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Abstract
Over the last few years, researchers have put significant ef-
fort into understanding of the notion of proportional repre-
sentation in committee election. In particular, recently they
have proposed the notion of proportionality degree. We study
the complexity of computing committees with a given propor-
tionality degree and of testing if a given committee provides a
particular one. This way, we complement recent studies that
mostly focused on the notion of (extended) justified repre-
sentation. We also study the problems of testing if a cohesive
group of a given size exists and of counting such groups.

1 Introduction
If we consider a parliamentary election where about 45%
voters support party A, 30% support party B, and the
remaining 25% support party C, then there are well-
understood ways of assigning seats to the parties in a pro-
portional manner. However, if instead of naming the sup-
ported parties the voters can approve each candidate individ-
ually, e.g., depending on non-partisan agendas, the situation
becomes less clear. While such free-form elections are not
popular in political settings, they do appear in the context of
artificial intelligence. For example, they can be used to or-
ganize search results (Skowron et al. 2017), assure fairness
in social media (Chakraborty et al. 2019), help design online
Q&A systems (Israel and Brill 2021), or suggest movies to
watch (Gawron and Faliszewski 2022). As a consequence,
seeking formal understanding of proportionality in multi-
winner elections is among the most active branches of com-
putational social choice (Lackner and Skowron 2020). In
this paper we extend this line of work by analyzing the com-
putational complexity of one of the recent measures of pro-
portionality, the proportionality degree (Aziz et al. 2018).

We consider the model of elections where, given a set of
candidates, each of the n voters specifies which candidates
he or she approves, and the goal is to choose a size-k subset
of the candidates, called the winning committee. Since the
committee is supposed to represent the voters proportion-
ally, Aziz et al. (2017) proposed the following requirement:
For each positive integer ` and each group of ` · n/k voters
who agree on at least ` common candidates, the commit-
tee should contain at least ` candidates approved by at least
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one of the group’s members. In other words, such a group,
known as an `-cohesive group, deserves at least ` candidates,
but it suffices that a single member of the group approves
them. If this condition holds, then we say that the committee
provides extended justified representation (provides EJR; if
we restrict our attention to ` = 1, then we speak of pro-
viding justified representation, JR). The key to the success
of this notion is that committees providing EJR always exist
and are selected by voting rules designed to provide pro-
portional representation, such as the proportional approval
voting rule (PAV) of Thiele (1895). Thus many researchers
followed Aziz et al. (2017) either in defining new variants
of the justified representation axioms (Sánchez-Fernández
et al. 2017; Peters, Pierczynski, and Skowron 2020) or in
analyzing and designing rules that would provide commit-
tees satsifying these properties (Aziz et al. 2018; Sánchez-
Fernández et al. 2021; Brill et al. 2017). Others study these
notions experimentally (Bredereck et al. 2019).

Yet, JR and EJR are somewhat unsatisfying. After all, to
provide them it suffices that a single member of each co-
hesive group approves enough committee members, irre-
spective of all the other voters. To address this issue, Aziz
et al. (2018) introduced the notion of proportionality degree
(PD). They said that the satisfaction of a voter is equal to
the number of committee members that he or she approves
and they considered average satisfactions of the voters in
cohesive groups. More precisely, they said that a commit-
tee has PD f , where f is a function from positive integers
to nonnegative reals, if for each `-cohesive group, the aver-
age satisfaction of the voters in this group is at least f(`).
So, establishing the PD of a rule gives quantitative under-
standing of its proportionality, whereas JR and EJR only
give qualitative information. That said, Aziz et al. (2018)
did show that if a committee provides EJR then it has PD at
least f(`) = `−1/2, so the two notions are related. Further,
they showed that PAV committees have PD f(`) = ` − 1
and Skowron (2021) established good bounds on the PDs of
numerous other proportionality-oriented rules. In particular,
their results allow one to order these rules according to their
theoretical guarantees, from those providing strongest guar-
antees to those providing the weakest.

We extend this line of work by studying the complexity of
problems pertaining to the proportionality degree:

1. We show that, in general, deciding if a committee with
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a given PD exists is both NP-hard and coNP-hard and
we suspect it to be NPNP-complete (but we only show
membership). Nonetheless, we find the problem to be
NP-complete for (certain) constant PD functions. These
results contrast those for JR and EJR, for which analo-
gous problems are in P.

2. We show that verifying if a given committee provides a
given PD is coNP complete, which is analogous to the
case of EJR. We also provide ILP formulations that may
allow one to compute PDs in practice (thus, one could
use them to establish an empirical hierarchy of propor-
tionality among multiwinner voting rules).

3. We show that many of our problems are polynomial-time
solvable for the candidate interval and voter interval do-
mains of preferences (Elkind and Lackner 2015) and are
fixed-parameter tractable for the parameterizations by the
number of candidates or the number of voters.

