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Abstract

We study the additive distortion of social choice functions in
the implicit utilitarian model, and argue that it is a more ap-
propriate metric than multiplicative distortion when an alter-
native that confers significant social welfare may exist (i.e.,
when the stakes are high). We define a randomized analog of
positional scoring rules, and present a rule which is asymp-
totically optimal within this class as the number of alterna-
tives increases. We then show that the instance-optimal social
choice function can be efficiently computed. Next, we take a
beyond-worst-case view, bounding the additive distortion of
prominent voting rules as a function of the best welfare attain-
able in an instance. Lastly, we evaluate the additive distortion
of a range of rules on real-world election data.

1 Introduction

Distortion is a widely-used metric that captures the worst-
case loss in efficiency of a social choice function (SCF) (An-
shelevich et al. 2021b). It is defined in the implicit utilitarian
model where voters have cardinal utilities for alternatives
but only report ordinal information, e.g., (partial) rankings,
to the social choice function, which then outputs a distribu-
tion over winning alternatives.

Distortion evaluates SCFs according to their worst-case
performance over all implicit utilities and corresponding in-
duced rankings, where performance is measured in terms of
(utilitarian) social welfare, i.e. the sum of all agents’ util-
ities. Specifically, the distortion of a rule is the maximum
ratio between the social welfare of the optimal alternative
and the expected social welfare given by the rule.

While utilitarian social welfare is a defensible basis on
which to evaluate social choice functions (Boutilier et al.
2015), distortion is not always the best tool for the job. In
particular, we might prefer a social choice function which
delivers poor multiplicative guarantees on instances where
no alternative confers significant social welfare, so long as
it performs well on instances where the potential gains are
large. For example, a 1/1/m-approximation is a much more
tolerable loss when the maximum attainable social welfare
is O(logn) (as for a symmetric profile with n alternatives)
than when it is fully Q(n).

Copyright (©) 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5100

Indeed, the canonical instance which demonstrates a
Q(y/m) lower bound on distortion for randomized social
choice functions (Boutilier et al. 2015) allots at most a
1/4/m proportion of the total utility to any alternative. In
practice—for example, in political contests—we often ex-
pect that there are alternatives which confer much larger so-
cial welfare than the average alternative.

To address these concerns we instead study the additive
distortion of randomized social choice functions, which may
be viewed as their worst-case expected regret (Caragiannis
et al. 2017). The additive distortion of a social choice func-
tion is the difference between the maximum social welfare
attainable and the expected social welfare that f delivers, in
the worst case over all implicit utilities. Different profiles in
the implicit utilitarian model can have vastly different max-
imum attainable social welfare, and we posit that, in eval-
uating social choice functions, additive distortion appropri-
ately prioritizes the instances in which the most utility can
be gained or lost. More concretely, consider a fixed profile
of ordinal votes. Multiplicative distortion hedges against bad
performance in the case of consistent utilities which assign
low total welfare for all candidates, which harms its perfor-
mance for consistent utilities that yield high-welfare candi-
dates. Additive distortion, on the other hand, prioritizes good
performance for this latter case.

In its introduction to the social choice setting, distortion
was compared to the distortion of metric embeddings (Pro-
caccia and Rosenschein 2006); this additive distortion is
similarly analogous (Liestman and Shermer 1993).

Although we advocate for additive distortion primarily
on the above grounds, another advantage is that it remains
a meaningful worst-case metric under weaker assumptions
about voters’ utilities. Past work on distortion in the (non-
metric) implicit utilitarian model has made the assumption
that all voters’ utilities are unit-sum (Procaccia and Rosen-
schein 2006; Caragiannis and Procaccia 2011; Boutilier
etal. 2015; Caragiannis et al. 2017; Benade et al. 2021). This
is not a coincidence: with potentially apathetic voters whose
utilities are instead unit-capped, one can show that choosing
an alternative uniformly at random (incurring distortion m)
is optimal, and that the distortion of any deterministic rule is
infinite. However, the assumption that all participating vot-
ers’ total utility is equal is unreasonable in many settings,
and we instead uniformly cap the sum of voters’ utilities at



one (Aziz 2019). As we will show in Section 3, additive dis-
tortion provides a discerning metric by which to evaluate
SCFs in this broader context.

In this work we aim to answer the following questions:

Question 1: What is the best additive distortion at-
tainable for randomized social choice functions?
Question 2: How well do prominent social choice
functions perform with respect to additive distortion,
both in theory and in practice?

