The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Approval-Based Committee Voting under Incomplete Information

Aviram Imber,' Jonas Israel,” Markus Brill,” Benny Kimelfeld'

' Technion — Israel Institute of Technology, Haifa, Israel
2 Research Group Efficient Algorithms, TU Berlin, Germany
aviram.imber @campus.technion.ac.il, j.israel @tu-berlin.de, brill @tu-berlin.de, bennyk @cs.technion.ac.il

Abstract

We investigate approval-based committee voting with incom-
plete information about the approval preferences of voters.
We consider several models of incompleteness where each
voter partitions the set of candidates into approved, dis-
approved, and unknown candidates, possibly with ordinal
preference constraints among candidates in the latter cate-
gory. This captures scenarios where voters have not evalu-
ated all candidates and/or it is unknown where voters draw
the threshold between approved and disapproved candidates.
We study the complexity of some fundamental computational
problems for a number of classic approval-based commit-
tee voting rules including Proportional Approval Voting and
Chamberlin—Courant. These problems include that of deter-
mining whether a given set of candidates is a possible or nec-
essary winning committee and whether it forms a committee
that possibly or necessarily satisfies representation axioms.
We also consider the problem whether a given candidate is
possibly or necessarily a member of the winning committee.

1 Introduction

Approval-based committee (ABC) voting represents a well-
studied multiwinner election setting, where a subset of can-
didates of a predetermined size, a so-called committee, needs
to be chosen based on the approval preferences of a set
of voters (Lackner and Skowron 2021). Traditionally, ABC
voting is studied in the context where we know, for each
voter and each candidate, whether the voter approves the
candidate or not. In this paper, we investigate the situation
where the approval information is incomplete. Specifically,
we assume that each voter is associated with a set of ap-
proved candidates, a set of disapproved candidates, and a
set of candidates where the voter’s stand is unknown, here-
after referred to as the unknown candidates. Moreover, we
may have (partial) ordinal information on voters’ prefer-
ences among the unknown candidates, restricting the “valid”
completions of voters’ approval sets.

When the number of candidates is large, unknown candi-
dates are likely to exist because voters are not aware of or not
familiar with, and therefore cannot evaluate, all candidates.
In particular, this holds in scenarios where candidates join

Copyright (©) 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5076

the election over time, and voter preferences over new can-
didates have not been elicited (Chevaleyre et al. 2012). Dis-
tinguishing between disapproved and unknown candidates
accounts for two fundamentally different reasons for non-
approvals: either the voter has evaluated the candidate and
judged him or her not worth approving (in which case the
candidate counts as disapproved), or the voter has not eval-
uated the candidate (in which case the candidate counts as
unknown). Furthermore, incorporating (partial) ordinal pref-
erences among unknown candidates allows us to model situ-
ations in which we (partially) know how a voter rank-orders
the candidates, but we do not know where the voter draws
his or her “approval threshold.”

Scenarios involving incomplete knowledge about ap-
proval preferences arise naturally in a variety of practical
settings. For example, in a scenario where we retrieve infor-
mation from indirect sources such as social media (say, for
the sake of prediction), we may get only sparse information
about approval (“Vote for X’) and disapproval ( “Definitely
not Y”), and possibly pairwise preferences due to explicit
statements (e.g., “X is at least better than Y’). As another
example, in shortlisting scenarios (such as faculty hiring)
some voters may know with sufficient confidence that they
support or oppose some candidates (e.g., the ones from their
own field of expertise) but have no clear opinion on others.
This situation also naturally arises when labeling documents
for information retrieval, where the committee corresponds
to the page of search results: some documents are clearly rel-
evant, some clearly irrelevant, and some are unclear. For the
unclear ones, it may be way easier to rank the documents
(totally or partially) by relevance rather than to insist on a
complete classification into relevant and irrelevant; in fact,
this is the motivation behind some successful methodologies
for learning ranking functions (learning to rank) such as the
pairwise and listwise approaches (Cao et al. 2007).

Our basic model of incompleteness is the poset approval
model that is illustrated in Figure 1(a). This model is a rather
direct generalization of the voter model in the seminal work
of Konczak and Lang (2005), who study problems of winner
determination with incomplete preferences under ranking-
based single-winner rules (such as plurality and Borda). For
each voter, we are given a set of approved candidates and
a set of disapproved candidates, together with a partial or-
der over the remaining (“unknown’) candidates that con-



strains the possible approval ballots of the voter: if an un-
known candidate is preferred to another unknown candidate,
then the former needs to be approved by the voter whenever
the latter is approved. In other words, each possible world
is obtained by selecting a linear extension of the partial or-
der and determining a cutoff point—every candidate before
the cutoff is approved, and every candidate after the cutoff is
disapproved (in addition to the known approvals and disap-
provals, respectively). We study in depth two special cases
of this model that correspond to the two extremes of posets:
zero information (3VA) and full information (linear).

o In the three-valued approval (3VA) model,! illustrated
in Figure 1(b), the partial order of the poset is empty.
Hence, every subset of unknown candidates determines
a valid possible world where this set is approved and its
complement is disapproved.

e In the linear model, illustrated in Figure 1(c), the un-
known candidates are ordered linearly. Hence, every pre-
fix of this order determines a possible world where the
candidates in this prefix are approved and the ones in the
remaining suffix are disapproved.

