
Machine-Learned Prediction Equilibrium for Dynamic Traffic Assignment

Lukas Graf1, Tobias Harks1, Kostas Kollias2, Michael Markl1

1University of Augsburg
2Google

{lukas.graf, tobias.harks}@math.uni-augsburg.de, kostaskollias@google.com, michael.markl@student.uni-augsburg.de

Abstract

We study a dynamic traffic assignment model, where agents
base their instantaneous routing decisions on real-time delay
predictions. We formulate a mathematically concise model
and derive properties of the predictors that ensure a dynamic
prediction equilibrium exists. We demonstrate the versatil-
ity of our framework by showing that it subsumes the well-
known full information and instantaneous information mod-
els, in addition to admitting further realistic predictors as spe-
cial cases. We complement our theoretical analysis by an ex-
perimental study, in which we systematically compare the in-
duced average travel times of different predictors, including
a machine-learning model trained on data gained from previ-
ously computed equilibrium flows, both on a synthetic and a
real road network.

Introduction
Understanding and optimizing traffic networks is a signifi-
cant effort that impacts billions of people living in urban ar-
eas, with key challenges including managing congestion and
carbon emissions. These phenomena are heavily impacted
by individual driver routing decisions, which are often in-
fluenced by ML-based predictions for the delays of road
segments (see, for instance, (Jiang and Luo 2021) for an
overview of convolutional and graph neural network based
approaches). One key aspect that is not well understood, is
that these routing decisions, in turn, influence the forecast-
ing models by changing the underlying signature of traffic
flows.

In this paper, we address this interplay focusing on the
popular dynamic traffic assignment (DTA) framework, on
which there has been substantial work over the past decades
(see the classical book of Ford and Fulkerson (Ford and
Fulkerson 1962) or the more recent surveys of Friesz et
al. (Friesz and Han 2019), Peeta and Ziliaskopoulos (Peeta
and Ziliaskopoulos 2001) and Skutella (Skutella 2008)). A
fundamental base model describing the dynamic flow prop-
agation process is the so-called deterministic queuing model
due to Vickrey (Vickrey 1969). Here, a directed graph G =
(V,E) is given, where edges e ∈ E are associated with a
queue with positive rate capacity νe ∈ R>0 and a physi-
cal transit time τe ∈ R>0. If the total inflow into an edge
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e = vw ∈ E exceeds the rate capacity νe, a queue builds
up and agents need to wait in the queue before they are
forwarded along the edge. The total travel time along e is
thus composed of the waiting time spent in the queue plus
the physical transit time τe. The Vickrey model is arguably
one of the most important traffic models (see Li, Huang and
Yang (Li, Huang, and Yang 2020) for an up to date research
overview of the past 50 years), and yet, it is mathematically
quite challenging to analyze (see Friesz et al. (Han, Friesz,
and Yao 2013b) for a discussion of the inherent complexi-
ties).

Given a physical flow propagation model, the routing and
traffic prediction algorithms are usually subsumed under a
behavioral model of agents in order to solve a DTA model.
The behavior of agents is modelled based on their infor-
mational assumption which in turn defines their respective
utility function. Most works in the DTA literature on the
Vickrey model can roughly be classified into two main in-
formational categories: the full information model and the
instantaneous information model. In the full information
model, an agent is able to exactly forecast future travel
times along a chosen path effectively anticipating the whole
spatio-temporal flow evolution over the network. This as-
sumption has been justified by letting travelers learn good
routes over several trips and a dynamic equilibrium then
corresponds to an attractor of an underlying learning dy-
namic. Existence and computation of dynamic equilibria in
the full information model has been studied extensively in
the transportation science literature, see (Friesz et al. 1993;
Han, Friesz, and Yao 2013a,b,c; Meunier and Wagner 2010;
Zhu and Marcotte 2000), whereas the works in (Koch and
Skutella 2011; Cominetti, Correa, and Larré 2015) allow a
direct combinatorial characterization of dynamic equilibria
leading to existence and uniqueness results in the realm of
the Vickrey bottleneck model. While certainly relevant and
key for the entire development of the research in DTA, this
concept may not accurately reflect the behavioral changes
caused by the wide-spread use of navigation devices and re-
sulting real-time decisions by agents.