Our Results In the pursuit of randomized SCFs with low
additive distortion, we define a natural class of rules which
we call randomized scoring rules, which are the natural ran-
domized analog of positional scoring rules. A randomized
scoring rule (RSR) first computes aggregate scores based
on a scoring vector (as scoring rules do), and then chooses
each alternative with probability proportional its score. Like
scoring rules, RSRs are both intuitive and easy to compute.
The two most prominent RSRs—Randomized Dictatorship,
and the harmonic rule of (Boutilier et al. 2015)—are nearly
distortion-optimal in the normalized utility and metric set-
tings, respectively. When considered together with our re-
sults, we argue that RSRs merit wider attention in the study
of distortion.

In Section 3 we address Question 1. We establish
that Randomized Dictatorship (RD) has additive distortion
1 (1 —1/m) - n, and lower bound the best additive distor-
tion obtainable by any randomized social choice function.
We then present the Best-or-Bust (BoB) rule, which has dis-
tortion at most % -n and asymptotically minimizes additive
distortion within the class of all randomized scoring rules. In
particular, this establishes an asymptotic separation between
deterministic and randomized voting rules with respect to
additive distortion, even as m becomes large. We also show
that the obstructions to minimizing additive distortion are
information-theoretic rather than computational by present-
ing an instance-optimal randomized social choice function
which can be computed efficiently.

In Section 4 we present an alternative metric for prior-
itizing the worst-case performance on instances with high
attainable social welfare, which we call promise distortion.
This is a beyond-worst-case guarantee that some alternative
confers social welfare at least « - n, for some o € [0, 1].
We analyze the extent to which multiplicative promise dis-
tortion circumvents the Q(y/m) lower bound of (Boutilier
et al. 2015), relate it to additive distortion, and provide an
analysis of some social choice functions with respect to both
additive and multiplicative promise distortion.

We answer Question 2 in Sections 4 and 5. In Section 4
we analyze a range of prominent social choice functions
through the lens of additive distortion, providing upper and
lower bounds on their worst-case performance.

In Section 5, we evaluate the performance of our asymp-
totically optimal positional scoring rule against other scoring
rules commonly used in practice, optimal randomized and
deterministic algorithms for additive distortion, and an op-
timal randomized algorithm for (multiplicative) distortion.
We observe that the optimal algorithm for multiplicative dis-
tortion is no longer optimal for additive distortion, and that
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the Plurality RSR performs the best on profiles encountered
in practice, which suggests that, in practice, votes are far
from worst-case instances.

1.1 Related Work

Distortion was first introduced by Procaccia and Rosen-
schein (2006) in the context of deterministic single-winner
social choice functions and normalized utilities. In a later
paper, Caragiannis and Procaccia (2011) proved that the
Plurality rule has a distortion of O(m?), and further work
demonstrated that this is the best possible distortion of any
deterministic voting rule (Caragiannis et al. 2017).

Beyond deterministic social choice functions, Boutilier
et al. (2015) initiated the study of average-case analysis
of randomized social choice functions under distributional
assumptions about utilities. They also showed an Q(y/m)
lower bound on the distortion of any randomized rule in the
worst case, and introduced a pair of voting rules with distor-
tion O(y/m-log™ m) and O(+/m - log m), the latter of which
makes use of the harmonic scoring vector. Caragiannis et al.
(2017) introduced regret to the implicit utilitarian model of
voting; the regret that they study is equivalent to additive dis-
tortion in their unit-sum utility setting. They study choosing
a k-subset of alternatives when social welfare is linear in the
winners. For k£ = 1 and deterministic rules, their straightfor-
ward claims apply to additive distortion also; for random-
ized rules their results imply a % -n lower bound on additive

distortion and a rule with at most 3 (1 — -1;) - n additive
distortion. We show better upper and lower bounds for ran-
domized rules.