From the computational perspective, the models are funda-
mentally different. For instance, a voter can have an expo-
nential number of possible worlds (or completions) in one
case, but only a linear number in the other. Of course, when
a problem is tractable in the poset approval model, then it is
also tractable in the 3VA and linear models. On the contra-
positive, whenever a problem is intractable (e.g., NP-hard)
in one of these two models, it is also intractable for the gen-
eral poset approval model. However, as we illustrate later, a
problem may be tractable in 3VA and intractable in the linear
model, and vice versa.

We investigate the computational complexity of funda-
mental problems that arise in ABC voting with incomplete
approval profiles. In the first problem, the goal is to deter-
mine whether a given set W of candidates is a possible win-
ning committee. In the second problem, the goal is to deter-
mine whether such given W is a necessary winning com-
mittee. More formally, a possible committee (respectively,
necessary committee) is a set of candidates that is a win-
ning committee in some completion (respectively, all com-
pletions) of the incomplete approval profile. We also achieve
some results on the problem where we are given a candidate
and the goal is to determine whether the candidate is possi-
bly or necessarily a member of a winning committee.

In the applications described earlier it is often enough
to find only one winning committee, e.g., because we only
want to have one set of top search results and do not care
about there being other, equally good such sets. Thus find-
ing a necessary winning committee is enough and we do not
need to elicit any more information. Conversely, if for exam-
ple in a hiring process we know that some candidates are not
in any possible committee any more, we can already inform
them that they will definitely not get the position and we can
stop eliciting preferences over those candidates.

'The term is analogous to “Three-Valued Logic” (3VL) that is
adapted, e.g., in SQL (Libkin 2016), where the three values are

true, false and unknown.
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We consider a class of voting rules that was introduced
by Thiele (1895). This broad class of approval-based com-
mittee voting rules contains several classic rules such as Ap-
proval Voting (AV), Chamberlin—-Courant (CC), and Propor-
tional Approval Voting (PAV). For all Thiele rules except
AV, the problem of determining winning committees is in-
tractable even before we allow for incompleteness (Lackner
and Skowron 2021). Consequently, computing either pos-
sible or necessary committees is intractable as well, under
each of our models of incompleteness. Therefore, we focus
on the case where the committee size is small (i.e., constant).
In this case, winning committees can be computed in poly-
nomial time for all considered rules.

In addition, we study a problem of fair representation of
voters given incomplete approvals. In particular, we focus
on justified representation (JR) (Aziz et al. 2017), which re-
quires that all voter groups that are large enough and cohe-
sive enough are represented in the committee. We investigate
the complexity of deciding whether a given set of candidates
possibly or necessarily forms a committee that satisfies JR
given an incomplete approval profile. We also briefly dis-
cuss stronger notions of proportional representation.

Related work Collective decision making under incom-
plete knowledge has been extensively studied; we refer to
Lang (2020) for a recent survey. Most of that work focuses
on single-winner elections (e.g., Xia and Conitzer 2011),
with the paper by Lu and Boutilier (2013) representing a
notable exception. To the best of our knowledge, there are
only two papers that deal with incomplete information in
the context of approval voting: First, Barrot et al. (2013)
study single-winner approval voting and multiwinner ap-
proval voting (which we refer to as AV) given incomplete
information. In the terminology of our paper, their incom-
pleteness model corresponds to the special case of the lin-
ear model in which all candidates (except the most preferred
one) belong to the unknown category. We discuss specific
relationships between their work and ours in Section 4. Sec-
ond, Terzopoulou, Karpov, and Obraztsova (2021) consider
restricted domains for approval voting under uncertainty us-
ing a model of incompleteness corresponding to our 3VA
model. Allowing voters to not only specify which candi-
dates they approve and disapprove but also for which they
are undecided can be seen as eliciting trichotomous prefer-
ences (without uncertainty). In this vein, our work relates to
Felsenthal (1989), Alcantud and Laruelle (2014), Baumeis-
ter and Dennisen (2015), and Zhou, Yang, and Guo (2019).