In the instantaneous route choice model, agents are in-
formed in real-time about the current traffic situations and,
if beneficial, reroute instantaneously no matter how good or
bad that route was in hindsight, see Ran and Boyce (Ran and
Boyce 1996, § VII-IX), Boyce, Ran and LeBlanc (Boyce,
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Ran, and LeBlanc 1995; Ran, Boyce, and LeBlanc 1993),
Friesz et al. (Friesz et al. 1989). Indeed it seems more re-
alistic that the information available to a navigation device
is rather instantaneous and certainly not complete, that is,
congestion information is available only as an aggregate
(estimated waiting times for road traversal) but the indi-
vidual routes and/or source and destination of travelers are
usually unknown. For the Vickrey model, Graf, Harks and
Sering (Graf, Harks, and Sering 2020) established the exis-
tence of instantaneous dynamic equilibria and derived fur-
ther structural properties. One key property that differenti-
ates dynamic equilibria (in the full information model) from
instantaneous dynamic equilibria is the possibility of cyclic
behavior in the latter. More specifically, (Graf, Harks, and
Sering 2020) show that there are instances with only two
origin-destination pairs and a finite flow volume in which
any instantaneous dynamic equilibrium cycles forever. This
can never happen in the full information model as an agent
plays a best-response given the collective decisions of all
other agents, thus, any cycle only increases the travel time.

Our Contribution
We propose a new DTA formulation within the Vickrey
model that is based on predicted travel times. Since the phys-
ical transit times are known a priori, the only unknown is the
precise evolution of the queues over time. In our model, ev-
ery agent is associated with a queue prediction function that
provides for any future point in time a prediction of queues.
This model includes as special cases the full information
model and the instantaneous information model but it allows
to use predictions based on historical data or the queueing
evolution learned en route. Besides these special cases, our
model allows other queue prediction functions and even in-
cludes the case of finitely many classes of agents that may
use different predictors.

As our main theoretical contribution, we define this model
formally and derive conditions for the queue predictors lead-
ing to the existence of dynamic equilibria. The main ap-
proach is based on an extension property of partial equilib-
rium flows, that is, we show that any equilibrium flow up to
some time θ ≥ 0 can be extended to time θ + α for some
α > 0 which leads to the existence on the whole R using
Zorns’ lemma. The extension step itself is based on a for-
mulation using infinite dimensional variational inequalities
in the edge-flow space and whenever the predictor satisfies a
natural continuity condition, only depends on past informa-
tion and the predicted arrival times are non-decreasing, the
extension is possible.

While this approach is in line with previous existence
proofs using variational inequalities as put forth in the sem-
inal papers by Friesz et al. (Friesz et al. 1993; Han, Friesz,
and Yao 2013a,b,c), there are some remarkable differences.
The above works rely on the complete spatio-temporal un-
folding of the path-inflows over the network which is known
as network loading. As shown in (Graf, Harks, and Sering
2020), already the simple prediction function given by the
constant current queues (which leads to the instantaneous
route choice model) leads to dynamic equilibria with cy-
cling behavior (forever) and thus puts a path-based formula-

tion over the entire time horizon out of reach. Our extension
approach follows the extension-methodology used in (Graf,
Harks, and Sering 2020) for the case of constant prediction
functions. The more general model, however, comes with
several technical difficulties that we need to address. We
demonstrate the applicability of our main result by show-
ing that it applies for instance to a natural linear regularized
predictor q̂RL

e . The idea here is to predict the queue growth
linearly based on previously observed data on the time in-
terval [θ̄ − δ, θ̄]. The regularization is necessary to obtain
a continuous predictor since the purely linearized predictor
q̂L
e (θ; θ̄; q) := (θ − θ̄)∂−qe(θ̄) may be discontinuous as a

function in the variable q.
On the experimental side, we conduct a simulation on a

small synthetic network, on the commonly used Sioux Falls
network from (LeBlanc, Morlok, and Pierskalla 1975) and
on a larger real road network of Tokyo, Japan, obtained from
Open Street Maps (OpenStreetMap contributors 2017). We
study how the average travel time of vehicles in the network
is impacted by the application of various predictors. For this
purpose, we also train a linear regression model, for use as
one of our predictors.

Related Work
The idea of using real-time information and traffic predic-
tions en route and subsequently change the route is by no
means new and has been proposed under varying names such
as ATIS (advanced traveller information systems), see (Cho-
rus, Molin, and Wee 2005; Watling 1994; Yang 1998) for an
overview. Ben-Akiva et al. (Ben-Akiva et al. 2002) intro-
duced DynaMIT, a simulation-based approach designed to
predict future traffic conditions. Other works that also rely
on simulation-based models include (Mahmassani 2001).
Peeta and Mahmassani (Peeta and Mahmassani 1995) intro-
duced a rolling horizon framework addressing the real-time
traffic assignment problem. This approach concatenates for
fixed consecutive time-intervals static flow assignments and
thus does not comply to our definition of dynamic equilib-
rium in which at any time (also within stages) equilibrium
conditions must hold. Huang and Lam (Huang and Lam
2003) allow for different user classes where each class may
use a different travel time prediction. Their model is formu-
lated in discrete time and assumes an acyclic path formula-
tion.

