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Abstract

Jan-ken, a.k.a. rock-paper-scissors, is a cerebrated example
of a non-transitive game with three (pure) strategies, rock,
paper and scissors. Interestingly, any Jan-ken generalized to
four strategies contains at least one useless strategy unless it
allows a tie between distinct pure strategies. Non-transitive
dice could be a stochastic analogue of Jan-ken: the stochastic
transitivity does not hold on some sets of dice, e.g., Efron’s
dice. Including the non-transitive dice, this paper is involved
in dice sets which do not contain some useless dice.
In particular, we are concerned with the existence of a
strongest (or weakest, symmetrically) die in a dice set under
the two conditions that (1) any number appears on at most
one die and at most one side, i.e., no tie break between two
distinct dice, and (2) the mean pips of dice are the same.
We firstly prove that a strongest die never exist if a set of
n dice of m-sided is given as a partition of the set of numbers
{1, . . . ,mn}. Next, we show some sufficient conditions that
the strongest die exists in a dice set which is not a partition
of a set of numbers. We also give some algorithms to find the
strongest die in a dice set which includes given dice.

Introduction
Jan-ken: a model of deterministic win-lose relations
Jan-ken, a.k.a. rock-paper-scissors, is a simple model of a
deterministic win-lose relation. Jan-ken is a symmetric game
consisting of three (pure) strategies, rock, paper and scis-
sors: rock beats scissors, scissors beats paper and paper beats
rock. Thus, the win-lose relation is non-transitive, and the
unique Nash equilibrium is completely mixed, i.e., rational
players choose every strategy uniformly at random.

Interestingly, any Jan-ken generalized to four strategies
contains at least one useless strategy unless it allows a tie
between distinct strategies (Ito 2012). For example, suppose
we introduce the fourth strategy “well” which beats both
rock and scissor and is beaten by paper. Then, rock is use-
less; because both well and rock beat scissors and are beaten
by paper, but well beats rock, thus a rational player uses well
instead of rock. Komatsu and Ono gave an game theoretical
analysis on a generalized Jan-ken, and proved that any Jan-
ken with even number of strategies without ties between dis-
tinct strategies contains at least one game-theoretically use-

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

less strategy, meaning that at least one strategy takes prob-
ability zero in any mixed Nash equilibrium (Komatsu and
Ono 2015).

Non-transitive dice While the win-lose relation is deter-
ministic in Jan-ken, win-lose relations appearing in real life
are often stochastic. Considering it, a dice set may provide a
simple model of stochastic win-lose relation, as a stochastic
counter part of Jan-ken. In fact, it is known that the transi-
tivity does not hold on some dice set, such as Efron’s dice.

For a pair of dice D and D′, let a pair of random vari-
ables XD and XD′ denote independent roles of them, re-
spectively. Then, we say the die D is stronger than D′ (resp.
D is strictly stronger than D′) if Pr[XD > XD′ ] ≥ 1/2
(resp. Pr[XD > XD′ ] > 1/2) holds, and write it byD < D′

(resp. D � D′).
Efron’s dice is a set of dice A = (0, 0, 4, 4, 4, 4),

B = (3, 3, 3, 3, 3, 3), C = (2, 2, 2, 2, 6, 6) and D =
(5, 5, 5, 1, 1, 1)1. Let XA, XB , XC and XD be independent
roles of dice A,B,C and D, respectively. Then, Pr[XA ≥
XB ] = Pr[XB ≥ XC ] = Pr[XC ≥ XD] = Pr[XD ≥
XA] = 2/3 holds, meaning that A � B � C � D � A
holds. In other words, � on the dice set {A,B,C,D} is
NOT transitive. Such a dice set is called non-transitive dice.

Related works Research on non-transitive dice have been
developed in the context of applied probabilities. Non-
transitive relations of stochastic events were studied in the
community voting problem (Black 1958). Upper bounds of
each other’s winning probabilities in some non-transitive
cases were given in (Usiskin 1964). Gardner linked non-
transitivity to Efron’s dice, and began the research of non-
transitive dice (Gardner 1970).

Concerning non-transitive dice, Buhler et al. showed that
a magnitude relationship consisting of repetitive dice could
cover all tournament graphs (Buhler, Graham, and Hales
2018). Then, a dice set given by a regular partition (see Sec-
tion , appearing later) was introduced in (Savage 1994), and
it was used in (Schaefer and Schweig 2017) and (Schaefer
2017) which showed for an arbitrarily given tournament that
there exists a corresponding regular partition dice set. Con-
rey et al. used statistical methods to generate a large number

1The notation of dice here is different from the following sec-
tions because Efron’s dice allow the same number appears on dif-
ferent faces.
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of dice groups to estimate the proportion of non-transitive
dice set (Conrey et al. 2016). Ethan showed the result, there
is a set of dice of regular partition that could be obtained in
any tournament, in another way (Akin 2019).

