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Abstract

We study the problem of fair and efficient allocation of a set
of indivisible chores to agents with additive cost functions.
We consider the popular fairness notion of envy-freeness
up to one good (EF1) with the efficiency notion of Pareto-
optimality (PO). While it is known that an EF1+PO alloca-
tion exists and can be computed in pseudo-polynomial time
in the case of goods, the same problem is open for chores.
Our first result is a strongly polynomial-time algorithm for
computing an EF1+PO allocation for bivalued instances,
where agents have (at most) two disutility values for the
chores. To the best of our knowledge, this is the first non-
trivial class of indivisible chores to admit an EF1+PO alloca-
tion and an efficient algorithm for its computation.
We also study the problem of computing an envy-free (EF)
and PO allocation for the case of divisible chores. While
the existence of EF+PO allocation is known via competitive
equilibrium with equal incomes, its efficient computation is
open. Our second result shows that for bivalued instances, an
EF+PO allocation can be computed in strongly polynomial-
time.

1 Introduction
The problem of fair division is concerned with allocating
items to agents in a fair and efficient manner. Formally intro-
duced by (Steinhaus 1949), fair division is an active area of
research studied across fields like computer science and eco-
nomics. Most work has focused on the fair division of goods:
items which provide non-negative value (or utility) to the
agents to whom they are allocated. However, several prac-
tical scenarios involve chores (or bads). Chores are items
which impose a cost (or disutility) to the agent to whom they
are allocated. For instance, household chores such as clean-
ing and cooking often need to be fairly distributed among
members of the household. Likewise, teachers have to divide
teaching load, stakeholders have to divide liabilities upon
dissolution of a firm, etc. These examples highlight the im-
portance of allocating chores in a fair and efficient manner.
Agencies responsible for designing such allocations must
take into account the differences in preferences of agents in
order for the allocation to be acceptable to all those involved.
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Arguably, the most popular notion of fairness is envy-
freeness (EF) (Foley 1967; Varian 1974), which requires that
every agent weakly prefers the bundle of items allocated to
her over the bundle of any other agent. When items are di-
visible, i.e., can be shared among agents, EF allocations are
known to exist. However, in the case of indivisible items,
EF allocations need not exist. For instance, while dividing
one chore between two agents, the agent who is assigned the
chore will envy the other. Since the fair division of indivisi-
ble items remains an important problem, several relaxations
of envy-freeness have been defined, first in the context of
goods, and later adapted to chores.

A widely studied relaxation of envy-freeness is envy-
freeness up to one item (EF1), defined by (Budish 2011) in
the context of goods. For chores, an allocation is said to be
EF1 if for every agent, the envy disappears after removing
one chore assigned to her. It is known that an EF1 alloca-
tion of chores exists and can be efficiently computed (Lipton
et al. 2004; Bhaskar, Sricharan, and Vaish 2020). However,
an EF1 allocation may be highly inefficient. Consider for ex-
ample two agents A1 and A2 and 2 chores j1 and j2 where
Ai has almost zero cost for ji and high cost for the other
chore. The allocation in which j1 is assigned to A2 and j2
is assigned to A1 is clearly EF1. However both agents in-
cur high cost, which is highly inefficient. The allocation in
which ji is assigned to Ai is more desirable since it is both
fair as well as efficient.

The standard notion of economic efficiency is Pareto opti-
mality (PO). An allocation is said to be PO if no other alloca-
tion makes an agent better off without making someone else
worse off. Fractional Pareto optimality (fPO) is a stronger
notion requiring that no other fractional allocation makes an
agent better off without making someone else worse off. Ev-
ery fPO allocation is therefore PO, but not vice-versa.

An important question is whether the fairness and effi-
ciency notions of EF1 and PO (or fPO) can be achieved in
conjunction, and if so, can they be computed in polynomial-
time. For the case of goods, (Barman, Krishnamurthy, and
Vaish 2018a) showed that an EF1+PO allocation exists and
can be computed in pseudopolynomial-time. Improving this
result, (Murhekar and Garg 2021) showed that an EF1+fPO
allocation can be computed in pseudopolynomial-time. For
the case of chores, it is unclear whether EF1+PO allocations
even exist, except for simple cases like identical valuations.
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Settling the existence of EF1+PO allocations (and develop-
ing algorithms for computing them) has turned out to be a
challenging open problem.

In this paper, we present the first non-trivial results on the
EF1+PO problem for chores. We study the class of bival-
ued instances, where there are only two costs, i.e., for every
agent a chore costs either a or b, for two positive numbers1

a and b. Bivalued instances are a well-studied class in the
fair division literature, we list several works in Section 1.1.
In particular, (Amanatidis et al. 2020) showed that alloca-
tions that are envy-free up to any good (EFX), which is a
strengthening of EF1, can be efficiently computed for bi-
valued goods. Recently, (Garg and Murhekar 2021) showed
that EFX+fPO allocations can be computed in polynomial-
time for bivalued goods. Showing positive results for bival-
ued chores, our first result is:
Result 1. For bivalued instances with n agents and m in-
divisible chores, an EF1+fPO allocation exists and can be
computed in poly(n,m)-time.

