2 we observe a simple lemma based on
the Dulmage-Mendelsohn decomposition and its relation to
preferences of agents in a necessarily rank-maximal match-
ing. For a given house allocation instance and agent a ∈ A
let ra := mini∈[n] a /∈ Ei. It is easy to see that for any in-
stance, our algorithm asks exactly ra queries to a. We can
now show that the optimal algorithm must ask at least ra−1
queries to agent a if this agent is matched to a preference the
agent has revealed.
Lemma 5. Given a house allocation instance (A,H,�)
partial preferences�′ in the next-best query model and nec-

a1:h1, h4, h2, h3, h5

a2:h1, h2, h3, h4, h5

a3:h4, h1, h3, h2, h5

a4:h4, h5, h3, h2, h1

a4:h4, h5, h2, h3, h5

Preferences

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

Iteration 1

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

Iteration 2

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

Iteration 3

Figure 1: Exemplary run of Algorithm 2. The edges dis-
played are the edges in E at the end of each iteration. Ver-
tices in black are in E , vertices in green are in O and ver-
tices in red are in U . Edges in red are the edges added in
each iteration and dashed edges are matched by M in each
iteration(Of course other matchings would also be valid).

essarily rank-maximal matchingM for�′ it has to hold that
|rev(a)| ≥ ra − 1 for all agents matched to a revealed pref-
erence by M .

Proof. Towards a contradiction, we assume that there is
some agent a ∈ A with M(a) ∈ rev(a) and |rev(a)| <
ra − 1. Then since M is rank-maximal in all completions
of �′ and thus also in � we know that a ∈ Era−1. Hence,
there has to be an alternating path of even length ρ := a =
a1,M(a1), a2, . . . ,M(ak−1), ak in Gra−1 from a to an un-
matched agent ak. Since ak is unmatched in Gra−1 by M
we know that rank(ak,M(ak)) > ra − 1 in �.

Further, assume that there is some ai with i > 1 such that
rank(ai,M(ai−1)) > rank(ai−1,M(ai−1)). Then, since
ai−1 must be in Ej for all j ∈ [ra − 1] due to ρ , we
know that M(ai−1) must be in Orank(ai−1,M(ai−1)) which
in turn implies that {ai,M(ai−1)} is not an edge in Gra−1.
Thus, rank(ai,M(ai−1)) ≤ rank(ai−1,M(ai−1)) has to
hold in �. Further, we can extend �′ in such a way that
rank(a1,M(ak)) ≤ ra − 1, while keeping all other pref-
erences according to �. For these preferences, we can aug-
ment M with the path

a1,M(ak), ak,M(ak−1), ak−1, . . . a2,M(a1)

and get a matching that rank-dominates M ′ since
rank(ai,M(ai−1)) ≤ rank(ai−1,M(ai−1)), as well
as rank(a1,M(ak)) ≤ ra − 1, while previously
rank(ak,M(ak)) > ra − 1. Therefore, no agent a ∈ A
matched to a revealed preference can have less than ra − 1
of their preference revealed.

This simple lemma is in fact already sufficient to get a
constant upper bound of at most 3 on the competitive ra-
tio of Algorithm 2. To see this, consider the following. We
know from Lemma 5 and the fact that at most one agent
can be matched to an unrevealed preference and that all but
one agent are asked at least min(ra − 1, 1) queries by the
optimal algorithm and exactly ra queries by our algorithm.
Further, the agent matched to the unrevealed preference is
asked at most n− 1 queries by our algorithm. Let A′ be the
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h1

h2

h3

h4
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a7

h6

h7

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

a6

a7

h6

h7

Figure 2: Construction of Theorem 10 for k = 3 and special
agent a4. The basic preferences for ranks 1 and 2 are shown
on the left, with rank 1 edges in black and rank 2 edges in
red and the edge of the special agent in blue. The matching
on the right, is the rank-maximal matching.

set of agents matched to revealed preferences. Then, we can
bound the competitive ratio by∑

a∈A′(ra) + n− 1∑
a∈A′(min(ra − 1, 1))

≤
∑

a∈A′(ra + 1)∑
a∈A′(min(ra − 1, 1))

.