Contribution For a set of dice D = {A1, . . . , An}, we
say a die D ∈ D is the strongest (resp. the strictly strongest)
if D < D′ (resp. D � D′) holds for any D′ ∈ D \ {D}.
The existence of a strongest die makes any other dice use-
less, which makes the game trivial: a rational player al-
ways chooses the strongest die. In this paper, we are mainly
involved in conditions that a dice set does not contain a
strongest die.

In particular, we are concerned with the existence of a
strongest die in a dice set under the two conditions that (1)
any number appears on at most one die and at most one side,
i.e., no tie break between any pair of distinct dice, and (2)
the mean pips of dice are the same. We firstly show that
the strongest die never exist if a set of n dice of m-sided
is given as a partition of the set of numbers {1, . . . ,mn}
(Theorem 5). Its proof highly depends on the value of mean
pips, which is determined by the condition that the set of
dice is a partition. Thus, we next are concerned with more
general setting on the mean pips, and give some sufficient
conditions that the strongest die exists in a dice set which is
not a partition of a set of numbers (Theorems 11–13). We
also give some algorithms to find a strongest die in a dice set
which includes some given dice (Section ), and we demon-
strate some computational results on the number of strongest
dice with respect to the value of mean pips (Section ).

Preliminary
In this paper, an m-sided die (or simply a die) is a subset of
{1, . . . , k} of order m, where m and k are positive integers
satisfying m ≤ k. For convenience, we define a set function
W : 2{1,...,k} → Z by W (X) =

∑
x∈X x for any subset

X ⊆ {1, . . . , k}.
In this paper, we are concerned with dice sets parame-

terized by a 4 tuple of positive integers (k,m, n,w). Let
A1, A2, . . . , An ⊆ {1, . . . , k} be a set of m-sided dice sat-
isfying the following two conditions:
1. Dice are disjoint, i.e., Ai ∩Aj = ∅ for any i, j (i 6= j).
2. Every die has the same sum of pips w, i.e., W (Ai) = w

for any i ∈ {1, . . . , n}.
If a dice set satisfies the above conditions, then we call it
a (k,m, n,w) dice set. We particularly call the dice set a
regular partition if k = mn, i.e., A1 ∪ A2 ∪ · · · ∪ An =

{1, . . . , k}. Notice that w = 1+···+mn
n = m(mn+1)

2 holds
for a regular partition, by the above condition 2. If k ≥ mn,
we say the dice set is a regular packing, i.e., A1∪A2∪· · ·∪
An ⊆ {1, . . . , k}.

For convenience, we define a set function S : 2{1,...,k} ×
2{1,...,k} → Z by

S(X,Y ) = |{(xi, yj) ∈ X × Y | xi > yj}|
for any disjoint subsets X = {x1, . . . , xs} and Y =
{y1, . . . , yt} of {1, . . . , k}. Since X and Y are disjoint, we
observe the following.

Observation 1. S(X,Y ) + S(Y,X) = st.
Suppose A and B are disjoint m-sided dice. Let XA

and XB be independent rolls of dice A and B, respec-
tively, then Pr[XA > XB ] = S(A,B)

m2 holds. We say A
is strictly stronger than B (resp. A is “stronger than” and
“draws to” B) if S(A,B) > m2

2 (resp., S(A,B) ≥ m2

2

and S(A,B) = m2

2 ), and write A � B (resp., A < B and
A ∼ B). Clearly, it corresponds to Pr[XA > XB ] > 1

2

(resp. Pr[XA > XB ] ≥ 1
2 and Pr[XA > XB ] = 1

2 ). A
(k,m, n,w) dice set {A1, . . . , An} is transitive if ∀i, j, k, if
Ai < Aj and Aj < Ak then Ai < Ak, otherwise the set is
non-transitive.

Schaefer and Schweig showed the following facts, where
Theorem 4 is a generalization of Theorem 2.
Theorem 2 ((Schaefer and Schweig 2017)). For anym ≥ 3,
there exists a (3m,m, 3, w) dice set which is non-transitive.
Theorem 3 ((Schaefer and Schweig 2017)). Let m ≥ 3.
Suppose A,B,C ⊂ {1, . . . , 3m} are m-sided disjoint dice.
Then, S(A,B) = S(B,C) = S(C,A) hold if and only if
W (A) = W (B) = W (C) hold.
Theorem 4 ((Schaefer 2017)). For any n ≥ 3 and m ≥ 3,
there exists a (mn,m, n,w) dice set which is non-transitive.