2 Preliminaries

We consider a voting setting where a finite set V' of voters
has preferences over a finite set C' of candidates. We usually
use n for the number of voters and we enumerate voters as
V1, V3, ..., U,. The number of candidates is denoted by m.
An approval profile A = (A(v1),...,A(vy)) lists the ap-
proval sets of the voters, where A(v;) C C denotes the set
of candidates that are approved by voter v;. The concatena-
tion of two approval profiles A; = (A1(v1),...,A41(vp))
and Ay = (Az(vy), ..., A2(vy)) is denoted by Ay o Ay ==
(Ar(v1),- -5 A1(vp), A2(v1), ..., Aa(vy)). An approval-



oy
XXX ) (XX XX
Approved Unknown Disapproved
(a) Poset approval

S
%%%%w“%g<%%%%

Approved Unknown Disapproved
(b) Three-valued approval (3VA)

Approved Unknown Disapproved

(c) Linear incomplete approval

Figure 1: Models of incomplete approval preferences: Poset
approval and the special cases of 3VA and linear incomplete
approval. Dashed frames depict candidates that are approved
in a valid completion.

based committee (ABC) rule takes an approval profile as in-
put and outputs one or more size-k subsets of candidates, so
called committees, for a given parameter k € N.

Most of our work is focused on a class of ABC rules
known as Thiele rules (Thiele 1895). These rules are param-
eterized by a weight function w, i.e., a non-decreasing func-
tion w: N — Qs with w(0) = 0. The score that a voter v
contributes to a subset S C C'is defined as w(|S N A(v)|)
and the score of S'is »_ -, w(|S N A(v)[). The rule w-
Thiele then outputs the subset(s) of size k with the highest
score. Two of the most famous examples of Thiele rules are
Approval Voting (AV),> where w(x) = x, and Proportional
Approval Voting (PAV), where w(xz) = Y., 1/i. We as-
sume that w(z) is computable in polynomial time in , and
that there exists an integer  with w(x) # 0 (otherwise, all
subsets of voters have the same score). Observe that for ev-
ery fixed number k, we can find the committee(s) under w-
Thiele in polynomial time by computing the score of every
subset W C C of size k.

Without loss of generality, we assume that weight func-
tions are normalized such that w(z) = 1 for the small-
est  with w(z) > 0. We call a Thiele rule binary if
w(z) € {0,1} for all 2 € N. Since w is non-decreasing, bi-
nary Thiele rules are characterized by an integer ¢ such that
w(x) = 0 forevery x < t and w(z) = 1 for all z > ¢. The
most prominent binary Thiele rule is Chamberlin—Courant
(CC), with w(z) = 1forall x > 1.

2We can also define this rule using scores of individual can-
didates: For a candidate c, the approval score of c is defined as
[{veV:ce A(v)}|. AV selects committees consisting of the k
candidates with highest approval scores.
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3 Models of Incompleteness

In this section, we formally introduce the three models of
incomplete information that we investigate. We first define
poset approval as a general model, and then two models
constituting special cases. In all models, a partial profile
P = (P(v1),..., P(vy,)) consists of n partial votes.

Poset approval. For each voter v, the partial vote P(v)
consists of a partition (Top(v), Middle(v), Bottom(v)) of C'
into three sets and a partial order® >, over the candidates in
Middle(v). Top(v) represents the candidates that v approves
in any case, Bottom(v) represents the candidates that v ap-
proves in no case. The partial order >, represents approval
constraints on the candidates in Middle(v), whose approval
is open. Specifically, if ¢ =, ¢’ and v approves ¢/, then v also
approves c. A completion of P = (P(v1),..., P(v,)) is an
approval profile A = (A(vy), ..., A(v,)) where each A(v)
“completes” P(v). Namely, Top(v) C A(v), Bottom(v) N
A(v) = 0, and for every pair ¢, ¢’ € Middle(v) with ¢ =, ¢/,
itholds that ¢ € A(v) whenever ¢ € A(v). Equivalently, we
can describe A in the following way: For each voter v se-
lect a subset Middle s (v) € Middle(v) which “respects” >,
(i.e., ¢ =, ¢ and ¢ € Middlea (v) imply ¢ € Middlea (v))
and v approves exactly A(v) = Top(v) U Middlea (v).

Three-valued approval (3VA). This model is a special
case of poset approval where for every voter v, the partial
order >, over the candidates in Middle(v) is empty (ex-
cept for the reflexive part). In other words, v might approve
any subset of candidates in Middle(v). Hence, a completion
of P = (P(v1),...,P(vy,)) is a complete approval profile
A = (A(v1),...,A(vy,)) such that for every voter v we
have Top(v) C A(v) and Bottom(v) N A(v) = 0.