A large body of research has been dedicated to the use
of deep learning techniques, in particular graph neural net-
works (GNNs), for predicting street segment delays in road
networks. It is impossible to list all relevant work in this
section, we instead describe some key papers and point
the reader to (Jiang and Luo 2021) for a complete sur-
vey. The work in (Li et al. 2018) uses a random walk-
based graph diffusion process to create a convolutional op-
erator that captures spatial relations. In (Yu, Yin, and Zhu
2018), the authors propose a spatio-temporal graph con-
volutional network which model the temporal dependency,
whereas (Wu et al. 2019) models the spatial dependency
through an adaptive learnable dependency matrix and the
temporal dependency with dilated convolution (Oord et al.
2016). Finally, graph attention networks (GATs) (Velick-
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ovic et al. 2018) have also been used in the context of traf-
fic predictions (Zheng et al. 2020). We note that our work
bridges the above areas of dynamic route updates based on
real time information and of applying ML models for pre-
dicting traffic delay.

Gentile (Gentile 2016) considered a mathematical ap-
proach incorporating traffic predictions in a dynamic traffic
assignment (DTA) model. He derives the existence of equi-
libria using a variational inequality approach for the con-
sidered DTA model under simplifying assumptions such as
an acyclic graph. The VI approach is arc and node-based
and for its correctness, the assumption on acyclic (finite)
paths is necessary as he uses a telescopic sum of edge travel
times in order to arrive at a path-based VI formulation as
used in (Friesz et al. 1993). Note that this approach fails
in the general setting we consider in this paper. For fur-
ther references on adaptive route choice models we refer
to (Kucharski and Gentile 2019; Marcotte, Nguyen, and
Schoeb 2004; Hamdouch, Marcotte, and Nguyen 2004; Un-
nikrishnan and Waller 2009; Watling and Hazelton 2003).

For works analyzing the inefficiency of dynamic equi-
libria (within the full or instantaneous information model),
we refer to (Bhaskar, Fleischer, and Anshelevich 2015; Cao
et al. 2017; Correa, Cristi, and Oosterwijk 2019; Graf and
Harks 2020).

The Flow Model
In the following, we describe the Vickrey fluid queuing
model that we will use throughout this paper. We consider
a finite directed graph G = (V,E) with positive rate ca-
pacities νe ∈ R>0 and positive transit times τe ∈ R>0

for every edge e ∈ E. There is a finite set of commodi-
ties I = {1, . . . , n}, each with a commodity-specific source
node si ∈ V and a commodity-specific sink node ti ∈ V .
We assume that there is at least one si-ti path for each i ∈ I .
The (infinitesimally small) agents of every commodity i ∈ I
enter the network according to a locally integrable, bounded
network inflow rate function ui : R≥0 → R≥0.

A flow over time is a tuple f = (f+, f−), where f+, f− :
R≥0×E×I → R≥0 are locally integrable functions model-
ing the edge inflow rate f+

i,e(θ) and edge outflow rate f−i,e(θ)
of commodity i of an edge e ∈ E at time θ ∈ R≥0. The
queue length of edge e at time θ is given by

qe(θ) :=
∑
i∈I

F+
i,e(θ)−

∑
i∈I

F−i,e(θ + τe), (1)

for θ ∈ R≥0, where F+
i,e(θ) :=

∫ θ
0
f+
i,e(z) dz and F−i,e(θ) :=∫ θ

0
f−i,e(z) dz denote the cumulative (edge) inflow and cu-

mulative (edge) outflow. We implicitly assume f−i,e(θ) = 0

for all θ ∈ [0, τe), which will ensure together with Con-
straint (4) (see below) that the queue lengths are always non-
negative. For the sake of simplicity, we denote the aggre-
gated in- and outflow rates for all commodities by f+

e :=∑
i∈I f

+
i,e and f−e :=

∑
i∈I f

−
i,e, respectively.

A feasible flow over time satisfies the following condi-
tions (2), (3), (4), and (5). The flow conservation constraints

are modeled for a commodity i ∈ I and all nodes v 6= ti as∑
e∈δ+v

f+
i,e(θ)−

∑
e∈δ−v

f−i,e(θ) =

{
ui(θ) if v = si,

0 if v 6= si,
(2)

for θ ∈ R≥0 where δ+
v := { vu ∈ E } and δ−v := {uv ∈ E }

are the sets of outgoing edges from v and incoming edges
into v, respectively. For the sink node ti of commodity i we
require∑

e∈δ+ti

f+
i,e(θ)−

∑
e∈δ−ti

f−i,e(θ) ≤ 0 for all θ ∈ R≥0. (3)

We assume that the queue operates at capacity which can be
modeled by requiring

f−e (θ + τe) =

{
νe if qe(θ) > 0,

min { f+
e (θ), νe } else,

(4)

for all e ∈ E, θ ∈ R≥0.
Finally, we want the flow to follow a strict FIFO principle

on the queues, which can be formalized by

f−i,e(θ) =

{
f−e (θ) · f

+
i,e(ϑ)

f+
e (ϑ)

if f+
e (ϑ) > 0,

0 else,
(5)

where ϑ := min {ϑ ≤ θ | ϑ+ τe + qe(ϑ)
νe

= θ } is the earli-
est point in time a particle can enter edge e and leave at time
θ and qe(ϑ)

νe
is the current waiting time to be spent in the

queue of edge e. Consequently, constraint (5) ensures that
the share of commodity i of the aggregated outflow rate at
any time equals the share of commodity i of the aggregated
inflow rate at the time the particles entered the edge.