In the proofs of Theorems 2–4, they represented disjoint
dice A,B,C ⊆ {1, . . . , k} by a string σ of length k with
alphabets a, b, c and x, where the positions of a, b, c in σ
corresponds to the elements of A,B,C while the positions
of x represent that the corresponding elements does not ap-
pear in A,B,C.

Non-transitivity in a Regular Partition
This section establishes the following theorem.
Theorem 5. Let n ≥ 3. Suppose D = {D1, . . . , Dn} is
a regular partition, i.e., a (mn,m, n, m(mn+1)

2 ) dice set. If
there exists a distinct pair of dice A,B ∈ D satisfying A �
B then there exists C ∈ D such that C � A.

Our proof technique is similar to (Schaefer and Schweig
2017; Schaefer 2017). As a preliminary step, we remark the
following fact.
Lemma 6. Let A, B, C be disjoint subsets of {1, . . . ,mn}
where W (A) = W (B) = W (C) = m(mn+1)

2 . Then,
S(A,C) + S(B,C) = S(A ∪B,C) holds.

Proof. Since A, B, C are disjoint, we see S(A,C) +
S(B,C) = |{(a, c) ∈ A × C | a > c}| + |{(b, c) ∈
B × C | b > c}| = |{(x, c) ∈ (A ∪ B) × C | x > c}| =
S(A ∪B,C).

Now, we prove Theorem 5.

Proof of Theorem 5. Firstly, we claim that

S([mn] \ (A ∪B), A) >
(n− 2)m2

2
(1)

holds, where [mn] denotes {1, . . . ,mn}. By Lemma 6,

S([mn] \ (A ∪B), A) = S([mn] \A, A)− S(B,A) (2)
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holds. For convenience, let A = {a1, . . . , am} where a1 <
· · · < am hold. Then,

S([mn] \A,A) =

∣∣∣∣∣
m⋃
i=1

{(x, ai) | x > ai, x ∈ [mn] \A}

∣∣∣∣∣
=

m∑
i=1

(mn− ai − (m− i))

= m2n−
m∑
i=1

ai −
m−1∑
i′=0

i′

= m2n− m(nm+ 1)

2
− m(m− 1)

2

=
(n− 1)m2

2
(3)

holds. The hypothesis A � B implies S(A,B) > m2

2 , and
hence S(B,A) < m2

2 holds by Observation 1. Thus

(2) >
(n− 1)m2

2
− m2

2

=
(n− 2)m2

2

holds, and we obtain the claim (1).
Next, we assume for a contradiction that any D ∈ D \

{A,B} satisfies A < D. In the case, S(D,A) ≤ m2

2 holds
for any D ∈ D \ {A,B}. Since D is a partition of [mn],

S([mn] \ (A ∪B), A) =
∑

D∈D\{A,B}

S(D,A)

≤ (n− 2)m2

2

holds, which contradicts to (1).

We remark in case of n = 2.

Proposition 7. Let D = {A,B} be a regular partition, i.e.,
a (2m,m, 2, m(2m+1)

2 ) dice set, wherem is even. Then,A ∼
B.

Proof. For convenience, let A = {a1, . . . , am} where a1 <
· · · < am hold. Then,

S(A,B) =

∣∣∣∣∣
m⋃
i=1

{(ai, b) | ai > b, b ∈ [2m] \A}

∣∣∣∣∣
=

m∑
i=1

(ai − i)

=
m(2m+ 1)

2
− m(m+ 1)

2

=
m2

2

holds, and we obtain the claim (recall the definition of
S(A,B).

Corollary 8. For any n ≥ 2, any regular partition, i.e.,
(mn,m, n, m(mn+1)

2 ) dice set, does not contain a strictly
strongest die.

Proof. It is trivial from Proposition 7 in case of n = 2. It is
also easy from Theorem 5 in case of n ≥ 3.

Remarks Here, we briefly remark the following proposi-
tion, which is proved in a similar way as Theorem 5.
Proposition 9. Let D = {A,B,C} be a regular partition,
i.e., a (3m,m, 3, m(3m+1)

2 ) dice set, wherem is even. IfA ∼
B then A ∼ C.

Proof. By (3),

S(B ∪ C,A) = m2

holds. Since A ∼ B, S(A,B) = S(B,A) = m2

2 . Thus

S(C,A) = S(B ∪ C,A)− S(B,A) = m2 − m2

2 = m2

2

holds. This implies A ∼ C.