Next, we study the problem of computing an EF+PO al-
location of divisible chores. For goods, it is known that an
EF+PO allocation always exists (Varian 1974) and is in fact
polynomial-time computable via the Eisenberg-Gale convex
program (Nisan et al. 2007). This is done by computing the
competitive equilibrium with equal incomes (CEEI). Here,
the idea is to provide each agent with the same amount of
fictitious money and then find prices and an allocation of
items such that all items are completely bought and each
agent buys her most preferred bundle subject to their budget
constraint. This is an example of a market where demand
(of agents) equals supply (of items), and is known as the
Fisher market. For goods, there are polynomial-time algo-
rithms for computing the competitive equilibrium (CE) (De-
vanur et al. 2008; Orlin 2010). For chores, the problem is
harder: (Bogomolnaia et al. 2017) showed that the CE rule
can be non-convex, multi-valued and disconnected. Algo-
rithms with exponential run-times are known for computing
CE for chores (Brânzei and Sandomirskiy 2019; Garg and
McGlaughlin 2020; Chaudhury et al. 2021), but designing
a polynomial-time algorithm is an open problem. Working
towards this goal, our second result shows:
Result 2. For bivalued instances with n agents and m di-
visible chores, an EF+PO allocation can be computed in
poly(n,m)-time.

1.1 Further Related Work
(Barman, Krishnamurthy, and Vaish 2018a) showed that for
n agents and m goods, an EF1+PO allocation can be com-
puted in time poly(n,m, V ), where V is the maximum util-
ity value. Their algorithm first perturbs the values to a de-
sirable form, and then computes an EF1+fPO allocation for
the perturbed instance, which for a small-enough perturba-
tion is EF1+PO for the original instance. Their approach is

1We can assume the two values are positive since one of them
being zero implies the setting is binary, in which case computing
an EF1+PO allocation is trivial by first assigning chores to agents
which have 0 cost for them, and then allocating almost equal num-
ber of chores of non-zero cost to everyone.

via integral market equilibria, which guarantees fPO at ev-
ery step, and the concept of price-envy-freeness up to one
good (pEF1) which is a strengthening of EF1. Using similar
tools, (Murhekar and Garg 2021) showed that an EF1+fPO
allocation can be computed in poly(n,m, V )-time. They
also showed that an EF1+fPO allocation can be computed
in poly(n,m)-time for k-ary instances (agents have at most
k values for the goods) where k is a constant. It may seem
a natural idea to try and use these approaches for chores,
however they do not extend easily. While our algorithm also
uses integral market equilibria to obtain the fPO property
and pEF1 for chores to argue about EF1, our algorithm and
its analysis are much more involved and significantly differ-
ent from previous works.

Bivalued preferences are a well-studied class in litera-
ture. The following results are for the goods setting. (Aziz
et al. 2019) showed PO is efficiently verifiable for bival-
ued instances and coNP-hard for 3-valued instances; (Aziz
2020), and (Vazirani and Yannakakis 2021) studied the
Hylland-Zeckhauser scheme for probabilistic assignment
of goods in bivalued instances; and (Bogomolnaia and
Moulin 2004) studied matching problems with bivalued (di-
chotomous) preferences. More generally, instances with few
values have also been studied: (Barman, Krishnamurthy,
and Vaish 2018b) showed that EF1+PO allocations can be
computed for binary valuations; (Babaioff, Ezra, and Feige
2021) studied truthful mechanisms for dichotomous valua-
tions; (Golovin 2005) presented approximation algorithms
and hardness results for computing max-min fair alloca-
tions in 3-valued instances; (Bliem, Bredereck, and Nieder-
meier 2016) studied fixed-parameter tractability for comput-
ing EF+PO allocations with parameter n+ z, where z is the
number of values; and (Garg et al. 2009) studied leximin as-
signments of papers ranked by reviewers on a small scale, in
particular they present an efficient algorithm for 2 ranks, i.e.,
“high or low interest” and show NP-hardness for 3 ranks.
Such instances have also been studied in resource allocation
contexts, including makespan minimization with 2 or 3 job
sizes (Woeginger 1997; Chakrabarty, Khanna, and Li 2015).

The fairness notion of equitability requires that each agent
get the same amount of utility or disutility. Similar to EF1
and envy-freeness up to any item (EFX), equitability up to
one (resp. any) item (EQ1 (resp. EQX)) are relaxations of
equitability. Using approaches inspired by (Barman, Krish-
namurthy, and Vaish 2018a), pseudopolynomial time algo-
rithms for computing EQ1+PO allocations were developed
for both goods (Freeman et al. 2019) and chores (Freeman
et al. 2020). (Garg and Murhekar 2021) showed that for bi-
valued goods both an EQX+PO allocation and an EFX+PO
allocation are polynomial time computable.