We also study the complexity of finding and counting cohe-
sive groups. We omit some proofs due to restricted space.

2 Preliminaries
For an integer t, we write [t] to denote the set {1, . . . , t}. An
election E = (C, V ) consists of a finite set C of candidates
and a finite collection V of voters. Each voter v ∈ V is
endowed with a set A(v) ⊆ C of candidates that he or she
approves. Analogously, for each candidate c we write A(c)
to denote the set of voters that approve c; value |A(c)| is
known as the approval score of c. The election considered in
the A(·) notation will always be clear from the context.

Multiwinner Voting Rules. A multiwinner voting rule is
a function that given an election E = (C, V ) and a commit-
tee size k ≤ |C| outputs a family of winning committees,
i.e., a family of size-k subsets of C. (While in practice some
form of tie-breaking is necessary, theoretical studies usually
disregard this issue.) Generally, we do not focus on specific
rules, but the following three provide appropriate context for
our discussions (we assume that E = (C, V ) is some elec-
tion and we seek a committee of size k):

1. Multiwinner Approval Voting (AV) selects size-k com-
mittees whose members have highest total approval
score. Intuitively, AV selects committees of individually
excellent candidates.

2. The Approval-Based Chamberlin–Courant rule (CC) se-
lects those size-k committees that maximize the num-
ber of voters who approve at least one member of the
committee. Originally, the CC rule was introduced by
Chamberlin and Courant (1983) and its approval variant
was discussed, e.g., by Procaccia, Rosenschein, and Zo-
har (2008) and Betzler, Slinko, and Uhlmann (2013). CC
selects committees of diverse candidates, that cover as
many voters as possible.

3. Proportional Approval Voting (PAV) selects those
size-k committees S that maximize the value∑

i∈V w(|S ∩A(i)|), where for each natural num-
ber t we have w(t) =

∑t
j=1

1/j. PAV selects committees

that, in a certain sense, represent the voters proportion-
ally; see, e.g., the works of Brill, Laslier, and Skowron
(2018) and Lackner and Skowron (2021). The rule is due
to Thiele (1895).

All the above rules belong to the family of Thiele rules
(Thiele 1895; Lackner and Skowron 2021), but there are also
many other (families of) rules. For more details, we point to
the survey of Lackner and Skowron (2020). Classifying mul-
tiwinner rules as focused on individual excellence, diversity,
or proportionality is due to Faliszewski et al. (2017).

(Extended) Justified Representation. Let E be an elec-
tion with n voters and let k be the committee size. For
an integer ` ∈ [k], called the cohesiveness level, we say
that a group of voters forms an `-cohesive group if (a) the
group consists of at least ` · n/k voters, and (b) there are at
least ` candidates approved by each member of the group.
Intuitively, `-cohesive groups are large enough to demand
representation by at least ` candidates (as they include a
large-enough proportion of the voters) and they can name
these ` candidates (as there are at least ` common candidates
that they approve). Thus many proportionality axioms focus
on satisfying such demands. In particular, we are interested
in the notions of (extended) justified representation, due to
Aziz et al. (2017).

Definition 1. Let E = (C, V ) be an election, let k be a
committee size, and let S be some committee:

1. We say that S provides justified representation (JR) if
each 1-cohesive group contains at least one voter who
approves at least one member of S;

2. We say that S provides extended justified representation
(EJR) if for each ` ∈ [k], each `-coheseive group con-
tains at least one voter that approves at least ` members
of S.

Researchers also consider the notion of proportional jus-
tified reperesentation (PJR) due to Sánchez-Fernández et al.
(2017). Recently, Peters, Pierczynski, and Skowron (2020)
also introduced the axiom of fully justified representation
(FJR). JR is the weakest of these (in the sense that if a com-
mittee satisfies any of the other ones then it also provides
JR), followed by PJR, EJR, and FJR. We focus on JR and
EJR as they will suffice for our purposes. For every elec-
tion and every committee size there always exists at least
one committee providing EJR (thus, also JR). Indeed, all CC
committees provide JR and all PAV committees also provide
EJR (Aziz et al. 2017), but AV committees may fail to pro-
vide (E)JR.

Proportionality Degree. We mostly focus on the no-
tion of a proportionality degree of a committee, introduced
by Aziz et al. (2018). Let us consider some voter v and a
committee S. We define v’s satisfaction with S as |A(v)∩S|,
i.e., the number of committee members that v approves.