Instantaneous Dynamic Equilibrium
In an instantaneous dynamic equilibrium (IDE) as defined
in (Graf, Harks, and Sering 2020) we assume that, whenever
an agent arrives at an intermediate node v at time θ, she is
given the information about the current queue length qe(θ)
and transit time τe of all edges e ∈ E, and, based on this in-
formation, she computes a shortest v-ti path and enters the
first edge on this path. We define the instantaneous travel
time of an edge e at time θ as ce(θ) := τe + qe(θ)

νe
. With this

we can define commodity-specific node labels `i,v(θ) cor-
responding to current earliest arrival times when travelling
from v to the sink ti at time θ by

`i,v(θ) :=

{
θ for v = ti,

mine=vw∈E `i,w(θ) + ce(θ) else.
(6)

We say that edge e = vw is active for i ∈ I at time θ, if
`i,v(θ) = `i,w(θ) + ce(θ) and we denote the set of active
edges for commodity i by Ei(θ) ⊆ E.
Definition 1. A feasible flow over time f is an instanta-
neous dynamic equilibrium (IDE), if for all i ∈ I, θ ∈ R≥0

and e ∈ E it satisfies

f+
i,e(θ) > 0 =⇒ e ∈ Ei(θ). (7)
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Dynamic Nash Equilibrium
In contrast, in the full information model we assume that
agents have complete knowledge of the entire (future) evolu-
tion of the dynamic flow. If an agent enters an edge e = vw

at time time θ, the travel time is ce(θ) := τe + qe(θ)
νe

and
the exit time of edge e is given by Te(θ) := θ + ce(θ). In
this setting it is common (cf. (Cominetti, Correa, and Larré
2015)) to define the node labels in such a way as to denote
the earliest possible arrival time at each node (starting from
the commodity’s source node). Here, however, we will in-
stead use an equivalent definition more in line with the node
labels for IDEs. So, for any i ∈ I, v ∈ V and θ ∈ R≥0 we
define a node label `i,v(θ) denoting the earliest possible ar-
rival time at node ti for a particle starting at time θ at node
v by setting

`i,v(θ) :=

{
θ for v = ti,

mine=vw∈δ+v `i,w(Te(θ)) else.
(8)

We, again, say that an edge e = vw is active for commodity
i ∈ I at time θ, if it holds that `i,v(θ) = `i,w(Te(θ)) and
denote by Ei(θ) the set of active edges for commodity i at
time θ.

Definition 2. A feasible flow over time f is a dynamic equi-
librium (DE), if for all e ∈ E, i ∈ I and θ ≥ 0 it holds
that

f+
i,e(θ) > 0 =⇒ e ∈ Ei(θ). (9)

Dynamic Prediction Equilibria
IDE is a short-sighted behavioral concept assuming that
agents at time θ̄ predict the future evolution of queue sizes
according to the constant function qe(θ) = qe(θ̄) for all
θ ≥ θ̄. In the following we will relax this behavioral as-
sumption by introducing a model wherein every commodity
i ∈ I maintains a predictor q̂i,e for every edge e ∈ E. For
a given flow over time and any two times θ ≥ θ̄ the value
q̂i,e(θ; θ̄; q) is then the queue length at time θ on edge e as
predicted by commodity i at time θ̄. Formally, a predictor
q̂i,e has the following signature:

q̂i,e : R≥0 × R≥0 × C (R≥0,R≥0)
E → R≥0

In general such a predictor can depend in any arbitrary way
on the entire input data including, in particular, the future
evolution of the queue lengths after the prediction time θ̄.
However, for our theoretical results we require the predictors
to behave in a slightly more restricted way. First we want the
predictors to depend continuously on query time, prediction
time and the observed queue lengths.

Definition 3. We call a predictor q̂i,e continuous, if the map-
ping

q̂i,e : R≥0 × R≥0 × C(R≥0,R≥0)E → R≥0

is continuous from the product topology, where all
C(R≥0,R≥0) are equipped with the topology induced by
the extended uniform norm, to the standard topology on
R≥0.

The second property, which is also important for imple-
menting the predictors, is that the predictors do not use (and,
therefore, do not need) any information on the future evolu-
tion of the queues.
Definition 4. A predictor q̂i,e is called oblivious, if the fol-
lowing condition holds

∀θ, θ̄, q, q′ : q≤θ̄ = q′≤θ̄ =⇒ q̂i,e(θ; θ̄; q) = q̂i,e(θ; θ̄; q
′),

where q≤θ̄ denotes the restriction of the function q : R≥0 ×
E → R≥0 to [0, θ̄]× E.