2 Preliminaries
Problem instance. A fair division instance (of chores) is
a tuple (N,M,C), where N = [n] is a set of n ∈ N
agents, M = [m] is a set of m ∈ N indivisible chores, and
C = {c1, . . . , cn} is a set of cost or disutility functions, one
for each agent i ∈ N . Each cost function ci : M → R≥0

is specified by m numbers cij ∈ R≥0, one for each chore
j ∈ M , which denotes the cost agent i has for performing
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(receiving) chore j. We assume that the cost functions are
additive, that is, for every agent i ∈ N , and for S ⊆ M ,
ci(S) =

∑
j∈S cij . For notational ease, we write c(S \ j)

instead of c(S \ {j}).
We call a fair division instance (N,M,C) a bivalued in-

stance if there exist a, b ∈ R+, with a ≥ b, such that for all
i ∈ N and j ∈M , cij ∈ {a, b}. That is, the cost of any chore
to any agent is one of at most two given positive numbers.
We can assume w.l.o.g. for bivalued instances that all costs
cij ∈ {1, k}, where k = a/b ≥ 1, by re-scaling the costs.
Given such an instance, we partition the set of chores into
sets of low-cost chores Mlow and high-cost chores Mhigh:

• Mlow = {j ∈M : ∃i ∈ N s.t. cij = 1}, and
• Mhigh = {j ∈M : ∀i ∈ N, cij = k}.

We can additionally assume for bivalued instances that for
every agent i, there is at least one chore j s.t. cij = 1. This
is w.l.o.g., since if cij = k for all j ∈ M , then we can re-
scale costs to set cij = 1 for all j ∈M .

Allocation. An allocation x of chores to agents is a n-
partition of the chores x1, . . . ,xn, where agent i is allotted
xi ⊆ M , and gets a total cost of ci(xi). A fractional allo-
cation x ∈ [0, 1]n×m is a fractional assignment such that
for each chore j ∈ M ,

∑
i∈N xij = 1. Here, xij ∈ [0, 1]

denotes the fraction of chore j allotted to agent i.

Fairness notions. An allocation x is said to be envy-free
up to one chore (EF1) if for all i, h ∈ N , where xi ̸= ∅,
there exists a chore j ∈ xi such that ci(xi \ j) ≤ ci(xh). We
say that an agent i EF1-envies an agent h if for all j ∈ xi,
ci(xi \ j) > ci(xh), i.e., the EF1 condition between i and h
is violated.

A (fractional) allocation x is said to be envy-free if for all
i, h ∈ N , ci(xi) ≤ ci(xh). We say that an agent i envies an
agent h if ci(xi) > ci(xh), i.e., the EF condition between i
and h is violated.

Pareto-optimality. An allocation y dominates an alloca-
tion x if ci(yi) ≤ ci(xi), ∀i and there exists h s.t. ch(yh) <
ch(xh). An allocation is said to be Pareto optimal (PO) if no
allocation dominates it. Further, an allocation is said to be
fractionally PO (fPO) if no fractional allocation dominates
it. Thus, a fPO allocation is PO, but not vice-versa.

Fisher markets. A Fisher market or a market instance is
a tuple (N,M,C, e), where the first three terms are inter-
preted as before, and e = {e1, . . . , en} is the set of agents’
mimimum payments, where ei ≥ 0, for each i ∈ N . In this
model, chores can be allocated fractionally. Given a payment
vector, also called a price2 vector, p = (p1, . . . , pm), each
chore j pays pj per unit of chore. Agents perform chores
in exchange for payment. Given chore payments, each agent
i aims to obtain the set of chores that minimizes her total
cost subject to her payment constraint, i.e., receiving a total
payment of at least ei.

A market outcome is a (fractional) allocation x of the
chores to the agents and a set of prices p of the chores. The

2We refer to payments as prices for sake of similarity with the
Fisher market model in the goods case.

spending of an agent i under the market outcome (x,p) is
given by p(xi) =

∑
j∈M pjxij . For an agent i, we define

the bang-per-buck ratio αij of good j as cij/pj , and the min-
imum bang-per-buck (mBB) ratio αi = minj αij . We define
mBBi = {j ∈ M : cij/pj = αi}, called the mBB-set, to
be the set of chores that give mBB to agent i at prices p.
A market outcome (x,p) is said to be ‘on mBB’ if for all
agents i and chores j, xij > 0⇒ j ∈ mBBi. For integral x,
this means that xi ⊆ mBBi for all i ∈ N .

A market outcome (x,p) is said to be a market equilib-
rium if (i) the market clears, i.e., all chores are fully allo-
cated. Thus, for all j,

∑
i∈N xij = 1, (ii) each agent receives

their minimum payment, for all i ∈ N ,
∑

j∈M xijpj = ei,
and, (iii) agents only receive chores that give them minimum
bang-per-buck, i.e., (x,p) is on mBB.

Given a market outcome (x,p) with x integral, we say it
is price envy-free up to one chore (pEF1) if for all i, h ∈ N
there is a chore j ∈ xi such that p(xi \ j) ≤ p(xh). We
say that an agent i pEF1-envies an agent h, if for all j ∈ xi,
p(xi \ j) > p(xh), i.e., the pEF1 condition between i and h
is violated. For integral market outcomes on mBB, the pEF1
condition implies the EF1 condition.

Lemma 1. Let (x,p) be an integral market outcome on
mBB. If (x,p) is pEF1 then x is EF1 and fPO.