Definition 2. Let E be an election, let S be a committee
of size k, and let f : [k] → R be a function. We say that S
has proportionality degree f if for each `-cohesive group
of voters X (where ` ∈ [k]) the average satisfaction of the
voters in X is at least f(`).
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In other words, if a committee has a certain proportional-
ity degree f for a given election, then members of the co-
hesive groups in this election are guaranteed at least a cer-
tain average level of satisfaction. We are interested in several
special types of proportionality degree (PD) functions:

1. We say that f is a nonzero PD if f(`) > 0 for all `.
2. We say that f is a unit PD if f(`) = 1 for all `.
3. We say that f is (nearly) perfect PD if f(`) = ` (if

f(`) = `− 1) for all `.

One can verify that every CC committee (or, in fact, every
JR committee) has nonzero PD, and Aziz et al. (2018) have
shown that every PAV committee has nearly perfect PD. It is
also known that if a committee provides EJR then its propor-
tionality degree f satisfies, at least, f(`) = `−1/2 (Sánchez-
Fernández et al. 2017). Yet there exist elections for which
no committee has unit PD or perfect PD (Aziz et al. 2018).
For a detailed analysis of proportionality degrees of various
multiwinner rules, we point to the work of Skowron (2021).

Computational Complexity. We assume knowledge of
classic and parameterized computational complexity theory,
including classes P and NP, the notions of hardness and
completeness for a given complexity class, and FPT algo-
rithms. Occasionally, we also refer to the coNP class and
to higher levels of the Polynomial Hierarchy. Given a prob-
lem X from NP, where we ask if a certain mathematical ob-
ject exists, we write #X to denote its variant where we ask
for the number of such objects. Such problems belong to the
class #P. It is commonly believed that if a counting problem
is #P-complete then it cannot be solved in polynomial time.
We mention that #P-completeness is defined via Turing
reductions (Valiant 1979); this contrasts NP-completeness,
defined via many-one reductions.

Computational Aspects of JR, EJR, and PD. There are
polynomial-time algorithms that given an election and a
committee size compute committees which provide JR (Aziz
et al. 2017) or EJR (Aziz et al. 2018). On the other hand,
given a committee it is easy to verify if it provides JR, but
doing the same for EJR is coNP-complete (Aziz et al. 2017).
In this paper we answer analogous questions for the case of
the proportionality degree.

3 Finding and Counting Cohesive Groups
As cohesive groups lay at the heart of JR, EJR, and PD,
we start our discussion by analyzing the hardness of finding
them. More precisely, we consider the following problem.

Definition 3. An instance of the COHESIVE-GROUP prob-
lem consists of an election E, a committee size k, and a pos-
itive integer `. We ask if E contains an `-cohesive group.

Somewhat disappointingly, this problem is NP-complete.
This follows via a reduction inspired by that provided by
Aziz et al. (2017) to show that testing if a given committee
provides EJR is coNP-complete (we include the proof for
the sake of completeness, as some of our further hardness
proofs follow by reduction from COHESIVE-GROUP).

Theorem 1. COHESIVE-GROUP is NP-complete

Proof. We observe that COHESIVE-GROUP is in NP: Given
an election E with n voters, committee size k, and cohesive-
ness level `, it suffices to nondeterministically guess a group
of at least ` · n/k voters and check that the intersection of
their approval sets contains at least ` candidates.

To show that the problem is NP-hard, we give a
reduction from the NP-complete problem BALANCED-
BICLIQUE (Johnson 1987). The input for the latter consists
of a bipartite graph G and a nonnegative integer k. The ver-
tices of G are partitioned into two sets, L(G) and R(G). We
write E(G) to denote the set of G’s edges (each edge con-
nects a vertex from L(G) with one from R(G). We ask if
there is a size-k subset of L(G) and a size-k subset of R(G)
such that each vertex from the former is connected with each
vertex from the latter (such two sets are jointly referred to as
a k-biclique of G).

Given an instance of BALANCED-BICLIQUE, we form an
instance of COHESIVE-GROUP as follows. We construct an
election E′, where R(G) is the set of candidates and L(G)
is a collection of voters. A voter `i ∈ L(G) approves a
candidate rj ∈ R(G) if `i and rj are connected in G. We
extend E′ by adding max(||L(G)| − |R(G)|, 0) candidates
not approved by any voter. We set the committee size to be
k′ = |L| and the desired cohesiveness level to be `′ = k.
This completes the construction.

Note that each `′-cohesive group in our election consists
of at least `′ |L|k′ = k |L||L| = k voters who approve at least k
common candidates. Focusing on exactly k voters and k can-
didates, we see that such a group exists if and only if G has
a k-biclique. This completes the proof.

On the positive side, Aziz et al. (2017) gave a polynomial-
time algorithm for deciding if an election contains a 1-
cohesive group (we refer to this variant of the problem as
ONE-COHESIVE-GROUP): It suffices to check if there is a
candidate c for whom |A(c)| ≥ n/k (where n is the total
number of voters and k is the committee size); if so, then
the voters from A(c) form a 1-cohesive group and if no such
candidate exists then there are no 1-cohesive groups.