The final property ensures that at any point in time there
are shortest paths with respect to the predicted queue lengths
that are cycle free. However, before we can formally de-
fine this property, we need some additional notation. If an
agent of commodity i ∈ I enters an edge e = vw at time
θ, the predicted travel time estimated at time θ̄ is given by
ĉi,e(θ; θ̄; q) := τe +

q̂i,e(θ;θ̄;q)
νe

and the predicted exit time of
edge e is given by T̂i,e(θ; θ̄; q) := θ + ĉi,e(θ; θ̄; q). We call
these times θ̄-estimated to emphasize that these values are
predictions made at time θ̄.
Definition 5. A predictor q̂i,e respects FIFO if for any
edge e, queue lengths functions q and prediction time θ̄

the predicted exit time T̂i,e( · ; θ̄; q) is a monotonically non-
decreasing function.

This now allows us to describe how agents determine
routes according to the predicted queues. At time θ̄ an agent
of commodity i ∈ I predicts that if she enters a path
P = (e1, . . . , ek) at time θ she will arrive at the endpoint
of P at time

ˆ̀P
i ( · ; θ̄; q) := T̂i,ek( · ; θ̄; q) ◦ · · · ◦ T̂i,e1( · ; θ̄; q). (10)

Denoting the (finite) set of all simple v-ti paths by Pi,v ,
the earliest θ̄-estimated time at which an agent starting at
time θ from node v can reach ti is given by

ˆ̀
i,v(θ; θ̄; q) := min

P∈Pi,v

ˆ̀P
i (θ; θ̄; q), (11)

where the minimum over an empty set is infinity. The label
functions defined in (11) satisfy the following equations:

ˆ̀
i,v(θ; θ̄; q) =

{
θ if v = ti,

min
vw∈δ+v

ˆ̀
i,w(T̂i,vw(θ; θ̄; q); θ̄; q) if v 6= ti.

We say that an edge e = vw is θ̄-estimated active for com-
modity i at time θ, if ˆ̀

i,v(θ; θ̄; q) = ˆ̀
i,w(T̂i,e(θ; θ̄; q); θ̄; q)

holds true. Furthermore, let us denote the set of θ̄-estimated
active edges for commodity i at time θ by Êi(θ; θ̄; q).
Definition 6. A pair (q̂, f) of a set of predictors q̂ =
(q̂i,e)i∈I,e∈E and a flow over time f is a dynamic predic-
tion equilibrium (DPE), if for all e ∈ E, i ∈ I and θ ≥ 0 it
holds that

f+
i,e(θ) > 0 =⇒ e ∈ Êi(θ; θ; q).

We then also call the flow f a dynamic prediction flow with
respect to the predictor q̂.
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Existence of Dynamic Prediction Equilibria
In this section we show that for oblivious and continuous
predictors that respect FIFO there always exist dynamic pre-
diction equilibria. We will also give several examples of
such predictors, including one inducing IDEs as correspond-
ing equilibria.

Existence of DPE Using a Variational Inequality
To show the existence of DPE we make use of a result by
Brézis (Brézis 1968, Theorem 24) guaranteeing the exis-
tence of solutions to certain variational inequalities.

Theorem 7. Let [a, b) ⊆ R≥0 be some interval, d ∈ N,
K ⊆ L2([a, b))d a nonempty, closed, convex and bounded
set and A : K → L2([a, b))d a weak-strong-continuous
mapping. Then there exists a point g∗ ∈ K such that

〈A(g∗), g − g∗〉 ≥ 0 for all g ∈ K. (12)

This theorem can be used to build up a dynamic predicted
flow with respect to a given set of predictors by iteratively
extending so-called partial dynamic prediction flows which
fulfill the equilibrium property up to some time horizon.
First, we formally introduce these flows:

Definition 8. A partial flow up to time φ is a tuple f =
(f+, f−) of locally integrable functions f+, f− : R≥0 ×
E×I → R≥0 fulfilling conditions (2), (3) and (4) for θ ≤ φ.
We call f a partial dynamic prediction flow with respect to
a set of oblivious predictors q̂ up to time φ, if f+

i,e(θ) > 0

implies e ∈ Êi(θ; θ; q) for all θ ≤ φ, e ∈ E, i ∈ I .

We will now show that such a partial dynamic prediction
flow can always be extended for some additional time in-
terval. We will employ a similar proof-technique to the one
used in (Graf, Harks, and Sering 2020, Lemma 5.6) for the
proof of the extension property of IDEs flows. However, the
analysis is more involved as we allow for a more general
functional dependence of the predicted queue lengths on the
past flow evolution. This stands in contrast to IDEs where
each prediction only depends on the queue lengths of one
edge at a single point in time.