Multiplicative distortion has also received attention in the
metric setting. There voters and alternatives sit in a metric
space, distances are costs, and one generally aims to mini-
mize the social cost of a chosen alternative, given only vot-
ers’ rankings. Anshelevich et al. (2018) first studied metric
distortion, demonstrating that the Copeland rule has a dis-
tortion of 5, in stark contrast to the bounds of the unit-sum
utility setting. They also conjectured that the deterministic
lower bound of 3 is tight, and many papers made progress
toward this conjecture (Skowron and Elkind 2017; Goel,
Krishnaswamy, and Munagala 2017; Munagala and Wang
2019; Kempe 2020a) before its ultimate proof by Gkatzelis,
Halpern, and Shah (2020). Here again randomized rules do
better: Anshelevich and Postl (2017) showed that Random-
ized Dictatorship has distortion at most 3 — 2/n and gave a
lower bound of 2 on the distortion of all randomized rules in
the metric setting. Kempe (2020b) and Gkatzelis, Halpern,
and Shah (2020) each present rules attaining 3 — 2/m, and
Anshelevich and Postl (2017) and Fain et al. (2019) study
variants of the randomized dictatorship mechanism. Lastly,
Seddighin, Latifian, and Ghodsi (2021) studies distortion
when some voters may abstain. Unfortunately additive dis-
tortion is uninteresting here because there is no (dis)utility
normalization—additive distortion is made arbitrarily large
by rescaling an instance. For a comprehensive survey of
works concerning multiplicative distortion, see (Anshele-
vich et al. 2021b,a).

Finally, we study a class of SCFs which are the random-
ized analog of positional scoring rules. Young (1975) char-



acterized deterministic scoring functions (with rounds of
tiebreaking) as the SCFs which are anonymous, neutral, and
consistent, and Xia and Conitzer (2008) provide a striking
deterministic generalization of scoring rules. Walsh and Xia
(2012) and Bentert and Skowron (2020) present schemes
which may be viewed as randomized generalizations of scor-
ing rules, where deterministic rules are applied to profiles
formed by subsampling voters and alternatives, respectively.

2 Setting and Definitions

Consider voters N = [n] and alternatives A, with |A| = m.
Each voter ¢ € IV has a ranking o; over A which is a strict
total order; we say that a ; b for alternatives a,b € A if
oi(a) < o;(b). The collection of rankings o = (0;)ien is @
profile; let 3 := S’} denote the collection of all profiles.

Voters have implicit utilities u; € Rf which are consis-
tent with their rankings; that is, if a >; b then u;(a) > u;(b).
We say that u> o for a collection of utilities w if u; is consis-
tent with o; for all voters 7. Weakening the standard unit-sum
implicit utility assumption, we assume:

Assumption 2.1. The total utility of each voter is unit-
capped at )y, , ui(a) < 1 for all voters i.

Given a profile o, a deterministic social choice function
f : X — A chooses an alternative to be the winner for
this profile. Similarly, a randomized social choice function
f X — Ay returns a probability distribution over win-
ners, where A 4 is the probability simplex over A; at elec-
tion time, a winner is drawn randomly from the probability
distribution f(o) € A . Here SCFs are randomized unless
otherwise stated.

Perhaps the most prominent class of deterministic SCFs
are scoring functions, or (positional) scoring rules (SRs).
Each SR f* is given by a scoring vector s € R™. It first
assigns to each alternative a € A the aggregate score S, :=
> iS50 (a)? which is the score associated with each voter ¢’s

ranking of a, summed over all voters. The alternative with
the maximum score is then chosen. Scoring functions can
handle ties either by returning the set of alternatives with
maximal scores, or by using additional scoring vectors to
iteratively break ties.

As outlined above, the multiplicative distortion of a ran-
domized SCF f is the worst-case ratio

maXg¢c 4 sw(a*)
Eonf(oylswia)] ’
over all profiles o and utility profiles w consistent with o,
where sw(a) denotes the social welfare of a: sw(a)

> ien wi(a). Additive distortion is the difference, rather
than the ratio:

dist(f) := max max
[ea ubo

dist™(f) := max max
(e ubo

N —E .
<£{lg}j sw(a™) amf (o) [sw(a)])

For beyond-worst-case distortion, we will use the follow-
ing notion of a utility promise:

Definition 2.2. The utility profile u satisfies an c-promise
on its maximum social welfare if there exists some alterna-
tive a € A for which sw(a) > o - n.
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2.1 Randomized Scoring Rules

Towards the goal of minimizing additive distortion, we find
it compelling to define the following class of SCFs:

Definition 2.3. A randomized scoring rule (RSR) is an SCF
given by a scoring vector s € R'!' — 0. The aggregate scores
S, are calculated in the same way as for scoring rules, and
then each alternative is chosen to be the winner with prob-
ability proportional to its total score. Let RSR denote the
class of all such rules.