Linear incomplete approval. This model is a special case
of poset approval where for every voter v, >, is a complete
linear order ¢; . . . =, ¢;, on the candidates in Middle(v).
To construct a completion A, for every voter v we select a
j < [Middle(v)| such that Middlea (v) = {c;,, ..., ¢, }.

In the linear model of incompleteness, every partial vote
has at most m completions, as opposed to the previous two
models where even a single partial vote can have 2" com-
pletions. In all three models, the number of completions for
a partial profile can be exponential in the number of voters n.

In order to define possible and necessary committees, fix
an ABC voting rule r. Given a committee size k and a par-
tial profile P, a set W C C of k candidates is a possible
committee if there exists a completion A of P where W is
a winning committee (under r), and a necessary committee
if W is a winning committee for every completion A of P.
In the following sections, we investigate the computational
complexity of deciding whether a given set of candidates is
a possible or necessary committee, for different rules r.

4 Computing Possible Committees
The first decision problem we study concerns possible com-
mittees. For an ABC rule r and committee size k, con-

3Recall that a partial order is a reflexive, antisymmetric, and
transitive binary relation.



sider the following decision problem that we denote by
PosCom(k): Given a partial profile P and a subset W C C
of candidates of size k, decide whether W is a possible com-
mittee. As mentioned earlier, we parameterize the decision
problem by k since otherwise winner determination even in
the case of no uncertainty is known to be NP-hard for almost
all Thiele rules (Lackner and Skowron 2021). Observe that
PosCom (k) is in NP under all Thiele rules, for every fixed
k, in all three models of uncertainty that we study. This is
because, given a complete profile, we can find the winning
committees of a fixed size k£ under Thiele rules in polyno-
mial time.

Our results concerning the complexity of deciding
PosCom (k) under different models of uncertainty are sum-
marized in Table 1. In particular, we show that under the
model of poset approval, PosCom(k) is NP-complete for all
Thiele rules. To obtain this result, we study the complexity
of PosCom(k) in the models of three-valued approval and
linear incomplete approval in Sections 4.1 and 4.2, respec-
tively. Then, we prove our main result in Section 4.3.

We first introduce a useful lemma that holds in all three
models of uncertainty. The complete proofs of all results can
be found in the full version of the paper (Imber et al. 2021).

Lemma 1. Ler wy,ws be a pair of weight functions. As-
sume there are two integers k,t > 0 and a strictly increas-
ing linear function f such that wo(xz +t) = f(w1(x)) for
every © € {0,1,...,k}. Then, in each of the three mod-
els of uncertainty, there is a polynomial-time reduction from
PosCom(k) under w-Thiele to PosCom(k + t) under ws-
Thiele.

Proof sketch. LetPy = (Py(v1),...,Pi1(v,))and W C C}
of size k be an instance of PosCom (k) under w;-Thiele. De-
fine an instance of PosCom(k + t) under w»-Thiele where
the candidates are Cy = C; U D for D = {dy,...,d;}. The
profile is Py = (Pa(v1), . .., Pa(vy,)), where for every voter
v, P2(v) is the same as P; (v) except that v always approves
the candidates of D. Formally, we add the candidates of D
to Top(v), and the rest is unchanged. It can be shown that W
is a possible committee (of size k) for P; under w;-Thiele
if and only if W U D is a possible committee (of size k + )
for Py under ws-Thiele. O

4.1 Three-Valued Approval

We now discuss the complexity of PosCom(k) in the 3VA
model for different Thiele rules. We start with Approval Vot-
ing and Chamberlin—Courant.

Theorem 1. In the 3VA model, PosCom(k) is solvable in
polynomial time under Approval Voting, for all fixed k > 1.

Proof sketch. Given P = (P(vy),...,P(v,)) and a sub-
set W C C of |W] k candidates, define a comple-
tion A = (A(v1),...,A(v,)) where for every voter v,
Middlea (v) = Middle(v) N W; that is, except for Top(v),
voters only approve candidates in W. It can be shown that
W is a possible committee for P if and only if W is a win-
ning committee in A. O
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Theorem 2. In the 3VA model, PosCom(2) is NP-complete
under Chamberlin—Courant.

Proof sketch. We show NP-hardness by a reduction from
one-in-three positive 3SAT, which is the following decision
problem: Let X = {x1,...,2,} be a set of elements. Given
sets S1,...,5n C X, where |S;| = 3 for every 4, is there
a subset B C X such that for each ¢, |B N S;| = 1? This
problem is NP-complete (Garey and Johnson 1979).