Lemma 9. Let I be a finite set of commodities with lo-
cally integrable, bounded network inflow functions ui and
let q̂ = (q̂i,e)i∈I,e∈E be a set of continuous and oblivi-
ous predictors that respect FIFO. We can extend any par-
tial dynamic prediction flow f with respect to q̂ up to time
φ to a dynamic prediction flow up to time φ + α for any
0 < α < mine∈E τe.

We will only give a brief proof sketch here – the full proof
can be found in the full version (Graf et al. 2021a). The
main idea is to first define a set K of all possible exten-
sions of the given partial flow. We then define a mapping
A : K → L2(D)I×E associating with each possible ex-
tension a function which for every commodity i, edge e and
time θ is zero if and only if this edge is active for this com-
modity at this time. Using the continuity of the predictors we
then show that this mapping is weak-strong continuous such
that we can apply Theorem 7 to get a solution to the varia-
tional inequality (12). Finally, we show that this solution is

indeed an extension which also satisfies the properties of a
dynamic prediction flow.

With this key-lemma we can now show the existence of
dynamic prediction flows for all oblivious and continuous
predictors that respect FIFO. Starting with the zero-flow up
to time 0 and iteratively applying Lemma 9 gives us a par-
tial dynamic prediction flow up to any finite time horizon.
Zorn’s lemma then shows the existence of a dynamic pre-
diction flow for all times, thus, proving our main theorem:

Theorem 10. For any network with finite set of commodi-
ties, each associated with a locally integrable, bounded net-
work inflow rate and oblivious and continuous predictors
q̂i,e that respect FIFO, there exists a dynamic prediction flow
with respect to q̂.

Example 11. To see why we require the predictors to be
continuous, consider the non-continuous predictor

q̂e(θ; θ̄; q) :=

{
qe(θ̄), if qe(θ̄) < 1

2, else.

Using this predictor in a network consisting of only a sin-
gle source-sink pair connected by two parallel edges e1 and
e2 can already lead to a situation where no equilibrium flow
exists. Let νe1 = 1, τe1 = 1, νe2 = 2, τe2 = 2 and assume a
constant inflow rate of 2 at the source. Then, clearly, during
the time interval [0, 1) agents using the above predictor may
only enter edge e1 (as the predicted travel time along edge e1

is strictly smaller than 2). Beginning with time θ = 1, how-
ever, every possible flow split will violate the equilibrium
condition, since at that time edge e1 has a queue length of
1 and, thus, a predicted queue length of 2. On the one hand,
sending agents into edge e1 at a rate of less than 1 for any
period of time after θ = 1, leads to an immediate decrease of
its queue lengths and, thus, edge e2 becomes inactive again.
If, on the other hand, agents enter edge e1 at a rate of 1 or
more its queue length will remain at least 1 and, therefore,
edge e1 will be inactive.

Application Predictors
We now discuss several predictors and analyze whether the
theorem above can be applied. We begin with simple predic-
tors and make them more sophisticated step-by-step.

The Zero-Predictor predicts no queues for all times, i.e.

q̂Z
i,e(θ; θ̄; q) = 0.

This predictor is trivially continuous and oblivious and re-
spects FIFO. The resulting dynamic prediction flow is a flow,
where particles just always follow physically shortest paths.

The constant predictor predicts in a continuous way that
all queues will stay constant:

q̂C
i,e(θ; θ̄; q) = qe(θ̄).

This leads to the mentioned special case of IDE flows. Since
the constant predictor clearly is continuous and oblivious
and respects FIFO we can apply Theorem 10 and, thus, re-
prove the existence of IDE flows shown in (Graf, Harks, and
Sering 2020).
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The linear predictor takes the derivative of the queues and
extends them linearly up to some fixed time horizon H ∈
R≥0 ∪ {∞}. Formally it is defined as

q̂L
i,e(θ; θ̄; q) :=

(
qe(θ̄) + ∂−qe(θ̄) ·min{θ − θ̄, H}

)+
,

where (x)+ := max{x, 0} denotes the positive part of x ∈
R. The linear predictor is not in general continuous since the
partial derivative ∂−qe(θ̄) might be discontinuous.

The regularized linear predictor solves this by taking a
rolling average of the past gradient (with rolling horizon δ >
0) and extend the prediction queues according to this:

q̂RL
i,e(θ; θ̄; q) :=

(
qe(θ̄)+

qe(θ̄)− qe(θ̄ − δ)
δ

·min{θ−θ̄, H}
)+

Proposition 12. The regularized linear predictor is oblivi-
ous and continuous and respects FIFO. It, thus, induces the
existence of a dynamic prediction equilibrium.