Just as the prominent rules Plurality, Borda Count,
and Veto belong to the class of deterministic SRs,
RSR also contains noteworthy rules. One is the
harmonic  scoring vector-based rule of Boutilier
et al. (2015) mentioned above, which is nearly op-
timal for multiplicative distortion. It is given by
s = (1 + Hm/ma 1/2 + H’m/m7 RS 1/m + Hm/m)7
where H,, is the m!® harmonic number. Another is
Randomized Dictatorship, given by s=(1,0,...,0).
Remarkably, RD incurs O(3 — 2/n) multiplicative dis-
tortion in the metric setting, which is also nearly optimal
(Anshelevich and Postl 2017).

In principle, there are many ways in which an aggregate
score vector S can be converted to a probability distribution
over A. Let us call P : R* — 0 — Ay, a probabilizer,
and focus on neutral probabilizers, i.e., the P which com-
mute with all permutations of A. Then a generalized RSR
consists of a pair (s, P) of scoring vector and neutral proba-
bilizer; given o it first computes S according to s, then sam-
ples from the distribution P(S). Let RSR™ denote the class
of all such SCFs. This is indeed a generalization, since any
RSR given by s is a generalized RSR with the probabilizer
P(S)a = Sa/||S||1 for all a, where [|S||1 := >, .4 Sa-
Note that RSR* also contains all (otherwise deterministic)
scoring rules that break ties uniformly at random. For a given
scoring vector s the scoring rule is given by (s, P), where P
returns the uniform distribution over arg max, .S,. In fact,
RSR* also generalizes the “favorite only” rules which have
received recent attention for metric distortion; in addition to
RD these include the “proportional to squares” mechanism
studied in (Anshelevich and Postl 2017) and the Random
Oligarchy mechanism of (Fain et al. 2019).

3 Additive Distortion

We begin by proving a structural lemma which establishes
that, for worst-case additive distortion, voter utilities may be
assumed to be normalized without loss of generality. That is,
even when voters have uniformly capped (instead of normal-
ized) utilities, the worst case instances for additive distortion
are when all voters have utilities summing to 1. The proof
(and all other omitted proofs in this paper) can be found in
the Supplementary Material.

Lemma 3.1. For each SCF f, the utility profile that
witnesses the maximum of dist+( f) is normalized, i.e.,
Yoo uila) =1 forall voters i € [n].

With this lemma in hand, we next show that, in the worst
case, additive distortion can inevitably be quite large.

Claim 3.2. For all SCFs f and m > 3, dist*(f) > =

ﬁ'n.



Proof. We assume that n 3k for some positive integer
k, take m = 3, and let the alternatives be a1, ao, and as.
Consider the profile in which n/3 voters believe a1 > as >~
a3, n/3 voters believe ay > a3 > a1, and n/3 voters believe
as = a1 > as. Let p; be the probability that f chooses a;,
and without loss of generality assume that p; > py > ps.
Now, let the first n/3 voters have utilities w(aq)
u(az) = u(as) = 1/3; the second n/3 voters have utilities
u(az) = u(az) = 1/2 and u(ai) = 0; and the last n/3 voters
have utilities u(as) = 1 and u(a1) = u(az) = 0.
Therefore, we have

dist™(f, 0)

> ) —
2 max sw(a®) — Eqn p(o) [sw(a)]

(= 2. . n
18 R TG T
5

ZE'” (because p1 > p2 2> p3)

Note that this construction straightforwardly extends to
any other m > 3. O

For deterministic rules, these symmetric instances offer
even stronger lower bounds. The following claim was shown
by Caragiannis et al. (2017) in a more general setting of
choosing k winners out of m alternatives; for completeness,
we reproduce the example for the single-winner setting be-
low.

Claim 3.3 (Theorem 1 in (Caragiannis et al. 2017)). For all
deterministic SCFs f and m > 2, dist™ (f) > 1 - n.

Proof. Let m 2 and consider the profile o with voters
equally divided between a; > ag and as > a;. Suppose
that f chooses as. If the first group has utilities u(a;) = 1,
u(az) = 0 and the second has u(a1) = 1/2, u(az) = 1/2,
then we have

1
dist™(f,0) > sw(a1) — sw(az) = 5 M
This again extends to m > 3; for m = 3 the instance
demonstrating Claim 3.2 also gives dist* (f) > 2 -n. O

3.1 Two Alternatives

As a warm-up, we begin with the case when there are m = 2
alternatives. Here we may compute the optimal randomized
SCEF directly.