Given X and § = {S1, ..., Sim}, we define an instance of
PosCom(2) under Chamberlin—Courant. The candidates are
C = SU{wy, ws}. The partial profile P = P 0 A5 consists
of two parts that we describe next. The first part, P, consists
of a voter for every elementin X.Letz € X, and let S(x) =
{S; € S :z € S;} be the sets of S that contain z. Define a
voter v, with Top(v,) = S\ S(x), Middle(v, ) = {w1, w2}
and Bottom(v,) = S(z). The decision whether to approve
wy or wy represents the decision whether to include z in the
subset B C X. The second part, Ao, consists of six voters
without uncertainty (voters with Middle(v) = 0). We add
three voters approving S, two voters approving {w; }, and a
single voter approving {ws}. It can be shown that {wy,ws}
is a possible committee if and only if there is a solution to
the instance of one-in-three positive 3SAT. O

Next, we use Lemma 1 and Theorem 2 to obtain another
hardness result.

Theorem 3. Let w be a weight function such that w(k—2) <
w(k — 1) = w(k) for some k > 2. Then, in the 3VA model,
PosCom(k) is NP-complete under w-Thiele.

Whereas the condition in Theorem 3 does not hold for
PAV (for which the complexity of PosCom(k) in the 3VA
model remains open), it clearly holds for binary Thiele rules.

Corollary 1. For every binary Thiele rule, there exists k > 2
such that PosCom(k) is NP-complete in the 3VA model.

4.2 Linear Incomplete Approval

Next, we discuss the complexity of PosCom(k) in the linear
model. We start with binary Thiele rules.

Theorem 4. In the linear model, PosCom(k) is solvable in
polynomial time for binary Thiele rules, for all fixed k > 1.

Proof sketch. Consider a binary Thiele rule and let ¢ be
such that w(z) = 0 for all x < ¢t and w(z) = 1 for all
x > t. Without loss of generality, we can assume that & > ¢.
Given P = (P(v1),...,P(v,)) and a subset W C C of
k candidates we construct a completion A as follows. Let
Ciy =v '+ =y ¢, be the linear order of voter v over
the candidates in Middle(v). If |Top(v) N W| > t, then
v always contributes a score of 1 to W. Since approving
more candidates cannot increase the score of W, we se-
lect Middlea (v) = 0. If | (Top(v) U Middle(v)) N W| < t,
then v always contributes a score of 0 to W, and we select
Middle s (v) = 0 again. Finally, assume that |Top(v)NW| <
t and |(Top(v)UMiddle(v))NW| > t. Let j be minimal with
|(Top(v) U {ciy, ..., ¢, }) N W] > ¢ and Middlea (v) =
{¢iy,..., ¢, }. It can be shown that W is a possible com-
mittee if and only if W is a winning committee in A. O



Model AV CC PAV w-Thiele
Three-Valued Approval P [Thm. 1] NP-c¢ [Thm. 2] ? NP-c for every binary w [Cor. 1]

. NP-c [Cor. 2]* NP-c [Cor. 2] P for every binary w [Thm. 4]; NP-c for every
Linear Incomplete Approval (forall k& > 2) P [Thm. 4] (forall k > 2)  strictly increasing w [Cor. 2] (for all £ > 2)
Poset Approval NP-c [Thm.7] NP-c [Thm.7] NP-c[Thm.7] NP-c forevery w [Thm. 7]

Table 1: Overview of our complexity results for PosCom (k). “NP-c” means that PosCom (k) is NP-complete for at least one k,
unless otherwise stated. “P” means that PosCom (k) is solvable in polynomial time for all k. The result marked with * also

follows from Barrot et al. (2013).

We now turn to the complexity of PosCom(k) under
non-binary w-Thiele rules. The next theorem states that
PosCom(2) is NP-complete under w-Thiele for every func-
tion w whose first three values are pairwise distinct.

Theorem 5. Let w be a weight function with w(2) >
w(l) > 0. Then, in the linear model, PosCom(2) is NP-
complete under w-Thiele.

Proof sketch. Without loss of generality we have w(1) = 1
and w(2) 1 + x where x > 0. We show two reduc-
tions, depending on whether z € (0,1] or z > 1, from ex-
act cover by 3-sets (X3C), which is the following decision
problem: Given a set U = {uq,...,us,} and a collection
E ={ey,...,en} of 3-element subsets of U, can we cover
all the elements of U using ¢ pairwise disjoint sets from E?
This problem is NP-complete (Garey and Johnson 1979).
We start with the case where € (0, 1]. Given U and
E, we construct an instance of PosCom(2) under w-Thiele.
The candidate set is C' = U U {¢, d, z}. The partial profile
P = P; o A, is the concatenation of the following two
parts. The first part, P, consists of a voter for every setin F.
For every e € F, voter v, has Top(v.) = (), Middle(v.) =
e U {c}, and Bottom(v.,) = (U \ e) U {d, z}. The linear
order on Middle(v,) is an arbitrary order that ranks c last.
This means that if v, approves ¢, then it also approves the
candidates of e. The idea is that approving c indicates that
e is in the cover, and disapproving c indicates that e is not
in the cover. The second part, A, consists of 2¢ + 1 voters
without uncertainty (voters with Middle(v) = 0). Assume
w.l.o.g. that ¢ is even. We add ¢/2 voters approving {z},
q/2 voters approving {z} U U, ¢/2 voters approving {d},
q/2 voters approving {d} U U, and a single voter approving
{¢,d, z}. It can be shown that {c, d} is a possible committee
for P if and only if there exists an exact cover. For the case
x > 1 a similar reduction is possible. O

Next, we use Lemma 1 in order to generalize Theorem 5
to every function with three consecutive different values.