Proof. We first show that (x,p) forms a market equilibrium
for the Fisher market instance (N,M,C, e), where for every
i ∈ N , ei = p(xi). It is easy to see that the market clears
and each agent receives their minimum payment. Further x
is on mBB as per our assumption. Now the fact that x is
fPO follows from the First Welfare Theorem (Mas-Colell,
Whinston, and Green 1995), which shows that for any mar-
ket equilibrium (x,p), the allocation x is fPO.

Since (x,p) is pEF1, for all pairs of agents i, h ∈ N , there
is some chore j ∈ xi s.t. p(xi \ j) ≤ p(xh). Since (x,p)
is on mBB, xi ⊆ mBBi. Let αi be the mBB-ratio of i at the
prices p. By definition of mBB, ci(xi\j) = αip(xi\j), and
ci(xh) ≥ αip(xh). Combining these implies x is EF1.

We now define least spenders as agents with minimum
spending, and big spenders as agents with maximum spend-
ing after the removal of their highest-priced chore.

Definition 1 (Least and big spenders). An agent ℓ ∈
argmini∈Np(xi) is referred to as a least spender (LS). An
agent b ∈ argmaxi∈N minj∈xi p(xi \ j) is referred to as a
big spender (BS).

We break ties arbitrarily to decide a unique LS and BS.
Together with Lemma 1, the following lemma shows that in
order to obtain an EF1 allocation, it is sufficient to focus on
the pEF1-envy the big spender has towards the least spender.

Lemma 2. Let (x,p) be an integral market outcome on
mBB. If x is not EF1, then the big spender b pEF1-envies
the least spender ℓ.

Proof. If x is not EF1, then Lemma 1 implies that x is not
pEF1. Hence there is a pair of agents i, h s.t. for every chore
j ∈ xi, p(xi \ j) > p(xh). By definition of big spender, we
know p(xb\j′) ≥ p(xi\j), for some j′ ∈ xb. By definition
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of least spender, p(xh) ≥ p(xℓ). Putting these together we
get p(xb \ j′) > p(xℓ), implying that b pEF1-envies ℓ.

Given a market outcome (x,p), we define the mBB graph
to be a bipartite graph G = (N,M,E) where for an agent i
and chore j, (i, j) ∈ E iff j ∈ mBBi. Further, an edge (i, j)
is called an allocation edge if j ∈ xi, otherwise it is called
an mBB edge.

For agents i0, . . . , iℓ and chores j1, . . . , jℓ, a path P =
(i0, j1, i1, j2, . . . , jℓ, iℓ) in the mBB graph, where for all
1 ≤ ℓ′ ≤ ℓ, jℓ′ ∈ xiℓ′−1

∩ mBBiℓ′ , is called a spe-
cial path. We define the level λ(h; i0) of an agent h w.r.t.
i0 to be half the length of the shortest special path from
i0 to h, and to be n if no such path exists. A path P =
(i0, j1, i1, j2, . . . , jℓ, iℓ) is an alternating path if it is spe-
cial, and if λ(i0; i0) < λ(i1; i0) · · · < λ(iℓ; i0), i.e., the
path visits agents in increasing order of their level w.r.t. i0.
Further, the edges in an alternating path alternate between
allocation edges and mBB edges. Typically, we consider al-
ternating paths starting from a big spender agent.

Definition 2 (Component Ci of a big spender i). For a big
spender i, define Cℓ

i to be the set of all chores and agents
which lie on alternating paths of length ℓ. Call Ci =

⋃
ℓ C

ℓ
i

the component of i, the set of all chores and agents reachable
from the big spender i through alternating paths.

3 EF1+fPO Allocation of Indivisible Chores
In this section, we present our main result:

Theorem 1. Given a bivalued fair division instance
(N,M,C) of indivisible chores with all cij ∈ {a, b} for
some a, b ∈ R+, an EF1+fPO allocation can be computed
in strongly polynomial-time.

We prove Theorem 1 by showing that our Algorithm 2
computes an EF1+fPO allocation in polynomial-time. For
ease of presentation and due to space constraints, proofs of
this section appear in the full version of the paper (Garg,
Murhekar, and Qin 2021).

3.1 Obtaining Initial Groups
Recall that we can scale the costs so that they are in {1, k}.
The first step of Algorithm 2 is to obtain a partition of the set
N of agents into groups N1, . . . , NR with desirable proper-
ties. For this, we use Algorithm 1 (called MakeInitGroups).

Algorithm 1 starts with a cost-minimizing market out-
come (x,p) where each chore j is assigned to an agent who
has minimum cost for j. This ensures the allocation is fPO.
The chore prices are set as follows. Each low-cost chore j
is assigned to an agent i s.t. cij = 1. If an agent values
all chores at k, then we can re-scale all values to 1. Each
low-cost chore is priced at 1, and each high-cost chore is
priced at k. This pricing ensures that the mBB ratio of every
agent is 1. The algorithm then eliminates pEF1-envy from
the component of the big spender b by identifying an agent
i in Cb that is pEF1-envied by b, and transferring an addi-
tional chore jℓ to i from an agent hℓ−1 who lies along a
shortest alternating path from b to i (Lines 7 & 8). Note that
the identity of the big spender may change after transferring

Algorithm 1: MakeInitGroups

Input: Fair division instance (N,M,C) with cij ∈ {1, k}
Output: Integral alloc. x, prices p, agent groups {Nr}r∈[R]

1: (x,p)← initial cost minimizing integral market alloca-
tion, where pj = cij for j ∈ xi.