Corollary 1 (Aziz et al. (2017)). ONE-COHESIVE-GROUP
is in P.

We complement the above results by considering the com-
plexity of the #COHESIVE-GROUP problem, i.e., the prob-
lem of counting cohesive groups. An efficient algorithm for
this problem would imply an efficient uniform sampling pro-
cedure (Jerrum, Valiant, and Vazirani 1986), which would be
useful, e.g., to experimentally study the distribution of cohe-
sive groups in elections.1 Naturally, #COHESIVE-GROUP is
intractable (namely, #P-complete), since even deciding if a
single cohesive group exists is hard. More surprisingly, the
same holds for 1-cohesive groups.

Theorem 2. #ONE-COHESIVE-GROUP is #P-complete

1Formally, an approximate counting algorithm would suffice to
obtain a nearly uniform sampling procedure. Our results do not
preclude existence of such an algorithm, but we leave studies in
this direction for future work.
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An intuition as to why finding a single 1-cohesive group is
easy but counting them is hard is as follows. Using the argu-
ment from Corollary 1, for each candidate we can count (in
polynomial time) the number of 1-cohesive groups whose
members approve this candidate. Yet, if we simply added
these values, then some groups could be counted multiple
times. If we used the inclusion-exclusion principle, then we
would get the correct result, but doing so would take expo-
nentially many arithmetic operations.

4 Computing a Committee with a Given PD
In this section we focus on the complexity of deciding if
a committee with a given proportionality degree exists. At
first, this problem may seem trivial as for each election there
is a committee with nearly perfect PD (Aziz et al. 2018). Yet,
we find that the answer is quite nuanced. This stands in sharp
contrast to analogous decision questions for JR and EJR,
which are trivial (a committee with the desired property al-
ways exists so the algorithm always accepts). Formally, we
consider the following problem.
Definition 4. In the PD-COMMITTEE problem we are given
an election E, a committee size k, and a function f : [k] →
Q, specified by listing its values. We ask if E has a size-k
committee with proportionality degree at least f .

We find that PD-COMMITTEE is both coNP-hard and
NP-hard. For the former result, we use the fact that
f(`) value of a proportionality degree function is binding
only if the given election contains `-cohesive groups.
Theorem 3. PD-COMMITTEE is NP-hard and coNP-hard

Proof. We will show NP-hardness in Theorem 6 and
here we focus on coNP-hardness. Specifically, we re-
duce COHESIVE-GROUP to the complement of PD-
COMMITTEE. Let (E, k, `) be our input instance, where
E = (C, V ) is an election, k is the committee size, and `
is the cohesiveness level. The question is if there exists an
`-cohesive group for election E with committee size k. For
convenience, set n = |V |, and m = |C|.

We create an instance of the complement of PD-
COMMITTEE as follows. Let s be the smallest integer such
that s · k > m. We form an election E′ by copying E and
(a) adding s ·k new candidates who are not approved by any
voter and (b) (s − 1) · n new voters who do not approve
any candidate. Thus, in E′ we have n′ = s · n voters, and
m′ = m + s · k candidates. Further, we set the committee
size to be k′ = s · k and we set the PD function f so that for
i < ` we have f(i) = 0 and for i ≥ ` we have f(i) = k′.
This completes the construction.

Note that the minimum size of an `-cohesive group in E′

is equal to the minimum size of an `-cohesive group in E,
because `·n′

k′ = `·s·n
s·k = `·n

k . Thus every `-cohesive group
from E is also an `-cohesive group for E′ and vice versa.

Further, any size-k′ committee must contain at least one
new candidate, because k′ = s ·k > m. Yet, new candidates
are not approved by any voter and, so, if E′ has some `-
cohesive group, then its average satisfaction must be strictly
below f(`) = k′. This means that if E′ has a committee with
PD f then there are no `-cohesive groups in E′ (and, thus,

there are no `-cohesive groups in E). In other words, the an-
swer for the PD-COMMITTEE instance is “yes” if and only
if the answer for the COHESIVE-GROUP instance is “no.”
That is, we have reduced COHESIVE-GROUP to the comple-
ment of PD-COMMITTEE. Since, by Theorem 1, the former
is NP-complete, the latter is coNP-hard.

Since PD-COMMITTEE is both NP-hard and coNP-hard,
it is unlikely that it is complete for either of these classes
(we would have NP = coNP if it were). Indeed, we suspect
that it is complete for NPNP and we show that it belongs to
this class. A hardness result remains elusive, unfortunately.

Theorem 4. PD-COMMITTEE is in NPNP.