Note that Proposition 9 implies A ∼ B ∼ C ∼ A since
“∼” is transitive by the definition.

Strongest Die in a Regular Packing
This section is concerned with the existence of a strongest
die in a regular packing, which is a generalization from a
regular partition so that k and w are no longer fixed to mn
and m(mn+1)

2 , respectively. In Section , we give some suf-
ficient conditions of the existence of a strongest die with
respect to w. In Section , we give an algorithm to decide
whether a given die is the strongest in any regular packing.
In Section , we demonstrate some results of computer search
of the existence of a strongest die for some k and w, by an
exhaustive search using the algorithm in Section as a sub-
routine.

Sufficient Conditions of the Existence of a (Strictly)
Strongest Die
As a preliminary step, we remark the following fact.
Proposition 10 (condition of the existence of a disjoint pair
of dice). Supposem is a positive even number, and k ≥ 2m.
At least two distinct m-sided dice A and B exist such that
W (A) = W (B) = w if and only if w satisfies m2 + m

2 ≤
w ≤ m(k −m) + m

2 .

Proof. It is not difficult to see that the minimum w∗ is
1+···+2m

2 = m2 + m
2 , achieved when A and B is a

partition of {1, . . . , 2m}. Similarly, the maximum w∗ is
(k−2m+1)+···+k

2 = m(k −m) + m
2 , achieved when A and

B is a partition of {k − 2m+ 1, . . . , k}.
Next, we prove a dice pair A,B exists whenever w satis-

fies the condition. For the minimum w∗ = m2 + m
2 , a pair

A,B is represented by σ(Ω) = ab . . . abba . . . baxx . . . xx.
For any string corresponding to W (A) = W (B) = w, if we
replace abx by xab, or bax by xba, then we obtain a dice set
A′, B′ such that W (A′) = W (B′) = w + 1. This operation
will be ended by σ(Ω) = xx . . . xxab . . . abba . . . ba with
W (A) = W (B) = w∗.
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In the following, we assume for (k,m, n,w) that m is
positive even, k ≥ 2m and w satisfies the condition in
Proposition 10. Then, we establish the following Theo-
rems 11, 12 and 13.

Theorem 11 (existence of the strictly strongest die for large
w). If w satisfies m(k−3)

2 + k < w < m(k − m) + m
2

then there exists an m-sided die A ⊂ {1, . . . , k} with
W (A) = w such that A � D holds for any m-sided die
D ⊆ {1, . . . , k} \ A with W (D) = w, i.e., A is the strictly
strongest die in any (k,m, n,w) dice set containing A, in
the case of w.

Proof. Firstly, we are concerned with the case that m(k−3)
2 +

k < w ≤ m(k−1)
2 + k. Let

A =
{

1, . . . , m2 − 1, q, k − (m
2 − 1), . . . , k

}
where q satisfies k − 3

2m < q ≤ k − 1
2m. Notice that w =

mk
2 +q. It is not difficult to see thatA is the strictly strongest.

Next, we are concerned with the case m(k−1)
2 < w <

m(k −m) + m
2 . Similarly, if

A ⊃
{
k − m

2 , . . . , k
}

then it is not difficult to see that A is the strictly strongest.
We can design such a dieA with any w satisfying m(k−1)

2 <
w < m(k−m)+ m

2 in a similar way as Proposition 10.

Theorem 12 (existence of the strictly strongest die for small
w). Suppose k ≥ 5

2m and m ≥ 4. If w satisfies m2 +
m
2 < w ≤ m2 + 2m then there exists an m-sided die A ⊂
{1, . . . , k} with W (A) = w such that A � D holds for any
m-sided die D ⊆ {1, . . . , k} \ A with W (D) = w, i.e.,
A is the strictly strongest die in any (k,m, n,w) dice set
containing A, in the case of w.

Proof. Firstly, we consider the case that m2 + m
2 < w ≤

m2 + 3
2m− 1. Let w = m2 + m

2 + q for q = 1, . . . ,m− 1.
We prove that

A =
{

m
2 + 1, . . . , m2 +m− 1, m2 +m+ q

}
(4)

is the strictly strongest. For convenience, let A =
{a1, . . . , am} and a1 < · · · < am, i.e., a1 = m

2 + 1, a2 =
m
2 + 2, . . . , am−1 = 3m

2 − 1, am = 3m
2 + q. We can verify

that

W (A) =
m−1∑
i=1

(m
2

+ i
)

+

(
3m

2
+ q

)
=
m2

2
+
m(m+ 1)

2
+ q

= m2 +
m

2
+ q = w (5)

holds.
Assume for a contradiction that there exists a die D ⊆

[k] \ A such that D < A and W (D) = w. For convenience,
let D = {d1, . . . , dm} where d1 < · · · < dm. Then, we
consider the following cases on the die D:

Case 1 a1 > dm
2

.
Case 2 dm

2 −1 < a1 < dm
2

.
Case 3 a1 < dm

2 −1.