Theorem 6. Let w be a weight function such that w(k—2) <
w(k—1) < w(k) for some k > 2. Then, in the linear model,
PosCom (k) is NP-complete under w-Thiele.

Clearly, Theorem 6 applies to all Thiele rules with strictly
increasing weight functions (such as AV and PAV).
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Corollary 2. Let w be a strictly increasing weight function.
Then, in the linear model, PosCom(k) is NP-complete under
w-Thiele for every k > 2.

As a special case, Corollary 2 reasserts the result of Bar-
rot et al. (2013) that PosCom(k) is NP-complete for the AV
rule. (The hardness result by Barrot et al. (2013) even applies
to the special case in which all candidates are unknown.)

4.3 Poset Approval

Combining the results from the previous two sections, we
can now formulate the main result of this paper.

Theorem 7. In the poset approval model, for every weight
Sfunction w there exists an integer k such that PosCom(k) is
NP-complete under w-Thiele.

Proof. Let w be a weight function, and let j be the minimal
index such that w(j) > 0. Since w is non-decreasing, either
w(j+1) =w(j) >w(j—1)orw(j+1) >w(j) >w(j—
1). In the first case, by Theorem 3, PosCom(j + 1) is NP-
complete under w-Thiele in the 3VA model. In the second
case, by Theorem 6, PosCom(j + 1) is NP-complete under
w-Thiele in the linear model. The result follows since 3VA
and the linear model are special cases of poset approval. [

4.4 Possible Committee Members

We now consider a different decision problem where we do
not focus on whole committees but rather on individual can-
didates. We say candidate c is a possible committee member
if there exists a completion A of P such that there exists a
winning committee W with ¢ € W. For an ABC rule » and
a committee size k, we consider the computational problem
PosMem (L), where the input consists of a partial profile P
and a candidate ¢, and the goal is to determine whether c is
a possible committee member under 7.

Note that for every voting rule, if PosCom (k) is solvable
in polynomial time, then we can also solve PosMem(k) effi-
ciently: given a candidate c, test whether {c,d1,...,d;_1}
is a possible committee for all other £ — 1 candidates
di,...,di—1. Since k is fixed, this can be done efficiently.
By Theorems 1 and 4 we can deduce the following.

Corollary 3. For all fixed k > 1, PosMem (k) is solvable in
polynomial time:

1. In the 3VA model under approval voting;



2. In the linear model under every binary Thiele rule.

We also obtain a tractability result in a setting for which
the corresponding PosCom (k) problem is intractable.

Theorem 8. In the linear model, PosMem(k) is solvable in
polynomial time under Approval Voting, for all fixed k > 1.

Proof sketch. Given a candidate c and a partial profile P =
(P(v1),...,P(vy,)), we construct a completion A of P as
follows. For all voters v with ¢ € Top(v) or ¢ € Bottom(v),
we let Middlea (v) = (). Otherwise, ¢ € Middle(v) and we
define Middlea (v) to be the smallest prefix of the linear or-
der over Middle(v) that includes c. It can be shown that ¢ is
a possible committee member if and only if ¢ is a member
of a committee in A. O

5 Computing Necessary Committees

The next decision problem we study concerns necessary
winning committees. For an ABC rule r and a committee
size k, we consider the following decision problem, which
we refer to as NecCom{k): Given a partial profile P and a
subset W C C of candidates of size |WW| = k, determine
whether W is a necessary committee under r. As above, we
parametrize the problem by the committee size k to evade
hardness even in the case of complete information.

We show that NecCom(k) is solvable in polynomial time
for a large family of ABC rules that includes all Thiele rules.
Each member of the family of ABC scoring rules is asso-
ciated with a scoring function f: N x N — R satisfying
f(z,y) > f(a',y) for x > 2a’. The score s of a subset
S C C given approval set A(v) is

s(A(v), 5) = f([A(v) N S|, [A(v)]),

and the total score is s(A, S) = > ., s(A(v), S). The rule
defined by f outputs the subset(s) of size k£ with the highest
score. Observe that Thiele rules are a special case of ABC
scoring rules, where the score s(A(v), S) that v assigns to .S
depends only on |A(v) N S|. An example for an ABC scor-
ing rule which is not a Thiele rule is Satisfaction Approval
Voting (Brams and Kilgour 2014), where the score a voter v
contributes to a S C C'is s(A(v), S) = |S N A(v)|/|A(v)].
When we discuss scoring rules, we assume that f(z,y) is
computable in polynomial time given x and y.