Proof sketch. Consider an instance (E, k, f) of PD-
COMMITTEE. It is a “yes”-instance exactly if there ex-
ists a size-k committee such that for every ` ∈ [k], ev-
ery `-cohesive group has average satisfaction at least f(`).
Since computing an average satisfaction of a given cohesive
group can be done in polynomial time, this implies that PD-
COMMITTEE belongs to NPNP.

Yet, for some classes of PD functions our problem can
be significantly easier. As an extreme example, for nearly
perfect ones it is trivially in P. Thus we consider the follow-
ing restricted variants of PD-COMMITTEE: In CONSTANT-
PD-COMMITTEE we require the desired PD functions to
be constant, in UNIT-PD-COMMITTEE we require them
to take value 1 for each argument, and in PERFECT-PD-
COMMITTEE we require them to be perfect.

We find that both CONSTANT-PD-COMMITTEE and
UNIT-PD-COMMITTEE are NP-complete and, thus, likely
much easier than the general variant. To establish these re-
sults, it suffices to show membership in NP for the former
and NP-hardness for the latter.

Theorem 5. CONSTANT-PD-COMMITTEE is in NP.

Proof. Consider an instance (E, k, f) of CONSTANT-PD-
COMMITTEE, where E = (C, V ) is an election, k is the
committee size, and f is a PD function. Since f is a constant
function, there is a value x such that for each ` ∈ [k] we have
f(`) = x. To show that CONSTANT-PD-COMMITTEE is in
NP, we give a polynomial-time algorithm that given such an
instance and size-k committee W verifies if W has PD f .

Let n = |V | be the number of voters. For each candidate
c ∈ C, we define sat(c) to be the average satisfaction of dnk e
members of A(c) that are least satisfied with W ; if A(c) con-
tains fewer than n

k voters then we set sat(c) = +∞. We set
y = minc∈C sat(c). If y = +∞ then election E has no co-
hesive groups and W has PD f trivially. Otherwise, y is the
smallest average satisfaction that a 1-cohesive group from E
has for W (indeed, every 1-cohesive group must have at least
dnk e members and for each c ∈ C, each 1-cohesive group
whose members approve c has satisfaction at least sat(c)).
For each ` ∈ [k], each `-cohesive group also has satisfac-
tion at least y (briefly put, because it is also an 1-cohesive
group with average satisfaction at least y). Thus, if y ≥ x
then we accept and otherwise we reject. This algorithm runs
in polynomial time.
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Theorem 6. UNIT-PD-COMMITTEE is NP-hard

Proof. Since UNIT-PD-COMMITTEE is a special case of
CONSTANT-PD-COMMITTEE, by Theorem 5 we know that
it is in NP. To show NP-hardness, we give a reduction
from a variant of the classic X3C problem, which we call
RX3C and which is well-known to be NP-complete (Gon-
zalez 1985). An instance of RX3C consists of a universe set
U = {u1, u2, ..., u3k} and a family S = {S1, S2, ..., S3k}
size-3 subsets of U . Each element from U belongs to ex-
actly three sets from S . We ask if there exist k subsets from
S which sum up to universe U .

We form an instance of UNIT-PD-COMMITTEE with an
election E, committee size k, and unit PD function. We let
the set from S be the candidates in E, and we let the universe
elements be the voters. A voter ui approves a candidate Sj

if ui ∈ Sj . This completes the construction.
We note that all cohesive groups in E contain exactly

three voters and have cohesiveness level one. This holds be-
cause each candidate is approved by exactly three voters and
this is also the lower bound on the size of 1-cohesive groups
in E (indeed, 3k/k = 3).

It is clear that if there exist k subsets from S which sum up
to U , then the corresponding candidates form a committee
which has average satisfaction at least 1. Indeed, for each
voter there is at least one candidate in the committee that he
or she approves (in fact, exactly one). Otherwise the selected
sets would not sum up to U . As a consequence, the average
satisfaction of each (1-)cohesive group is at least 1.

Next, let us show that if there exists a committee W of
size k such that each cohesive group has average satisfaction
at least 1, then there is a collection T of k sets from S that
sum up to U (i.e., there is an exact cover of U ).

Let B be the sum of the total satisfactions of all the 3k 1-
cohesive groups in E. Since each 1-cohesive group has aver-
age satisfaction at least one, its total satisfaction is at least 3.
Since there are 3k such groups, we have that B is at least 9k.
Moreover, B is equal to 9k exactly if each 1-cohesive group
has average satisfaction equal to 1. However, each commit-
tee member is approved by exactly three voters, and each
of these voters belongs to exactly three 1-cohesive groups.
Hence B = 9k and each 1-cohesive group has average sat-
isfaction equal to 1.