In Case 1, D < A requires dm
2 +1 > am. Then,

W (D) ≥
m
2∑

i=1

i+

m
2∑

j=1

(
3m

2
+ q + j

)

=
m

2

(m
2

+ 1
)

+
m

2

(
3m

2
+ q

)
+
m

2

(m
2

+ 1
)

=
m

2

(
5m

2
+ q + 2

)
> (5)

which contradicts to W (D) = w.
In Case 2, D < A requires dm

2
> am−1. Then,

W (D) ≥
m
2 −1∑
i=1

i+

m
2∑

j=0

(
3m

2
+ j

)
=

1

2

(m
2
− 1
) m

2
+
(m

2
+ 1
) 3m

2

+
1

2
· m

2

(m
2

+ 1
)

=
m

4
(4m+ 6)

= m2 +
m

2
+
m

2

(m
2

+ 1
)

≥ m2 +
m

2
+m

> (5)

where the last inequality follows q < m. This contradicts to
W (D) = w.

In Case 3, D < A requires dm
2 −1 > am−1. Then, we can

prove W (D) > w in a similar way as Case 2, and obtain a
contradiction. This proved the claim in the case ofm2+m

2 <

w ≤ m2 + 3m
2 − 1.

Next, we consider the case that w = m2 + 3m
2 + q for

q = 0, . . . , m2 . We prove that

A =
{

m
2 + 2, . . . , 3m2 ,

3m
2 + 1 + q

}
(6)

is the strictly strongest, For convenience, let A =
{a1, . . . , am} and a1 < · · · < am, i.e., a1 = m

2 + 2, a2 =
m
2 + 3, . . . , am−1 = 3m

2 , am = 3m
2 + 1 + q. We can verify

that

W (A) =
m−1∑
i=1

(m
2

+ 1 + i
)

+

(
3m

2
+ 1 + q

)
=
m2

2
+
m(m+ 1)

2
+ q +m

= m2 +
3m

2
+ q = w (7)

holds.
Assume for a contradiction that there exists a die D ⊆

[k] \ A such that D < A and W (D) = w. For convenience,
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let D = {d1, . . . , dm} where d1 < · · · < dm. Then, we
consider the following cases:

Case 0 a1 > dm
2 +1.

Case 1 dm
2
< a1 < dm

2 +1.
Case 2 dm

2 −1 < a1 < dm
2

.
Case 3 a1 < dm

2 −1.

In Case 0, it is not difficult to see that D ≺ A holds.
In Case 1, D < A requires dm

2 +1 > am. Then,

W (D) ≥
m
2∑

i=1

i+

m
2∑

j=1

(
3m

2
+ 1 + q + j

)

=
m

2

(m
2

+ 1
)

+
m

2

(
3m

2
+ q

)
+
m

2

(m
2

+ 1
)

+
m

2

=
m

2

(
5m

2
+ q + 3

)
> (7)

which contradicts to W (D) = w.
In Case 2, D < A requires dm

2
> am−1. Then,

W (D) >

m
2 −1∑
i=1

i+

m
2∑

j=0

(
3m

2
+ 1 + j

)
=

1

2

(m
2
− 1
) m

2
+
(m

2
+ 1
) 3m

2

+
1

2
· m

2

(m
2

+ 1
)

+
(m

2
+ 1
)

=
m

4
(4m+ 8) + 1

= m2 +
3m

2
+
m

2
+ 1

> (7)

where the last inequality follows q ≤ m
2 . This contradicts to

W (D) = w.
In Case 3, D < A requires dm

2 −1 > am−1. Then, we can
prove W (D) > w in a similar way as Case 2, and obtain a
contradiction. Now we obtain the claim.

One may feel the bound on w is too loose, from the proof,
but our some computational results suggest that Theorem 12
may be tight (see Section ).
Theorem 13. If w = m

2 (1+k) then there exists an m-sided
dieA ⊂ {1, . . . , k} withW (A) = w such thatA ∼ D holds
for any m-sided die D ⊆ {1, . . . , k} \ A with W (D) =
w, i.e., A is the strongest die2 in any (k,m, n,w) dice set
containing A, in the case of w.