The proof is a direct computation (see (Graf et al. 2021a)
for the detailed proof). A different way of understanding
the regularized predictor is that it takes two samples from
the past queue lengths (at time θ̄ and θ̄ − δ) and uses
this information to predict future queue lengths up to the
prediction horizon by a linear function. We can generalize
this idea by taking more samples of the past queue (pos-
sibly also of queues of neighbouring edges) and use these
values to find a piecewise linear prediction of the queue
length for the future. More precisely, given some sample
number k, some step size δ, and a neighbourhood edge set
N(e) ⊆ E we choose real numbers ae

′

i,j for i = 1, . . . , k,
j = 1, . . . ,H/δ and e′ ∈ N(e). Our predictor is then the
piecewise linear function interpolating between the points
(θ̄ + jδ, (

∑
e′∈N(e)

∑k
i=1 a

e′

i,j · qe′(θ̄ − iδ))+) for j =

1, . . . ,H/δ. We will denote such a predictor by q̂ML.

Proposition 13. For appropriately chosen ae
′

i,j the predictor
q̂ML is oblivious and continuous and respects FIFO. It, thus,
induces the existence of a dynamic prediction equilibrium.

The predictor q̂ML always is continuous and oblivious by
the same arguments as for the regularized linear predictor. It
also respects FIFO, if the numbers ae

′

i,j are chosen in such
a way that the predicted queue-length never decreases faster
than by at rate of νe. As this function is piece-wise linear
we can check easily check this condition for any given set
of numbers ae

′

i,j . This leaves the question of how to choose
these parameters in order to achieve a good predictor. In our
experimental section below, we will use machine learning
to learn these by evaluating past data. Consequently, we call
the predictor q̂ML a linear regression predictor. We provide
more details on the features and data used to train the pre-
dictor in the following section.

Finally, the perfect predictor predicts the queues exactly
as they will evolve, i.e. it satisfies

q̂P
i,e(θ; θ̄; q) := qe(θ).

This predictor clearly is not oblivious and, thus, we can not
apply our existence result here. However, dynamic predicted
flows with respect to this predictor do exist as those are just
dynamic equilibria for which existence has been proven in
(Cominetti, Correa, and Larré 2015).

Computational Study
In the following computational study, we compare the differ-
ent predictors introduced in the last section with a machine-
learning based alternative. To compare the predictors we
introduce an extension based algorithm computing an ap-
proximation of a DPE for a given set of predictors. We also
use this algorithm to generate training data for the machine
learning system using the constant predictors, which results
in an approximation of IDEs.

As a metric for a predictor’s performance we monitor its
average travel time in a flow with multiple predictors used
side by side: Let i be a commodity with constant net inflow
rate up to some time h, i.e. ui(θ) := ūi for θ ≤ h and
ui(θ) := 0 for θ > h. The net outflow rate of commodity i
is given by oi(θ) :=

∑
e∈δ−t

f−i,e(θ)−
∑
e∈δ+t

f+
i,e(θ). Taking

the integral of ui(ψ) − oi(ψ) over [0, φ] yields the flow of
commodity i inside the network at time φ. If we integrate
this quantity over φ ∈ [0, H] with H ≥ h, we obtain the
total travel time of particles of commodity i up to time H:

T total
i :=

∫ H

0

∫ φ

0

ui(ψ)− oi(ψ) dψ dφ

Now, T avg
i := T total

i /(h · ūi) denotes the average travel time.
We compare these values against their optimum which can
be computed as T avg

i,OPT :=
∫ h

0
min{H, li,s(θ)} − θ dθ/h.

Extension based simulation
As proposed in our model, each infinitesimal agent updates
its route each time after traversing an edge. As our flow is
continuous, this would imply that the prediction and there-
fore also the shortest paths are updated in a continuous man-
ner. For a computational study, this can only be approxi-
mated: In our implementation, we assume that shortest paths
as predicted at some time θ̄ stay shortest paths for a cer-
tain time interval [θ̄, θ̄+ε) and agents compute new shortest
paths every ε time units resulting in ε-DPEs:

Definition 14. For ε > 0, a pair (q̂, f) of a set of pre-
dictors q̂ = (q̂i,e)i∈I,e∈E and a flow over time f is an ε-
approximated dynamic prediction equilibrium (ε-DPE), if
for all e ∈ E, i ∈ I and θ ≥ 0 it holds that

f+
i,e(θ) > 0 =⇒ e ∈ Êi(ε · bθ/εc; ε · bθ/εc; q).

In our implementation we maintain piece-wise constant
inflow and outflow rate functions f+

i,e, f
−
i,e as well as piece-

wise linear queue lengths qe. We have a sequence of predic-
tion times θ̄k = k·ε at which new predictions are retrieved in
the form of piece-wise linear functions q̂i,e( · ; θ̄k; q). From
these predictions, we derive the time-dependent cost func-
tions ĉi,e( · ; θ̄k; q). If we use predictors respecting FIFO,
we can use a dynamic variant of the Dijkstra Algorithm to
compute the active edges Êi(θ̄k; θ̄k; q).