Claim 3.4. For m = 2 alternatives, the optimal SCF
chooses each a € A with probability proportional to the
number of voters ranking a first.

Note that since this is the optimal SCF, choosing an
equally divided profile of voters yields a lower bound of
dist™(f) > 1/4 for all SCFs f, recovering that of (Cara-
giannis et al. 2017).

It is also noteworthy that this rule is in RSR:

Observation 3.5. For m = 2 the optimal randomized rule
belongs to RSR, given by scoring vector s* = (1,0).

For more than two alternatives, the problem of identifying
optimal SCFs or even optimal RSRs becomes difficult.
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3.2 Plurality and RD

When there are two alternatives, it is intuitive that the best
deterministic rule should choose the alternative most fre-
quently ranked first. In the class of deterministic rules, it
turns out that this is always the best possible, as shown
by Caragiannis et al. (2017) in the general setting of choos-
ing k winners out of m alternatives.

Theorem 3.6 (Theorem 1 in (Caragiannis et al. 2017)). Plu-
rality is an optimal deterministic SCF, with additive distor-
tion % ‘N,

The randomized analog to Plurality is Randomized Dicta-
torship, and Section 3.1 revealed that RD is the optimal SCF
in the two alternative setting, attaining additive distortion
% - n and significantly outperforming Plurality. One might
reasonably hope that RD continues to significantly outper-
form Plurality for m > 3. However, we show that this is not

the case:
Theorem 3.7. RD has additive distortion % (1 — %) - N.

In fact, we must incorporate more than just voters’ first
choices in order to asymptotically improve upon % -n. In
the spirit of Gross, Anshelevich, and Xia (2017), who give
a lower bound of 3 — 2/m on the distortion of favorite-only
mechanisms in the metric setting, the proof of Theorem 3.7
can be modified in order to show that:

Claim 3.8. All generalized RSRs (s, P) € RSR" with s =
(1,0,...,0) have additive distortion at least £ (1 — L) - n.

Since RD is optimal within the class of favorite-only
mechanisms, we continue the search for better rules among
RSRs which score beyond voters’ first choices.

3.3 An Asymptotically Optimal rule in RSR

After the success in Section 3.1, we might hope to derive
optimal RSRs for m > 3 directly. Unfortunately, the natural
formulations of finding such optimal RSRs are nonconvex
max-min optimization problems which we have been unable
to solve. In order to render this problem tractable, we let
a* denote the alternative which maximizes social welfare,
and we ignore the social welfare derived by choosing any
alternative besides a*. This provides an upper bound on the
additive distortion of a given rule. We call this the best-or-
bust bound, and we will use it repeatedly:

dist™(f) < sw(a*)(1 — Pr[f(o) = a*]). (1)

Informally speaking, this bound is apt because in the worst
case and for large m, the non-a* alternatives may evenly
divide the remaining utility of the voters. In this case, the
social welfare attained by choosing an alternative other than
a* is approximately M, and so (1) is asymptotically
tight for RSR as m becomes large.

We formulate the problem of finding the optimal
RSR wunder eq. (1) in (8) below, and prove that
the scoring vector which optimizes this problem is
s* = (25/33,7/33,1/33,0,...,0) for all m > 3. Since it is
the RSR which minimizes the upper bound eq. (1), we call
this the Best-or-Bust (BoB) rule.

This in turn implies the following theorem:



1

Theorem 3.9. Forallm > 3, dist" (BoB) < 1L-n. Itis fur-

16 1

-1
thermore a (1 ) < (1 + ﬁ)—approximation
to the optimal RSR for all m > 3.

We now set about formulating the problem of finding the
RSR which minimizes the right-hand side of Equation (1).
For a given choice of a € [0, 1] and scoring vector s =
(s1,...,8m) for which ||s||; = 1, we may parameterize the
solutions according to the optimum social welfare o - n at-
tainable. Let a* be the alternative for which sw(a*) = « - n;
we will then consider the worst-case probability that the
RSR f* selects a*.