Proof. Set die A as a1 = 1, a2 = 2, . . . , am
2

= m
2 , am

2 +1 =
t− m

2 + 1, . . . , am = t. Let D ⊂ [k] \A be arbitrary. Then
we can see ∀i, bi > aj when j ≤ m

2 , and ∀i, bi < aj when
j ≥ m

2 . This implies S(A,D) = m2

2 , meaning that D draws
with die A.

2Recall: a die A is strongest if A < D for any D ∈ D.

Deciding Whether a Die Is Strongest
This section discusses an algorithm to decide whether a die
D exists stronger than a given die A such that D and A
are disjoint and W (D) = W (A). We give an algorithm
based on a dynamic programming which runs in O(kmw)
time. The basic idea is to maximize S(D,A) over D ∈({1,...,k}\A

m

)
, and a die D exists strictly stronger than (resp.

draws to) A if S(D,A) > m2

2 (resp. S(D,A) = m2

2 ).
Given a m-sided die A ⊆ {1, . . . , k}, we define vAi ∈

Z ∪ {−∞} for any i = 1, . . . , k by

vAi =

{|{aj ∈ A|aj < i}|, i ∈ {1, . . . , k} \A
−∞, i ∈ A. (8)

Then, we define a function F : Z3 → Z by

F [t, q, p] = max.
t∑

i=1

xiv
A
i

s. t.
t∑

i=1

xiwi = q

t∑
i=1

xi = p

xi ∈ {0, 1} i = 1, . . . , t (9)

for 1 ≤ t ≤ k, 0 ≤ q ≤ w, 0 ≤ p ≤ m, where we de-
fine F [t, q, p] = −∞ if (9) is infeasible. Clearly, F [k,w,m]
provides the maximum of S(D,A).
Lemma 14. F satisfies

F [t, q, p] = max{F [t− 1, q, p],

F [t− 1, q − wt, p− 1] + vAt }. (10)

Proof. Firstly, consider the case that (9) is feasible. Let
x∗t = [x∗1, x

∗
2, . . . , x

∗
t ] be the optimal solution of (9), then

F [t, q, p] = x∗1v
A
1 + x∗2v

A
2 + · · · + x∗t v

A
t . We consider the

two cases x∗t = 0 or x∗t = 1. Suppose x∗t = 0, which
means t is not chosen. Then, it is not difficult to see that
x∗t−1 = [x∗1, x

∗
2, . . . , x

∗
t−1] is a feasible solution and hence

F [t−1, q, p] ≥ x∗1vA1 +x∗2v
A
2 + · · ·+x∗t−1v

A
t−1 = F [t, q, p].

Now we clam F [t−1, q, p] = x∗1v
A
1 +x∗2v

A
2 +· · ·+x∗t−1vAt−1.

Assume for a contradiction F [t− 1, q, p] > x∗1v
A
1 +x∗2v

A
2 +

· · ·+ x∗t−1v
A
t−1. Then there is a solution y∗ such that F [t−

1, q, p] = y∗1v
A
1 + y∗2v

A
2 + · · · + y∗t−1v

A
t−1. It is not diffi-

cult to see that (y∗1 , . . . , y
∗
t−1, 0) is a feasible solution and

F [t, q, p] < y∗1v
A
1 + y∗2v

A
2 + · · ·+ y∗t−1v

A
t−1 + 0vAt . It con-

tradicts to the assumption that x∗ is a optimal solution. Thus
we obtain F [t, q, p] = F [t− 1, q, p] when x∗t = 0.

Suppose x∗t = 1, which means t is chosen. Then, it is not
difficult to see that x∗t−1 = [x∗1, x

∗
2, . . . , x

∗
t−1] is a feasible

solution and hence F [t− 1, q − wt, p− 1] + vAt ≥ x∗1vA1 +
x∗2v

A
2 + · · ·+ x∗t−1v

A
t−1 + x∗t v

A
t = F [t, q, p]. Now we clam

F [t− 1, q − wt, p− 1] = x∗1v
A
1 + x∗2v

A
2 + · · ·+ x∗t−1v

A
t−1.

Assume for a contradiction F [t−1, q−wt, p−1] > x∗1v
A
1 +

x∗2v
A
2 + · · ·+x∗t−1v

A
t−1. Then there is a solution y∗ such that

F [t− 1, q − wt, p− 1] = y∗1v
A
1 + y∗2v

A
2 + · · · + y∗t−1v

A
t−1.
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Algorithm 1: JUDGEMENT-ONE(A, k)

Input:
int k
int array A . a die A ⊂ {1, . . . , k}

Output:
max{S(D,A) | D ⊆ {1, . . . , k} \A, |D| = m}

1: m← Length[A]
2: w ← Sum[A]
3: F [0, q, p]← −∞, (q = 0, . . . , w; p = 0, . . . ,m)
4: F [0, 0, 0]← 0
5: Calculate vAi for i = 1, . . . , k.