Consider some set Sj = {uj1 , uj2 , uj3} such that
candidate Sj is a member of committee W . Naturally,
{uj1 , uj2 , uj3} is a 1-cohesive group, all its member approve
Sj , and, so, its average satisfaction is at least 1. Indeed, by
previous discussion we know that it is exactly 1. Hence, for
each voter in {uj1 , uj2 , uj3}, candidate Sj is the only mem-
ber of W that he or she approves. If we repeat this reason-
ing for every member of W , we find that each of them is
approved by exactly three voters and no two of them are ap-
proved by the same voters. This means that W corresponds
to an exact cover of U . The proof is complete.

Corollary 2. Both CONSTANT-PD-COMMITTEE and
UNIT-PD-COMMITTEE are NP-complete.

As all the cohesive groups in the election constructed in
the proof of Theorem 6 have cohesiveness level 1, we have

a stronger result: Given a PD function f such that f(1) = 1,
it is NP-hard to decide if there is a committee with propor-
tionality degree f . In particular, we have the next corollary.

Corollary 3. PERFECT-PD-COMMITTEE is NP-hard.

We can extend Theorem 6 to work for any positive in-
teger constant x and functions f such that f(1) = x. For
example, for x = 2 it suffices to extend the constructed
election with three voters that do not approve anyone and
with a single candidate who is approved by all the other vot-
ers. It would also be interesting to consider functions f such
that f(1) is a constant between 0 and 1, but we leave it for
future work. The above results are nicely aligned with ex-
isting polynomial-time algorithms for computing commit-
tees with guarantees on their PD. For example, there are
polynomial-time algorithms for computing EJR committees,
and EJR committees are guaranteed to have PD f such that
f(`) = `−1

2 (Sánchez-Fernández et al. 2017). As we see,
f(1) = 0 (though this could be improved very slightly).

5 Computing the PD of a Given Committee
Sometimes, instead of computing a committee with a speci-
fied PD, we would like to establish the PD of an already ex-
isting one. For example, this would be the case if we wanted
to experimentally compare how well the committees pro-
vided by various voting rules represent the voters.

One way to proceed would be as follows: For a given elec-
tion E and committee W , consider each cohesiveness level `
and, using binary search (up to a given accuracy level ε > 0),
find value f(`), 0 ≤ f(`) ≤ |W |, such that each `-cohesive
group has average satisfaction at least f(`), but there exists
an `-cohesive group with average satisfaction below f(`)+ε
(or there are no `-cohesive groups in this election). 2 Doing
so requires the ability to solve the following problem.

Definition 5. In the PD-FAILURE problem we are given an
election E, a committee W , a cohesiveness level `, and a
non-negative rational threshold y ≤ k. We ask if E contains
an `-cohesive group whose average satisfaction for W is
lower than y.

As one may expect, this problem is NP-complete. Mem-
bership in NP follows by nondeterministically guessing an
`-cohesive group and checking if its average satisfaction is
below y. To show NP-hardness, we note that setting the y
value to an impossible-to-achieve value makes the problem
equivalent to testing if an `-cohesive group exists.

Theorem 7. PD-FAILURE is NP-complete.

5.1 ILP Formulation
Fortunately, in practice we may be able to solve instances
of our problem by expressing them as integer linear pro-
grams (ILPs) and solving them using off-the-shelf software.

2In fact, we can calculate the exact value of f(`), since it
is either unbounded or a fraction with the denominator equal to
s = d` · n/ke (see the argument in Section 5.1) and the nu-
merator in range [0, s · k]. Such an approach would require only
O(log(s · k + 2)) = O(log(` · n)) queries to a PD-FAILURE
oracle.

5096



Specifically, let us consider an instance of PD-FAILURE
with election E = (C, V ), committee W , cohesiveness
level `, and threshold y. We set m = |C|, n = |V |, and
k = |W |. For convenience, let A be the binary matrix of
approvals for E, that is, we have aij = 1 if the i-th voter
approves the j-th candidate, and we have aij = 0 otherwise.
We note that if there is an `-cohesive group X whose satis-
faction for W is below y, then there is such a group of size
exactly s = d` · n/ke (e.g., consider X and remove suffi-
ciently many voters who approve the most members of W ).

To form our ILP instance, we first specify the variables:
1. For each i ∈ [n], we have a binary variable xi, with the

intention that xi = 1 if the i-th voter is included in the
sought cohesive group, and xi = 0 otherwise.

2. For each j ∈ [m], we have a binary variable yi, with the
intention that yj = 1 if all the voters in the group spec-
ified by variables x1, . . . , xn approve the j-th candidate,
and yj = 0 otherwise.

We refer to the voters (to the candidates) whose xi (yj)
variables are set to 1 as selected. Next, we specify the con-
straints. Foremost, we ensure that we select exactly s voters
and at least ` candidates:∑n

i=1 xi = s, and
∑m

j=1 yj ≥ `.