To this end, let z; denote the proportion of voters [n] who
rank a* i*". Note that since rankings are assumed to be com-
plete, ||z|ly = 1. Since f* is a randomized scoring rule,
and the probability of f° choosing a* is less than 1, in the
worst case a* has maximum utility possible given its vec-
tor of ranking proportions x. Therefore we may assume that
sw(a®) =n-Y,; T,

We may then identify the worst-case best-or-bust bound
attained by s for given « by solving the linear program

DT (s,a) :=max a — « Z 8i%;

1
Z —T; =, x e A[m]
Z (3

The objective (2) is (up to scaling by n) equal to the best-
or-bust bound, since sw(a*) = « - n and we have that
sw(a*) Pr[f*(c) = a*] QTN ST = Ny ST,
since ||s]|1 1 by assumption. By optimizing over « as
well, we may similarly characterize dist™ (f*) as the opti-
mal value of a quadratic program:

D*(s) :==max D7 (s,a) 4
0<a<l, &)
where eq. (5) captures that sw(a*) < n, since each voter’s
utilities are normalized to 1.

We might then hope to derive the optimal RSR directly,
by solving s* := arg ming D7 (s). This takes the following
form:

@

s.t. 3)

i Si

s.t.

*

s* :=argmin D (s)
S € A[m].

(6)

s.t.

Finally note that o = « Zi x;; therefore constraints (3)

imply (5). We may also replace o with ), %xl Taken to-
gether, these let us rewrite (4) as follows:

D™ (s) :=max (Z 1:17,) <Z(1 — sL)xz> @)

7 i

st. x€ A[m].

The general problem for which we hope to find optimal
s* is then

Dt ;:mgnmgx (Z 1@) (Z(l — sl)xl> 8)

st 8,7 € Ay
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Two Alternatives and the Harmonic RSR As noted in
Observation 3.5, the optimal SCF when m = 2 is the RSR
given by s = (1, 0). On the other hand, for m = 2 the opti-
mal scoring vector for the formulation (8) is s5 = (2/3,1/3).
This illustrates that the formulation above (and the best-or-
bust bound) indeed only asymptotically capture the problem
of identifying the optimal RSR for each m.

Incidentally, this s5 = (2/3,1/3) coincides with the har-
monic scoring vector for m = 2. However this coincidence
does not continue even for m = 3. Indeed the harmonic
RSR incurs an additive distortion of at least (1 — H,;!) - n,
which is witnessed by the profile in which all voters value
the same alternative with utility 1. Since H,,,;! = o(1), this
incurs additive distortion which is asymptotically the worst
possible.

Three Or More Alternatives One might expect that for
each m there is a distinct randomized scoring rule with scor-
ing vector s}, which optimizes (8). However it turns out that
the same scoring vector s* which (together with a suffix of
trailing zeros) optimizes (8) for all m > 3 simultaneously.

Lemma 3.10. For all m > 3, the unique optimal solution
to (8) is the scoring vector s* = (25/33,7/33,1/33,0,...,0),

obtaining the optimum objective value % ~ 0.407.

This candidate optimizer s* of (8) was first identified via
computer-assisted search. We now prove that it is optimal.
The proof proceeds in two stages. We begin by restricting

the inner problem (7) to a new problem D (s); this gives a
corresponding relaxation of the outer problem (8). We then
argue that, for m = 3, if D (s) < % then s = s*. Given
this s*, we demonstrate that the objective does not increase
when we move from the restricted inner problem to the gen-
eral inner problem (7):

Lemma 3.11. For m = 3, the unique optimal solution to
(8) is the scoring vector s* = (25/33,7/33,1/33), obtaining

objective value 5.

We finally show that this s* does not incur a larger objec-
tive even for m > 3, and that for fixed m > 3 no other s
can do better; this demonstrates that s* optimizes (8) for all
m > 3 simultaneously, proving Lemma 3.10. The proof of
Theorem 3.9 then follows.

3.4 An Additive Distortion Instance-Optimal SCF

Although the RSR derived in Section 3.3 is asymptotically
optimal within RSR, we do not anticipate that it is optimal
among all SCFs, even asymptotically. In pursuit of better
rules, we turn to instance-optimal SCFs.