6: for t← 0 to k, q ← wt to w, and p← 1 to m do
7: F [t, q, p] = max{F [t−1, q, p], F [t−1, q−wt, p−

1] + vAi }
8: end for

9: return F [k,w,m]

It is not difficult to see that (y∗1 , . . . , y
∗
t−1, 1) is a feasible

solution and F [t, q, p] < y∗1v
A
1 +y∗2v

A
2 +· · ·+y∗t−1vAt−1+vAt .

It contradicts to the assumption that x∗ is a optimal solution.
Thus we obtain F [t, q, p] = F [t − 1, q − wt, p − 1] + vAt
when x∗t = 1.

By the above argument, it is not difficult to see that (10)
holds when (9) is feasible.

In case that (9) is infeasible, both P [t − 1, q, p] and
P [t−1, q−wt, p−1] are infeasible. Otherwise ifP [t−1, q, p]
is feasible and (y∗1 , . . . , y

∗
t−1) is a feasible solution, then

(y∗1 , . . . , y
∗
t−1, 0) is a feasible solution for P [t, q, p], which

contradicts to the assumption that P (t, q, p) is infeasible.
Similarly, P [t− 1, q −wt, p− 1] is feasible, then P (t, q, p)
is also feasible, that leads a contradiction.

The function F is efficiently calculated by the following
algorithm based on a dynamic programming.
Lemma 15. An m-sided die C ⊆ [k] \ A with W (C) = w
exists if and only if F [k,w,m] ≥ 0. If F [k,w,m] >
m2

2 then there exists such a die C satisfying C � A. If
F [k,w,m] ≤ m2

2 thenA � C for any such a dieC. Particu-
larly, if F [k,w,m] = m2

2 there exists such a dieC satisfying
C ∼ A.

Proof. In case of F [k,w,m] > 0, problem (9) has a fea-
sible solution. We write the optimal solution as x∗ =
[x∗1, x

∗
2, . . . , x

∗
k], then, we get F [k,w,m] = x∗1v

A
1 +x∗2v

A
2 +

· · · + x∗kv
A
k satisfying

∑k
i=1 x

∗
iwi = w and

∑k
i=1 x

∗
i = m.

Then, we set C = {ci|x∗i = 1, fori ∈ [1, k]}. Obviously,
it satisfies that |C| = m and

∑
ci∈C ci = w. At the same

time, S(C,A) =
∑

ci∈C v
A
ci = F [k,w,m], and this C is the

optimal correspondence for A.
Accordingly, in the case of F [k,w,m] > m2

2 , there exist
a die C owns S(C,A) > m2

2 as the optimal correspondence
for A. In case of F [k,w,m] = m2

2 , the optimal correspon-
dence for A is S(C,A) = m2

2 , meaning that A beats any C.

Algorithm 2: OUTPUT-DICE(G)

Input:
function G . see (11)

Output:
die D

1: for t← k downto 1 do
2: if G[t, w,m] = 1 then
3: output t,
4: w ← w − wt, m← m− 1
5: end if
6: end for

In the case of 0 < F [k,w,m] < m2

2 , the optimal correspon-
dence for A is S(C,A) < m2

2 , and A can beat anyone else.
Lastly, if F [k,w,m] ≤ 0, the problem (9) is infeasible, and
a die C satisfying |C| = m and

∑
ci∈C ci = w does not

exist.

Theorem 16. By Algorithm 1, we can correctly decide
whether an m-sided die D ⊆ {1, . . . , k} \ A exists such
that S � A. The time complexity is O(kmw).

Algorithm 1 only decides the existence of a die stronger
than A. With an extra operation, we can find a die D in
Lemma 15. We define a function G by

G[t, q, p] =

{
0 if F [t, q, p] = {F [t− 1, q, p]

1 otherwise
(11)

for 1 ≤ t ≤ k, 0 ≤ q ≤ w, 0 ≤ p ≤ m. This G is easily
computed just below line 7 in Algorithm 1. Then, we can
find a desired die by the following algorithm.