The following positive result covers all ABC scoring rules
and all considered models of incompleteness.

Theorem 9. Let r be an ABC scoring rule. Then, in the
model of poset approval, for all fixed k > 1, NecCom (k)
is solvable in polynomial time under r.

In order to prove Theorem 9, observe that a subset W C
C of size k is not a necessary committee if and only if
there exists a completion where another size-k subset has
a score strictly greater than the score of . Formally, let P
be a partial profile and let W, = {W’ C C': |W’| = k} be
the set of subsets of size k. For a completion A of P and
W, W' € W, define the score difference as

AA(W, W) = s(A,W') — s(A,W).

When A consists of a single set A(v) we write
A p() (W, W) instead of Aa (W, W').
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Let C(P) be the set of completions of P. Again, when the
profile consists of a single voter v, we write C(P(v)) instead
of C(P). Define the maximal score difference as

Ap(W): Ap (W, W).

max
AeC(P),W’eWs

Observe that W is not a necessary committee if and only if
Ap (W) > 0. To compute Ap (W), we iterate over all sets
W' € Wy, and for every W’ we compute Ap (W, W') :=
maxaccp) Aa (W, W’). Once we compute Ap(W, W’)
for every W' € W, we are done, since Ap(W) =
Maxw’ew,, ZP(VV, W/)

Now, let W’ € W. Since r is an ABC scoring
rule, the score of W' in a completion A is s(A,W') =
> vev S(A(v), W), therefore

Rp(W,W') = Aaw) (W, W
PV = e 3 Ao (W)

— max Ay (W,W') = Apw) (W, W),
vEZVA(U)EC(P(U)) Al )( ) vez\/ " )( )

The following lemma completes the proof of Theorem 9

by showing that A p,) (W, W’) can be computed in polyno-
mial time for each voterv € V.
Lemma 2. Let r be an ABC scoring rule and k a fixed nat-
ural number. Computing A p(,)(W, W) is possible in poly-
nomial time given a partial vote P(v) over a set C of candi-
dates, and a pair of sets W,W' € Wi

Proof sketch. Set S = Middle(v) N (W U W'). We call a
subset R C S feasible if there exists a completion A(v) of
P(v) where Middlea (v) NS = R. For feasible R C S, set

——R
Apy(W,W') = AW, W', A(v)).

max
A(v)eC(P(v)):
Middlea (v)NS=R

Otherwise, define Zﬁ(v)(w, w’) —oo. We get that
Bpy (W, W) = maxpcs Ap(, (W, W), Since |S] <
2k, there is a constant number of subsets of S. It can be
shown that we can compute Zﬁ(v) (W, W') in polynomial
time for every R C S. O

Necessary Committee Members. A candidate c is a nec-
essary committee member if for every completion A of P
there exists a winning committee W for which ¢ € W. For
an ABC rule r and a committee size k, we consider the com-
putational problem NecMem(k), where the input consists of
a partial profile P and a candidate ¢, and the goal is to deter-
mine whether c is a necessary committee member.

Note that a necessary committee member can be a mem-
ber of different winning committees in different comple-
tions. Thus, in contrast to PosCom and PosMem, being able
to solve NecCom does not help deciding NecMem, because
a candidate could be a necessary committee member without
being a member of a necessary committee.

We show that in the 3VA model we can find the necessary
members in polynomial time under approval voting.



Theorem 10. In the 3VA model, NecMem(k) is solvable in
polynomial time under Approval Voting, for all fixed k > 1.

In the linear model, NecMem(k) is solvable in polyno-
mial time under AV and under binary Thiele rules.

Theorem 11. In the linear model, NecMem (k) is solvable
in polynomial time under Approval Voting and under every
binary Thiele rule, for all fixed k > 1.

6 Representation under Incompleteness

An important goal in committee voting concerns the repre-
sentation of voters. Sufficiently large and cohesive groups of
voters should be adequately represented in the committee. In
this section, we investigate the problem of representation un-
der incomplete preference information: Given a committee
W and partial profile P, does W possibly or necessarily pro-
vide some form of representation? We mainly focus on jus-
tified representation (Aziz et al. 2017), and discuss stronger
representation axioms at the end of this section.

For a (complete) approval profile A and committee size k,
a committee W C C of size |W| = k satisfies justified
representation (JR) w.rt. A if for all G C V with |G| > v
and |, e A(v)] # 0, it holds that [W N, A(v)| # 0.