We then send flow along these active edges until the
next prediction time θ̄k+1. This is done in a so-called dis-
tribution phase: Let us first assume, that the node inflow
b−i,v(θ) :=

∑
e∈δ−v f

−
i,e(θ) is constant on some proper in-

terval [φ, φ + α) ⊆ [θ̄k, θ̄k+1). The edge inflow rates of
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Figure 1: A network with constant inflow at source s. The
only sink is node t. Edges are labeled with (τe, νe).

edges e ∈ δ+
v are then extended on [φ, φ + α) by setting

f+
i,e(θ) := b−v,i(θ)/

∣∣∣δ+
v ∩ Êi(θ̄k; θ̄k; q)

∣∣∣ if e ∈ Êi(θ̄k; θ̄k; q)

and f+
i,e(θ) := 0 otherwise. The edge outflow rates are then

determined using conditions (4) and (5).
To build a feasible flow we have to comply with the

flow conservation constraints when extending the flow. As
the outflow rate of edges may vary during a single inter-
val [θ̄k, θ̄k+1) we can only extend the flow with the above
method until some outflow rate changes, after which we
start another distribution phase. By choosing α > 0 such
that φ+ α is the next time an edge outflow rate changes (or
φ+ α = θ̄k+1), the flow conservation constraint is satisfied.
Hence, there might be a multitude of smaller distribution
phases during a single prediction interval. These subsequent
distribution phases can be sped up by only updating nodes
where edge outflow rates of incoming edges have changed.

The code of our simulations is publicly available in (Graf
et al. 2021b).

Data
We conduct our experiments on three graphs. The first is
a warm-up synthetic graph with 4 nodes and 5 edges. We
present the graph in Figure 1. The second graph is the road
map of Sioux Falls as given in (LeBlanc, Morlok, and Pier-
skalla 1975) which is commonly used in the transport sci-
ence literature. It comes with edge attributes free-flow travel
time τe and capacity νe. The third graph is the center of
Tokyo as obtained from Open Street Maps (OpenStreetMap
contributors 2017). This data set the free-flow speed, the
length and the numbers of lanes of each road segment e. We
compute the transit time τe as the product of the free-flow
speed and the length of edge e. The capacity νe is calculated
by multiplying the number of lanes with the free-flow speed.
For the latter two networks, commodities are randomly cho-
sen. Details are depicted in Table 1, where T comp

avg denotes the
average computation time for computing a single ε-DPE on
a single core of an Intel® Core™ i7-3520M CPU at 2.90GHz.

Network |E| |V | |I| T comp
avg

Synthetic 5 4 5 0.33s
Sioux Falls 75 24 17 10.92s

Tokyo 4,803 3,538 40 343.93s

Table 1: Attributes of the considered networks
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Figure 2: Average travel times of competing predictors in
the synthetic network in Figure 1.

The Machine Learned Predictor
To assess the impact of ML-based models in our setting, we
train a simple linear regression predictor for each network.
To obtain training data for the regression, we run simula-
tions using the proposed extension based algorithm with the
simpler constant predictor. This allows the model to estimate
the progression of queues when agents follow our behavioral
model. The features used to train the model are 10 observa-
tions of the past queue length of the edge and of neighboring
edges.

Comparison of Predictors
We first take a closer look at the synthetic network shown
in Figure 1. Here, we want to analyze how the average travel
times of competing predictors evolve while increasing the
total network inflow. For each oblivious predictor described
above, we add a commodity i ∈ {q̂Z, q̂C, q̂L, q̂RL, q̂ML}. Each
of these commodities has the same source s and sink t and
the same constant inflow ūi up to time h = 25. The out-
come of running the simulation with time horizon H = 100
for each sampled total inflow in (0, 30) can be seen in Fig-
ure 2. The ML based predictor performed best, while no-
tably the Zero-Predictor, who sends flow along paths (s, t)
and (s, v, w, t) equally at all times, performs better than the
remaining predictors.

For the road-networks of Sioux Falls and Tokyo, we ran-
domly generate inflow rates according to the edge capacities
of the network. For each commodity i, we ran the simulation
after adding 5 additional commodities with the same source
and sink as i – one for each predictor – with a very small
constant inflow rate. We monitored their average travel time
as a measure of the performance of the different predictors.
All other commodities in the network were assigned the con-
stant predictor, such that the resulting queues should behave
similar to the training data.

Generally, the Zero-Predictor performs the worst in this
scenario; the machine learning based predictor performs
similarly well as the remaining predictors. We include more
detailed results in (Graf et al. 2021a). We believe it is an in-
teresting future direction to explore more complex learning
algorithms and how they interface with the dynamic predic-
tion equilibrium concept as well as understand how different
graph topologies impact the various predictors.
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