The instance-optimal SCF from the perspective of addi-
tive distortion, for any given profile o, mimics the minimizer
of dist™ (f, o) over all SCFs f (which for fixed o are prob-
ability distributions over A). In particular,

AddOpt(o) :=arg mfin dist™(f,0)

= min max
PEA A udo

(max sw(a®)

a*€eA

- Eaylou(a)])

We make use of Lemma 3.1 to show the following, which
we empirically test in Section 5:



Algorithm 1: ADDITIVEOPTIMAL

Input: Ranking o € §%
Output: Distribution p* € A,,, minimizing dist™ (p, o)
for a,b € Ado
wh e (00 ) b = a)
end for
wg < (w8)pea foreacha € A
p* + argmin,{D : w? — pTw, < DVa € A,;p € Au}
return p*

Theorem 3.12. For any profile o, Algorithm I computes the
distribution over A which minimizes (expected) additive dis-
tortion in polynomial time.

4 Distortion With a Promise

We began by motivating additive distortion based on the ob-
servation that traditional distortion may not be the best met-
ric when the maximum social welfare attainable is poten-
tially quite large. For a given profile o, additive distortion
provides a soft sort of guarantee with respect to maximum
attainable welfare, in the following sense: for u, u’ >0 where
the maximum attainable welfare is higher under v than u/,
additive distortion measures the extent to which a SCF pro-
vides simultaneous guarantees for both utility profiles simul-
taneously, requiring additively better guarantees for u.

In this section we instead suppose we are promised that
there exists an alternative with high social welfare, and
ask about distortion subject to this promise. We define a-
promise distortion as the distortion over all profiles (o, u)
for which w satisfies the a-promise of Definition 2.2:
Definition 4.1. For « € [0, 1], the a-promise distortion of a
rule f is given by

dist, (f) := max max dist(f, o),
o u>o
ueUqy
where Uy, is the collection of u satisfying the a-promise.

Since a-promise multiplicative distortion and additive
distortion both address the high-stakes setting, our first re-
sult interrelates the two:

Claim 4.2. For any randomized SCF f,
o Ifdist™(f) < B-n, then dista(f) < 3%
o Ifdisty(f) <, then dist™(f) < max(a-n, n —n/y).

In the promise setting, we might also hope to circum-
vent the relatively low-welfare 2(y/m) lower bound given
in (Boutilier et al. 2015). Indeed, the lower bound instance in
(Boutilier et al. 2015) translates directly into a lower bound
on distortion with an c-promise:

Theorem 4.3. For any randomized SCF f,

disto (f) = Q(min{v/m, /a}).

A slight modification of the Stable Lottery Rule fsp g in-
troduced by Ebadian et al. (2022) yields a matching upper
bound for all & > 1/4/m. In particular, the modified rule
samples alternatives from the stable lotteries of Cheng et al.
(2020), which are distributions over committees of size 2/ .
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Theorem 4.4. There is an SCF {, with distq (() = O (1).

4.1 Additive Distortion With a Promise

We now turn to a-promise additive distortion, which is
defined analogously to Definition 4.1. In this subsection,
we are focused on the robustness of each rule, where we
ask how the additive distortion guarantees degrade with the
promise «. Intuitively, this asks “How well do these rules
perform when the winner is clear?” We consider o > 1/2;
for all & < 1/2 we know the additive distortion is at most a.
We begin with three deterministic scoring rules:

e The Plurality Rule (fpyy.) is a deterministic scoring rule

with score vector s = (1,0,...,0).
e The Harmonic Rule (frqrm) 1S a deterministic positional
scoring rule with score vector s = (1,1/2,...,1/m).

e The Borda Rule (fgords) is a deterministic positional
scoring rule with score vector s = (m—1,m—2,...,0).

We begin by showing that Plurality and the Harmonic
Rule are robust for o > 3/4, but once o < 3/4 their addi-
tive distortion becomes as bad as the worst case:

Claim 4.5. For the Plurality Rule ( fpyy:),

0 fora>3/s
L2 fora < 3/4.

diStl_ (fPlur) = {

Claim 4.6. For the Harmonic rule ( fgarm ),

. =0 fora>3/
d t+ arm -

isto (frarm) {2 s for a < 3/4.
Claim 4.7. For the Borda rule (fporda),

=0
>m—1_ 1

fora >
fora <

m2

diStI (fBorda) {

Plurality and the Harmonic Rule are robust for o« > 3/4,
which is the largest possible interval of o on which any
SCF can guarantee an a-promise additive distortion of 0. For
smaller « the situation for the Borda Rule is much worse. In
particular, Borda ceases to be robust as soon as « dips below
mT’l. Lastly, we consider Randomized Dictatorship:

Claim 4.8. For Randomized Dictatorship,
dist (RD)
{2a(1—a) — % fora > % (1—&—%)
%(1—%) fora<%(1+%).