Since for any a ∈ A′ the term ra+1
min(ra−1,1) is at most 3,

this implies the upper bound of 3 on the competitive ratio.
However, we can improve upon this and can even show that
the algorithm is 3

2 -competitive.

Theorem 9. Algorithm 2 is a 3
2 -competitive algorithm for

eliciting an NRM matching in the next-best query model.

Further, we can show that this bound is tight (up to sub-
constant factors) by showing that for any ε > 0, no online
algorithm can have a competitive ratio better than 3

2 − ε.
Theorem 10. No online algorithm in the next-best query
model can achieve a competitive ratio better than 3

2 − ε for
any ε > 0.

Proof. Let k ≥ 2 be an integer and consider the following
instance with n = 2k+ 1. We start off with the basic prefer-
ences of the agents. Here for any i ∈ [k] (with the assump-
tion that 1 − 1 = k), we assume that the basic preference
of agent a2i−1 is h2i−1 � h2(i−1) � · · · � h2k+1 and the
basic preference of agent a2i is h2i−1 � h2i � · · · � h2k+1

with the preferences between the second and the last house
being arbitrary. Further, the basic preference of agent a2k+1

is h2k−1 � h2k � · · · � h2k+1 (just like for agent a2k). For
our adversarial instance, we assume that all but one agent
have their basic preference, with the one special agent in-
stead listing h2k+1 as their third preference. It is easy to
see that in such an instance, a rank-maximal matching must
match k agents to their first choice, k agents to their second
choice and the special agent to h2k+1, since the special agent
is the only one not listing h2k+1 last. The existence of such a
matching easily follows by matching the special agent ai to
h2k+1, any agent aj with j < i to hj and any agent aj with
j > i to hj−1. This is a valid matching and matches exactly

k agents to their first choice, namely all agents with an odd
index that is smaller than i and all agents with an even index
that is larger than i, k to their second choice and ai to their
third choice, thus being rank-maximal. For an example of
this construction, we refer to Figure 2.

Hence, the optimal algorithm can ask 2 queries to each
non-special agent and 3 queries to the special agent and can
thus elicit an NRM matching. An adversary on the other
hand can simply reveal other houses than h2k+1 when asked
for the third house of any agent until the last agent is asked.
Thus, any online algorithm needs to ask every agent at least
3 queries.

Therefore, the competitive ratio of any online algorithm
has to be at least 3(2k+1)

2(2k+1)+1 = 3
2 −

3
8k+6 and thus we get

that no online algorithm can be 3
2 − ε-competitive for any

ε > 0.

With some slight adjustments to the adversary, the same
construction also works for the hybrid-query and set-
compare model, thus also implying a lower bound of 3

2 in
both models.
Corollary 2. In both the set-compare and hybrid query
models, there is no online algorithm with a competitive ratio
of 3

2 − ε for any ε > 0.
We also construct an algorithm, which decides in poly-

nomial time whether a necessarily rank-maximal matching
exists, thus standing in contrast to the NP-hardness of the
same decision problem for Pareto optimal matchings.
Theorem 11. Given partial preferences rank′ in the hybrid-
query model, it can be decided in polynomial time whether
a necessarily rank-maximal matching exists and whether a
given matching M is necessarily rank-maximal.

Finally, we modify Algorithm 2 to get an algorithm with
a constant competitive ratio in the hybrid-query model.
Theorem 12. There exists a 6-competitive algorithm for
eliciting an NRM matching in the hybrid query model.

However, we were not able to find an online algorithm
for the set-compare setting achieving a sublinear competitive
ratio for eliciting a rank-maximal matching.

5 Discussion
There are multiple open questions and possible future re-
search directions which can be derived from this work.

Firstly, there are still gaps left between the upper bounds
and lower bounds we showed in this paper. Most impor-
tantly, it would be very interesting to find out whether there
is an algorithm with a constant (or even sublinear) competi-
tive ratio for eliciting an NRM matching in the set-compare
model. Besides this, the complexity of determining whether
a matching is NRM is also open in the set-compare model.

Secondly, there are several other notions of optimal-
ity left to explore, for instance (Huang et al. 2016) fair
matchings or the general class of profile-based matchings
(Kwanashie et al. 2014) encompassing both fair and rank-
maximal matchings. Of course, it might also be interesting
to study further querying models or models of partial pref-
erences.
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