2: R← 1, N ′ ← N
3: while N ′ ̸= ∅ do
4: b← argmaxi∈N ′ minj∈xi

p(xi \ j) ▷ Big Spender
5: Cb ← Component of b ▷ See Definition 2
6: while ∃ agent i ∈ Cb s.t. ∀j ∈ xb, p(xb\j) > p(xi)
7: Let (b, j1, h1, j2, . . . , hℓ−1, jℓ, i) be the shortest

alternating path from b to i
8: xhℓ−1

← xhℓ−1
\ {jℓ} ▷ Chore transfer

9: xi ← xi ∪ {jℓ}
10: b← argmaxi∈N ′ minj∈xi

p(xi \ j)
11: HR ← Cb ∩ (N ′ ∪ xN ′) ▷ Partial component
12: NR ← HR ∩N ▷ Agent group
13: N ′ ← N ′ \NR, R← R+ 1

14: return (x,p, {Nr}r∈[R])

jℓ if jℓ belonged to b, so we must check the identity of the
big spender after each transfer (Line 10). Once the compo-
nent of the current big spender b is pEF1, the same process is
applied to the next big spender outside the previously made
components. Repeated application of this process leaves us
with disjoint partial components H1, . . . ,HR of agent sets
N1, . . . , NR, where R ≤ n, all of which are pEF1. We refer
to N1, . . . , NR as agent groups, and H1, . . . ,HR as initial
(partial) components. Note also that the spending (up to the
removal of the biggest chore) of the big spender hr of Hr is
weakly decreasing with r. We now record several properties
of the output of Algorithm 1 .
Lemma 3. Algorithm 1 returns in poly(n,m)-time a mar-
ket outcome (x,p) with agents partitioned into groups
N1, . . . , NR, with the following properties:
(i) For all low-cost chores j ∈ M , pj = 1, and for all high-

cost chores j ∈M , pj = k.
(ii) The mBB ratio αi of every agent i is 1.

(iii) Let Hr be the collection of agents Nr and chores allo-
cated to them in (x,p). Then each Hr is a partial com-
ponent of some agent. That is, for each r ∈ [R], there
is an agent hr ∈ Hr s.t. Hr comprises of all agents
and chores not in

⋃
r′<r Hr′ reachable through alternat-

ing paths from hr. Further, hr is the big spender among
agents not in

⋃
r′<r Hr′ :

hr ∈ argmaxi/∈(
⋃

r′<r Hr′ )
min
j∈xi

p(xi \ j)

(iv) The spending (up to removal of the largest chore) f(r)
of the big spender in Hr weakly decreases with r. Here
f(r) = maxi∈Hr minj∈xi p(xi \ j).

(v) Each group is pEF1, i.e., an agent does not pEF1-envy
other agents in the same group.

(vi) For every i ∈ Hr and j ∈ Hr′ with r′ < r, cij = k.
(vii) All high-cost chores belong to HR.

We have that:
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Algorithm 2: Computing an EF1+fPO allocation
Input: Fair division instance (N,M,C) with cij ∈ {1, k}
Output: An integral allocation x

1: (x,p, {Nr}r∈[R])← MakeInitGroups(N,M,C)
2: U ← [R] ▷ Unraised groups
3: x0 ← x ▷ Copy of initial allocation, used in Line 21
4: b← argmaxi∈N minj∈xi

p(xi \ j) ▷ Big Spender
5: ℓ← argmini∈Np(xi) ▷ Least Spender
6: Maintain (r, s) s.t. b ∈ Hr, ℓ ∈ Hs

7: while (x,p) is not pEF1 and s ∈ U do
8: if r ∈ U then
9: Raise prices of chores in Hr by a factor of k

10: U ← U \ {r}
11: else
12: Transfer a chore from b to ℓ along an mBB edge
13: b← argmaxi∈N minj∈xi

p(xi \ j)
14: ℓ← argmini∈Np(xi)

15: while (x,p) is not pEF1 do
16: if s > r then
17: Transfer a chore from b to ℓ along an mBB edge
18: else if s < r then
19: ∃ i ∈ Nr′ s.t. r′ ∈ U and ∃ j ∈ xi s.t. j ∈ x0

ℓ
20: Transfer j from i to ℓ
21: Transfer a chore from b to i
22: b← argmaxi∈N minj∈xi p(xi \ j)
23: ℓ← argmini∈Np(xi)

24: return (x,p)

Lemma 4. Algorithm 1 terminates in time poly(n,m).

3.2 Overview of Algorithm 2
Our main algorithm (Algorithm 2) begins by calling Algo-
rithm 1, which returns a market outcome (x,p) and a set
of agent groups {Nr}r∈[R] (with associated partial compo-
nents {Hr}r∈[R]) satisfying properties in Lemma 3. In the
subsequent discussion, we refer to (x,p) as the initial al-
location. Also in the subsequent discussion, all mentions of
an agent receiving or losing chores are relative to this initial
allocation.