Then, we ensure that each selected voter approves all the
selected candidates. For each j ∈ [m], we form constraint:∑n

i=1 aij · xi ≥ s · yj .
If the j-th candidate is not selected, then this inequality is
satisfied trivially. However, if the j-th candidate is selected,
then the sum on the left-hand side must be at least s, i.e.,
there must be at least s selected voters who approve the j-
th candidate. Since there are exactly s selected voters, all of
them must approve the j-th candidate.

Finally, we ensure that the average satisfaction of
the selected voters is below y, by adding constraint
1
s

∑n
i=1

∑
j∈W aij · xi < y. If there is an assignment that

satisfies these constraints, then the selected voters form an
`-cohesive group with average satisfaction below y. Other-
wise, no such group exists.

5.2 Verification
For a comparison with previous studies regarding JR and
EJR, we also consider the following verification problem.
Definition 6. In the PD-VERIFICATION problem we are
given an election E, a committee W , a PD function f , and
we ask if W has proportionality degree f .

As PD-VERIFICATION is very closely related to the com-
plement of PD-FAILURE, we find that it is coNP-complete.
Corollary 4. PD-VERIFICATION is coNP-complete.

Testing if a committee provides EJR is coNP-complete
as well (Aziz et al. 2017), so in this respect PD and EJR
are analogous. There is also a polynomial-time algorithm for
testing if a committee provides JR, and in the PD world this
corresponds to a polynomial-time algorithm for checking if
a committee admits a given constant PD function. Such an
algorithm was included as part of the proof of Theorem 5.

Corollary 5. PD-VERIFICATION for a constant PD func-
tions (provided as input) is in P.

6 Dealing With Computational Hardness
In this section we consider circumventing the computational
hardness of our problems by studying their parameterized
complexity and by considering structured elections.

6.1 Fixed-Parameter Tractability
Our two main problems, PD-COMMITTEE and PD-
FAILURE, are fixed-parameter tractable with respect to the
number of candidates and the number of voters.

Theorem 8. There are FPT algorithms for PD-
COMMITTEE and PD-FAILURE both for the param-
eterization by the number of candidates and for the
parameterization by the number of voters.

For PD-FAILURE and the parameterization by the number
of candidates, we proceed similarly as in the proof of The-
orem 5. Namely, for each set R of candidates we consider
the set V (R) of all the voters that approve members of R,
one-by-one, remove from this set the voters with the highest
satisfation, and watch if at any point we obtain an `-cohesive
group with average satisfaction below the required value.
Using a similar approach, and trying every possible com-
mittee, we also obtain an algorithm for PD-COMMITTEE.

For the parameterization by the number of voters, we
solve our problems by forming ILP instances and solving
them using the classic algorithm of Lenstra, Jr. (1983). This
is possible because with n voters there are at most 2n cohe-
sive groups and each candidate has one of 2n types (where
the type of a candidate is the set of voters that approve him;
candidates with the same type are interchangeable).

Testing if a committee provides EJR is also fixed-
parameter tractable for the parameterizations considered in
Theorem 8. So, from this point of view, dealing with PD is
not harder than dealing with EJR.

Finally, the problem of counting cohesive groups (and,
thus, also the problem of deciding if groups with particular
cohesiveness level exist) also is fixed-parameter tractable for
our parameters. For parameterization by the number of can-
didates, we can use the inclusion-exclusion principle, and
for the parameterization by the number of voters we can ex-
plicitly look at each subset of voters.

Theorem 9. There are FPT algorithms for (#)COHESIVE-
GROUP, for the parameterizations by the number of candi-
dates and by the number of voters.

6.2 Structured Preferences
Next we consider two domains of structured preferences, in-
troduced by Elkind and Lackner (2015).

Definition 7 (Elkind and Lackner (2015)). An election
E = (C, V ) has candidate interval (CI) preferences (voter
interval preferences, VI) if it is possible to order the candi-
dates (the voters) so that for each voter v (for each candidate
c) the set A(v) (the set A(c)) is an interval w.r.t. this order.
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For an example of CI preferences, consider a political
election where candidates are ordered according to the left-
to-right spectrum of opinions and the voters approve ranges
of candidates whose opinions are close enough to their own.
Elkind and Lackner (2015) gave algorithms for deciding if a
given election has CI or VI preferences, and for computing
appropriate orders of candidates or voters. Thus, for simplic-
ity, we assume that these orders are provided together with
our input elections. We mention that a number of other pref-
erence domains are considered in the literature—see, e.g.,
the works of Yang (2019) and Godziszewski et al. (2021)—
but the CI and VI ones are by far the most popular.

Unfortunately, even for CI and VI elections we do
not know how to solve the PD-COMMITTEE problem in
polynomial-time.3 Nonetheless, we do have polynomial-
time algorithms for the PD-FAILURE problem.