Aziz et al. (2017) show that it can be tested in polynomial
time whether a given committee provides JR w.r.t. a given
approval profile (without incompleteness). Given a partial
profile P and a committee W, we consider two decision
problems. In PosJR, we ask whether there exists a comple-
tion A of P such that W satisfies JR w.r.t. A. In NecJR we
ask whether W satisfies JR w.r.t. every completion of P. In
contrast to the decision problems we considered earlier, the
committee size k is part of the input for both problems.

We first prove that a committee satisfying JR w.r.t. a given
approval profile A also satisfies JR w.r.t. a new approval pro-
file A’ that results from modifying A in certain ways.

Lemma 3. Let W C C be a committee satisfying JR with
respect to a given approval profile A. Then, W satisfies JR
with respect to a modified approval profile A’ if A’ is con-
structed in one of the following two ways:

(i) avoterv € V stops to approve a candidate notin W, i.e.,
A'(v) = A(v) \ {c} for some ¢ ¢ W and A’ (u) = A(u)
Sfor all u # v; or
(ii) a voter v € V changes her approval set such that the
modified approval set contains a candidate in W, i.e.,
A'(w)NW # O and A'(u) = A(u) for all u # v.
Using this, we show tractability of PosJR and NecJR
by proving that for each problem it is sufficient to check
whether W satisfies JR for one carefully chosen completion.

Theorem 12. In the poset approval model, PosJR and
NecJR are both solvable in polynomial time.

Proof sketch. We prove only NecJR (and omit PosJR for
lack of space). Assume we are given a partial profile P and
a committee W of size k. For each voter v € V, let S,
be the inclusion-maximal subset of candidates in Middle(v)
satisfying S, N W = () while respecting the partial order >,
over Middle(v). We set A(v) = Top(v) U S, for each voter
v € V. It can be shown that if W satisfies JR in A, then it
also satisfies JR in any other completion A’ of P. O
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Note that if we treat k as a constant, we can use Theo-
rem 12 to also check whether a given candidate is a possible
member of a JR committee. This is because, for fixed k, we
can enumerate all size-k subsets containing c.

We now turn our attention to two stronger representation
axioms: proportional justified representation (PJR) and ex-
tended justified representation (EJR) require that cohesive
groups of voters are represented proportionally to their size
(Aziz et al. 2017; Sanchez-Fernandez et al. 2017). Infor-
mally, if a group G C V of voters satisfies both |G| > ¢ - %
and |(,cq A(v)| > £ for some integer £, then PJR and EJR
require that G is represented ¢ times by the committee. The
axioms differ in the way that they define representation. (For
formal definitions, refer to the full version of the paper.)

Even for a complete approval profile A, it is coNP-
complete to decide whether a given committee provides PJR
or EJR w.r.t. A (Aziz et al. 2017, 2018). However, we show
that this problem becomes tractable if we assume the com-
mittee size k to be fixed. Our proof is based on a proof by
Aziz et al. (2018), who show an analogous result for a fixed
number of candidates (instead of a fixed committee size).

Theorem 13. Given a committee W and a (complete) ap-
proval profile A, testing whether W satisfies PJR or EJR is
possible in time O(m*+2 . n - k).

If the committee size is assumed to be fixed, Theorem 13
implies that PJR and EJR can be verified efficiently in the
case of complete information. This observation gives rise to
computational questions regarding PJR and EJR under in-
completeness: Given a committee 11 and a partial approval
profile P and assuming k is fixed, can we decide in polyno-
mial time whether W satisfies PJR or EJR for any or all of
the completions of P? We leave this open for future work.

7 Concluding Remarks

We studied computational aspects of approval-based com-
mittee voting under incomplete approval information. We
adopted poset approval as a general model of incomplete-
ness, along with the 3VA and linear special cases, and we
focused on committees of a fixed size. We established a
quite broad picture of complexity for the problems of de-
termining whether a given set of candidates is a possible
or necessary committee for large classes of ABC rules. We
also proved several results on the problems of possible and
necessary committee members, albeit leaving some cases
open for future work. Finally, we investigated the question of
whether a given committee satisfies, possibly or necessarily,
the representation axiom justified representation. The prob-
lem remains open for the stronger axioms of proportional
and extended justified representation; we established that if
the committee size is fixed the potential source of hardness
can only be the incompleteness. It seems promising to study
the problem of possible and necessary committees also for
other ABC rules such as sequential Phragmén or Rule X (Pe-
ters and Skowron 2020). Additional directions for future re-
search include other models of incompleteness, and uncer-
tainty in general, such as a model where voter attendance to
the ballot is uncertain.
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