The following is an important invariant of Algorithm 2.
Lemma 5. The spending of the least spender does not de-
crease in the run of Algorithm 2.

We say that a group Nr is above (resp. below) group Ns

if r < s (resp. r > s). Lemma 3 shows that each group Nr

is initially pEF1. Hence if the initial allocation (x,p) is not
pEF1, then the big spender b and the least spender ℓ must
be in different components. Since b ∈ H1, it must be the
case that ℓ ∈ Hs for some s > 1. Since we want to obtain
an fPO allocation, we can only transfer along mBB edges.
Hence we raise the prices of all chores in H1. We show that
doing so creates an mBB edge from all agents i /∈ H1 to all
j ∈ H1 (Lemma 9 below). In particular, there is an mBB
edge from ℓ to a chore assigned to b. Hence we transfer a
chore directly from b to ℓ, thus reducing the pEF1-envy of b.
This may change the identity of the big and least spenders. If
the allocation is not yet pEF1, we must continue this process.

At an arbitrary step in the run of the algorithm, let b and ℓ
be the big and least spenders. If the allocation is not pEF1,
then b pEF1-envies ℓ (Lemma 2). We consider cases based
on the relative positions of b and ℓ. First we argue that b and
ℓ cannot lie in the same group, by showing that:

Lemma 6. Throughout the run of Algorithm 2, each group
Nr remains pEF1.

Hence b and ℓ must lie in different groups. Once again,
since we want to transfer chores away from b to reduce the
pEF1-envy, and we want to obtain an fPO allocation, we
only transfer chores along mBB edges. Doing so may re-
quire us to raise the prices of all chores belonging to cer-
tain agents in order to create new mBB edges to facilitate
chore transfer. In our algorithm, all agents in a group un-
dergo price-rise together. We call a group Nr a raised group
if its agents have undergone price-rise, else it is called an un-
raised group. The set U (Line 2) records the set of unraised
components.

We will use the terms time-step or iteration interchange-
ably to denote either a chore transfer or a price-rise step.
We say ‘at time-step t’, to refer to the state of the algorithm
just before the event at t happens. We denote by (xt,pt) the
allocation and price vector at time-step t.

Let T be the first time-step that the current LS enters a
raised group. Note that such an event may or may not hap-
pen. Our algorithm performs instructions in Lines 7-14 be-
fore T , and Lines 15-23 after T , as we describe below.

3.3 Algorithm Prior to T (Lines 7-14)
We first record some properties of the algorithm prior to T .
These observations directly follow from the algorithm.

Lemma 7. Prior to T , the following hold:

1. Any transfer of chores only takes place directly from the
big spender b to the least spender ℓ. Thus, an agent re-
ceives a chore only if she is a least spender, and an agent
loses a chore only if she is a big spender.

2. An agent ceases to be a least spender only if she receives
a chore. An agent ceases to be a big spender only if she
loses a chore.

3. A group undergoes price-rise at t only if the group con-
tains the big spender at t.

We now have that:

Lemma 8. If at any point in the run of Algorithm 2 prior to
T , the big spender lies in a group which contains a former
least spender, then the allocation is pEF1.

This allows us to show:

Lemma 9. Prior to T , the following hold:

(i) Let r be the number of price-rise steps until time-
step t, where t < T . Then the raised groups are ex-
actly N1, . . . , Nr. Furthermore they underwent price-
rise exactly once and in that order.

(ii) For any chore j allocated to an agent in a raised group
Nr and any agent i in an unraised group Nr′ , where
r′ > r, j ∈ mBBi.
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(iii) For each r′ ∈ [r], at the time of price-rise of Nr′ , no
agent in Nr′ has either received or lost a chore since
the initial allocation.

Proof. We prove (i), (ii) and (iii) by induction. For r = 0,
they are trivially true since there are no raised groups. As-
sume that at some time-step t, (i) groups N1, . . . , Nr have
undergone price-rise, once and in that order, for some r ≥ 1,
and (ii) and (iii) hold.

Note that our algorithm only raises the prices of chores
owned by a group if the group contains the big spender at
the time (Lemma 7). If the current BS is in a raised group,
then the induction hypothesis ensures that there is an mBB
edge from the LS (who is in an unraised group prior to T ) to
chores owned by the BS. The algorithm therefore performs
a direct chore transfer and no price-rise is necessary.

If eventually the BS enters an unraised group, then a price-
rise step is potentially necessary. Suppose b is an agent who
has received a chore prior to t. If this happens then b must
have been a former LS by Lemma 7. Then Lemma 8 shows
that the allocation must already be pEF1.

Hence we assume b has not received a new chore. Fur-
thermore since b pEF1-envies the LS ℓ, it must be the case
that ℓ ∈ Ns where s ≥ r + 2. Lemma 3 shows that there is
no mBB edge from ℓ to chores owned by b, hence a direct
chore transfer is not possible and it is necessary for Nr+1 to
undergo price-rise. This shows (i).