Theorem 10. PD-FAILURE restricted to either CI or VI
elections is in P.

Proof. First, we give an algorithm for the CI case. Our
input consists of an election E = (C, V ), where C =
{c1, . . . , cm} and V = (v1, . . . , vn), a size-k committee W ,
cohesiveness level `, and threshold value y. Without loss of
generality, we assume that E is CI with respect to the order
c1 C c2 C · · ·C cm.

Since E is a CI election, we observe that if X is some
cohesive group whose all members approve some two can-
didates ci and cj , i ≤ j, then all members of X also ap-
prove candidates ci+1, . . . , cj−1. For each i ≤ m− `+1, let
X(i) be the set of all voters who approve each of the can-
didates ci, . . . , ci+`−1. By the preceding argument, we see
that every `-cohesive group can be obtained by taking some
set X(i) and (possibly) removing some of its members.

Our algorithm proceeds as follows. For each set X(i), we
form a set Y (i) by taking X(i) and removing all but d` ·n/ke
voters that are least satisfied with W . (If a given X(i) con-
tains fewer than d` · n/ke voters then we set Y (i) = ∅ and
we assume that the average satisfaction of its voters is +∞.)
If there is some i such that the average satisfaction of the
voters in Y (i) is below y, then we accept (indeed, we have
just found an `-cohesive group with average satisfaction be-
low y). If there is no such Y (i), then we reject (we do so
because each nonempty Y (i) has the lowest average satis-
faction among all the `-cohesive groups that can be obtained
by removing voters from X(i)). Correctness and polynomial
running time follow immediately.

Now let us consider the VI case. We use the same notation
as before, except that we assume that E is VI with respect
to the voter order v1 C v2 C · · · C vn. We use the same al-
gorithm as in the CI case, but for the X(i) sets defined as
follows (let s = d` · n/ke): For each i ∈ [n − s + 1], we let
X(i) = {vi, vi+1, . . . , vj}, where j is the largest value such
that |A(vi) ∩ A(vj)| ≥ ` (if vi approves fewer than ` can-
didates then X(i) is empty). The algorithm remains correct
because, as in the CI case, every `-cohesive group is a subset
of some X(i).

3The approach of Peters and Lackner (2020) based on solving
totally unimodular ILP instances does not seem to work here.

c1 c2 c3 c4 c5 c6 c7

v1 1 - - - - - -
v2 1 - - - - - -
v3 1 1 - - - - -
v4 - 1 - - - - -
v5 - 1 1 - - - -
v6 - - 1 - - - -
v7 - - 1 1 - - -
v8 - - - 1 - - -
v9 - - - 1 1 - -
v10 - - - - 1 - -
v11 - - - - 1 1 -
v12 - - - - - 1 -
v13 - - - - - 1 1
v14 - - - - - - 1
v15 - - - - - - 1

Table 1: Approval sets used in Example 1.

Similar reasoning and observations as in the above proof
also give the algorithms for counting cohesive groups (and,
thus, for deciding their existence).

Theorem 11. (#)COHESIVE-GROUP restricted to either CI
or VI elections is in P.

Similar approach shows that testing if a committee pro-
vides EJR can be done in polynomial time for CI or VI elec-
tions (to the best of our knowledge, this is a folk result).

Perfect PD? Aziz et al. (2018) have shown that for each
election and each committee size there is a committee with a
nearly perfect PD, but there are scenarios where committees
with perfect PDs do not exist. Unfortunately, this remains
true even if the elections are CI and VI at the same time.

Example 1. Consider an election E = (C, V ), where C =
{c1, . . . , c7}, and V = (v1, . . . , v15). The set the committee
size to be k = 5, and the approval sets are as in Table 1
Clearly, the election is both CI and VI. We see that n/k = 3
and, thus, for each i ∈ [7], voters v2i−1, v2i, v2i+1 form a
cohesive group (for candidate ci).

Now consider some size-k committee. If it does not
contain some candidate ci, then the 1-cohesive group
{v2i−1, v2i, v2i+1} must have average satisfaction below 1.
Indeed, altogether members of this group give at most five
approvals, of which three go to ci. Thus, without ci, the av-
erage satisfaction is at most 2

3 < 1. However, since the com-
mittee size is five and there are seven candidates, for each
committee there is some 1-cohesive group with satisfaction
below 1. Thus there is no committee with a perfect PD for
this election and committee size five.

7 Conclusions and Future Work
We have shown that computing committees with a given pro-
portionality degree is, apparently, more difficult that com-
puting EJR committees, but verification problems for these
two notions have the same complexity. Two most natural di-
rections of future work would be to establish the exact com-
plexity of the PD-COMMITTEE problem and experimentally
analyze PDs of committees provided by various voting rules.
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