Computer Search of Strongest Dice
As discussed in Section , Theorems 11 and 12 imply the
existence a strongest die in any (k,m, n,w) dice set when
w ≤ m2 + 2m or w > m(k−3)

2 + k. That is, if a player is al-
lowed to arbitrarily choose an m-sided die D ⊆ {1, . . . , k}
under the condition that W (D) = w then a rational player
should choose the strongest die. To design a game avoiding
such a situation, what w is appropriate in m2 + 2m < w ≤
m(k−3)

2 + k? We do not know the answer, but this section
demonstrates some results by a computational search.

Precisely, we employ an (exhaustive) depth-first-search
by the following recursive algorithm, where Algorithm 1
(JUDGEMENT-ONE(A, k)) given in Section is used as a
subroutine. The time complexity is O(kwm2k).

Figures 1 and 2 respectively show the results for (k,m) =
(32, 8) and (k,m) = (36, 8). By Proposition 10, respec-
tively w ∈ [68, 196] and w ∈ [68, 228] are the range
where at least two distinct dice can coexist. We imple-
mented Algorithm 3 in C++, and ran it on a machine with
GPU/CPU models: Apple M1, amount of memory: 16G op-
erating system: macOS 11.5, The running times were re-
spectively 2,768 sec. (≈ 46 min.) for k = 32, m = 8,
w ∈ [68, 196], and 16,601 sec. (≈ 4.6 hours) for k = 36,
m = 8, w ∈ [68, 228].
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Algorithm 3: JUDGEMENT-W(w, k,m)

Input:
int m
int k
int w

Output:
all lists A satisfying JUDGEMENT-ONE(A, k) > m2

2
. output all dice which are strictly strongest.

. replace line 7 for the strongest but not strictly.
1: list<int>A;
2: if k ≤ 0 or w ≤ 0 then
3: return
4: end if
5:
6: if w = 0 and A.size = m then
7: if JUDGEMENT-ONE(A, k) > 1

2 then
. replace ‘>’ by ‘=’ for purely “<.”

8: output A
9: end if

10: end if
11:
12: A.push(k)
13: JUDGEMENT-W(w − k, k − 1,m)
14: A.pop()
15: JUDGEMENT-W(w, k − 1,m)

In Figure 1, we observe that w ∈ [81, 141]\{83, 87} does
not allow any strictly strongest die (by dash line3), while a
strongest die A, meaning that A < D for any D ⊆ [k] \
A, exists for w = 81, . . . 93, 100, 132, . . . , 141 in the range
[81, 141] (by solid line4). In this case of k = 32 and m = 8,
Theorem 11 implies that at least one of strictly strongest dice
exist for w ∈ (148, 196) and Theorem 12 implies that at
least one of strictly strongest dice exist for w ∈ (68, 80].
Theorem 13 implies the existence of a strongest die for w =
132, and our computational result shows that the strongest
die is unique (solid line).

Similarly, in Figure 2, we observe that w ∈ [81, 159] \
{83, 87} does not allow any strictly strongest die (by dash
line), while a strongest die A, meaning that A < D for any
D ⊆ [k] \ A, exists for w = 81, . . . 92, 100, 148, . . . , 159
in the range [81, 159] (by solid line). In this case of k = 36
and m = 8, Theorem 11 implies that at least one of strictly
strongest dice exists for w ∈ (168, 228) and Theorem 12
implies that at least one of strictly strongest dice exists
for w ∈ (68, 80]. Theorem 13 implies the existence of a
strongest die for w = 148, and our computational result
shows that the strongest die is unique (solid line).

Concluding Remarks
This paper has investigated the existence of a strongest die in
a (k,m, n,w) dice set. A complete characterization with re-

3the dash line shows the number of dice which are the strictly
strongest.

4the solid line shows the number of dice which are the strongest
but are not the strictly strongest, we here call them “draw dice.”

Figure 1: the numbers of 8-sided draw dice (solid line)
and strictly strongest dice (dash line) in the range of w ∈
[68, 196] with k = 32.

Figure 2: the numbers of 8-sided draw dice (solid line)
and strictly strongest dice (dash line) in the range of w ∈
[68, 228] with k = 36.

spect to w remains as an open question. Another question is
when a directed graph provided by� becomes strongly con-
nected. Game theoretical analysis of non-transitive dice, like
(Rump 2001; Hulko and Whitmeyer 2019) for non-transitive
dice or (Komatsu and Ono 2015) for generalized Jan-ken is
another future work.

In an algorithmic aspect, we gave in Section an algorithm
to find a die D satisfying D � A for a given die A. In Sec-
tion B in appendix (appearing in supplemental pdf file), we
give some extensions of the algorithm such as to find a die
D satisfying B � D � A for some given dice A and B.
It is an open question whether a polynomial-time algorithm
exists to decide the existence of a strongest die for given k
and w.
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