Now if an agent i ∈ Nr+1 had previously received a
chore, then i is a former LS at t. Lemma 8 shows that b is in
a group containing a former LS, implying that the allocation
must be pEF1. Similarly Lemma 7 shows that no agent in
Nr+1 can have lost a chore. This is because only BS agents
lose chores. Prior to t, no agent of Nr+1 can be BS. Hence
no agent in Nr+1 has received or lost a chore since the ini-
tial allocation at the time Nr+1 undergoes price-rise, thus
showing (iii).

The algorithm next raises the prices of all chores owned
by Nr+1 by a factor of k, and Nr+1 becomes a raised group.
Consider an agent i ∈ Nr′ for r′ ≥ r + 2 and a chore allo-
cated to an agent in Nr+1. Since the mBB ratio only changes
upon a price-rise, the mBB ratio of i is 1 since Nr′ does not
undergo a price-rise before Nr+1.

Observe that since i /∈ Nr+1, there is no alternating path
from agents in Nr+1 to i. Hence j /∈ mBBi before the price-
rise. Thus cij/p

t
j > 1, showing cij = k and ptj = 1. After

the price-rise, we have that pt+1
j = k, and αi = cij/p

t+1
j .

Thus, j ∈ mBBi after the price-rise, which shows (ii).

To summarize the behavior of the Algorithm prior to T ,
we have argued in the above proof that if the allocation is not
pEF1, we can always either (i) transfer a chore directly from
b to ℓ, or (ii) perform a price-rise on the group of b and then
transfer a chore from b to ℓ. Further, we argue that the Algo-
rithm makes progress towards getting a pEF1 allocation.

Lemma 10. Algorithm 2 performs at most poly(n,m) steps
prior to T .

Proof. Prior to T , the LS always remains in an unraised
group. Chores are transferred away from agents who be-

come big spenders in raised groups. Once an agent under-
goes price-rise, she cannot gain any additional chores, since
doing so would mean she is the LS in a raised group, which
cannot happen prior to T . When the BS is in an unraised
group, the group undergoes a price-rise. Thus, effectively, ei-
ther agents in raised components only lose chores, or the BS
‘climbs-down’ in the group list N1, . . . , NR, while the LS
remains below the BS. Since there are R ≤ n groups, and at
most m chores allocated to raised groups, after poly(n,m)
steps either of two events happen: (i) the LS and BS both be-
long to the same group, or (ii) the LS enters a raised group.
In the former case, the allocation is pEF1 due to Lemma 6,
and the algorithm terminates in poly(n,m) steps. We dis-
cuss the latter case in the next section. Thus, there are at
most poly(n,m) steps prior to T .

3.4 Algorithm After T (Lines 15-23)
We now describe the algorithm after T , i.e., once the LS en-
ters a raised group (Lines 15-23). We show that subsequent
to T , while the allocation is not pEF1, we can either (i) trans-
fer a chore directly from b to ℓ, or (ii) transfer chores via an
alternating path containing 3 agents. We do not perform any
price-rises subsequent to T .

From Lemma 9, we know that at T , groups N1, . . . , Nr

have undergone price-rise, for some r ∈ [R]. Let N<r =⋃
r′<r Nr′ , and N>r =

⋃
r′>r Nr′ . The allocation at T need

not be pEF1, but we argue that it is already very close to
being pEF1. Specifically, we show:

Lemma 11. At T , agents in N<r are pEF1 towards others.

Lemma 12. At T , agents in N>r are pEF1 towards others.

The above two lemmas imply that if the BS is not in Nr,
then the allocation is pEF1. Let us assume that the allocation
is not pEF1 at T . Let b, the BS at T be in Nr, and ℓ, the LS
at T be in N<r, since the LS is in a raised group at T .

Suppose ℓ has never lost a chore. Let ℓ ∈ Nr′ , where
r′ < r, and let t′ be the time when Nr′ underwent price-
rise. Let b′ be the BS at t′. Since the spending of the BS
(up to removal of one chore) just after price-rises does not
increase, we have:

pT (xT
b \ j) ≤ pt′(xt′

b′ \ j′) ≤ pt′(xt′

ℓ ) = pT (xT
ℓ ),

for some chores j ∈ xT
b , j

′ ∈ xt′

b′ . The intermediate transi-
tion follows from the property that Nr′ is pEF1. This shows
that the allocation is pEF1.

On the other hand, suppose ℓ has lost at least one chore j
prior to T . At T , j must be assigned to some unraised agent i
(Lemma 9). Further, there is a chore j′ ∈ xT

b s.t. j′ ∈ mBBi.

Thus, b x−→ j′
mBB−−−→ i

x−→ j
mBB−−−→ ℓ is an alternating path and

we now transfer chores along this path.
Note that as long as ℓ does not own a chore that she ini-

tially owned, such a path is available, and such a transfer is
possible. If not, then it is as if ℓ has never lost a chore, and
in that case the previous argument shows that the allocation
must be pEF1.

If after the transfer(s) we do not have pEF1, we identify a
new BS and LS and continue this process. We show that:
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Lemma 13. After T , the following are invariant:
(i) Agents in N<r do not pEF1-envy any other agent.

(ii) Agents in N>r do not pEF1-envy any other agent.
(iii) Each group is pEF1.