In particular, as we might expect for randomized rules,
additive distortion decays smoothly towards 0 as o« — 1.

5 Experiments

We evaluated the performance of various SCFs on four
datasets of election data from PrefLib (Mattei and Walsh
2013): Vermont consists of data from public office elections
in 2014 (15 different races, with 3 to 6 candidates and 532
to 1960 voters per race); Glasgow consists of data from the
2007 Glasgow City Council elections (21 wards, with 8 to
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Figure 1: Additive distortion of voting rules on the Vermont, Glasgow, Debian, and APA datasets, normalized by n.

13 candidates and 5199 to 12744 voters per ward); Debian
consists of votes for the Debian logo (8 elections, with 4 to
9 alternatives and 142 to 504 voters per election); and APA
consists of election data from the American Psychological
Association between 1998 and 2009 (12 elections, with 5
alternatives and 13318 and 20239 voters).

We also considered seven SCFs. Four of them are random-
ized scoring rules: Randomized Dictatorship has score vec-
tor s = (1,0,...) (Abdulkadiroglu and S6nmez 1998); RSR
Borda has score vector s = (m—1,m—2,...,0); RSR Har-
monic has score vector s = (1,1/2,...,1/m); and BoB has
score vector s = (25/33,7/33,1/33,0,...). The other three
are instance-optimal rules: Det Add OPT is the determinis-
tic rule that minimizes additive distortion (Caragiannis et al.
2017); Mult OPT is the randomized rule that minimizes mul-
tiplicative distortion (Boutilier et al. 2015); and Add OPT is
the randomized rule that minimizes additive distortion based
on Theorem 3.12.

Notably, all data was presented as a complete ranking that
allowed ties between alternatives. Therefore in computing
the rules, we split weight equally in the RSRs (i.e., if & alter-
natives were tied, they split the total score that the rule allo-
cates over those k positions) and enforced the constraint that
the implicit utility assigned to all tied alternatives is equal.

The additive distortions of each voting rule for each
dataset are depicted in Figure 1. BoB generally outperforms
Det Add OPT on all datasets, meaning that it results in
lower additive distortion than any deterministic rule, which
is why we compare its performance to the other random-
ized scoring rules RD, RSR Borda, and RSR Harmonic.
We find that RD consistently outperforms BoB on the four
datasets, while RSR Borda and RSR Harmonic both do
worse. This is surprising, since Theorem 3.9 demonstrates
that BoB is asymptotically worst-case optimal among the
class of all RSRs. This suggests that real-life instances may
not resemble worst-case additive distortion instances, and
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that more “imbalanced” randomized positional scoring rules
(with more precipitous drop-offs in scores after the first po-
sition) result in lower additive distortion in practice.

Notably, Caragiannis et al. (2017) performed experiments
in which Det Add OPT performed the best of the (determin-
istic) rules that they tested; the fact that both BoB and RD
outperform Det Add OPT in terms of worst-case additive
distortion is surprising and encouraging.

Additionally, there is a separation between the perfor-
mance of Add OPT and Mult OPT (particularly for the
Debian and APA datasets), which suggests that existing
distortion-optimal rules do not optimize for additive distor-
tion. Despite this separation, Mult OPT often outperforms
the randomized positional scoring rules we implemented.

Furthermore, note that Add OPT significantly outper-
forms all rules on all elections. Encouragingly, calculating
Add OPT is extremely efficient due to Theorem 3.12, and
we expect that this approach is scalable to much larger elec-
tions. In comparison, Mult OPT took on the order of thou-
sands of times longer than the others we tested.

6 Discussion

There are many exciting directions for future work. Most
immediately, it would be nice to close the gap between our
upper and lower bounds of % - n and &1 - n for random-
ized rules. It would also be interesting to explore the additive
distortion guarantees of more rules (especially randomized
rules) in the a-promise setting. We believe that is also worth
further exploring the class of rules RSR™, since it features
rules that perform remarkably well with respect to additive
and multiplicative distortion in a range of settings. Finally, it
would be interesting to characterize the instances on which
multiplicative and additive distortion come apart; this could
help to determine which distortion is the right fit in various
settings.
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