Just after T , the BS is in Nr and the LS is in N<r. After
a chore transfer, the identity of the LS or BS can change. If
the BS enters either N<r or N>r, then using Lemma 13 the
allocation would be pEF1. While the BS is in Nr: (i) if the
LS is in Nr, the allocation would be pEF1, (ii) if the LS is
in N>r, then we can transfer from BS to LS directly along
an mBB edge (which exists due to Lemma 9), (iii) if the LS
is in N<r, then we can transfer from the BS to LS via an
alternating path with three agents as described above.

Finally we argue termination in polynomial-time:
Lemma 14. Algorithm 2 performs at most poly(n,m) steps
after T and terminates with a pEF1 allocation.

Proof. Call the difference between the spending (up to the
removal of the biggest chore) of the big spender and the total
spending of the least spender the spending gap. If the allo-
cation is not pEF1, the spending gap is positive. After T ,
there are no price-rises, hence the spending gap weakly de-
creases. If the allocation is not pEF1, the BS must be in Nr.
Based on whether the LS is in N<r or N>r, chore transfers
which weakly decrease the spending gap are always pos-
sible. Further, each transfer reduces the number of chores
owned by agents in Nr, and such agents do not receive any
chores again. Hence there can only be poly(n,m) steps after
T , eventually terminating in a pEF1 allocation.

3.5 Summarizing Our EF1+fPO Algorithm
We summarize Algorithm 2.
1. Algorithm 2 first calls Algorithm 1 to partition agents

into groups N1, . . . , NR with properties as in Lemma 3
to obtain an initial allocation. Lemma 4 shows this takes
poly(n,m) steps.

2. When the current allocation (x,p) is not pEF1, the BS b
pEF1-envies the LS ℓ. While there is an mBB edge from
ℓ to a chore owned by b, we transfer a chore directly from
ℓ to b. If not, in order to transfer along mBB edges, we
may have to raise the prices of chores belonging to the
group of b, creating raised groups.

3. Let T be the first time-step when the LS enters a raised
group. Prior to T , while the allocation is not pEF1, the al-
gorithm either performs a direct chore transfer from the
BS to the LS, or performs price-rise on the group of b.
Lemma 9 shows that the groups are raised exactly once
and in order of N1, . . . , NR. Lemma 10 shows the algo-
rithm runs for poly(n,m) steps before T .

4. Once the LS enters a raised group, there are no more
price-rise steps. The algorithm performs chore transfers
from the BS to LS either directly or via an alternating
path with at most 3 agents. Lemma 13 and Lemma 14
show that the algorithm performs at most poly(n,m)
steps after T and terminates with a pEF1 allocation.

5. Finally, we note that the allocation is always fPO, since
(i) Algorithm 1 returns a market outcome which is fPO,
and (ii) any transfer of chores happens along mBB edges.

4 EF+PO Allocation of Divisible Chores
In this section, we state our second result:
Theorem 2. Given a bivalued fair division instance
(N,M,C) of divisible chores with all cij ∈ {a, b} for
some a, b ∈ R+, an EF+PO allocation can be computed
in strongly polynomial-time.

Due to space constraints, details and proofs of this section
appear only in the full version of the paper (Garg, Murhekar,
and Qin 2021). We first use a balanced flow network formu-
lation (Devanur et al. 2008) to obtain a fractional allocation
x, prices p, and agent groups {Ni}i∈[R] such that (x,p) is
PO and each Ni is pEF.

We show that there exists some r∗ such that raising the
prices of the first r∗ groups by a factor of k = a/b allows
us to obtain a pEF allocation by draining chores from the
set of all big spenders B (here agents with maximum total
spending, with no removal) to the set of all least spenders L,
when the chores of agents in B are all on mBB for agents in
L. That is, we take chores from all agents in B at a uniform
rate ρB and distribute them among all agents in L at a uni-
form rate ρL. Note, since groups are pEF, if an agent i ∈ Nr

is a BS (LS), then every agent in Nr is also a BS (LS).
Suppose we raise the first r groups. If it is impossible for

the algorithm to obtain a pEF allocation, one of two mutually
exclusive cases must be true:
1. Raised groups have too much total spending. The spend-

ing of agents in L rises to spending level of Nr before
the spending of agents in B falls to the level of Nr.

2. Raised groups have too little total spending. The spend-
ing of agents in B falls to the level of Nr+1 before the
spending of agents in L rises to the level of Nr+1.

We show that there exists r∗ such that raising the first r∗
groups results in neither too much nor too little spending.
Informally, raising the first group cannot result in too much
spending. Inductively, if raising r groups does not result in
too much spending, neither does raising r + 1 groups. Yet,
in raising R − 1 groups, we cannot have too little spending.
Thus, there must be some r∗ ∈ [R − 1] such that raising
the first r∗ groups allows for chores to be drained in a man-
ner that results in a pEF allocation. As before, transferring
chores only along mBB edges ensures the allocation is PO.

5 Discussion
In this paper, we presented a strongly polynomial-time al-
gorithm for computing an EF1+fPO allocation of chores to
agents with bivalued preferences, constituting the first non-
trivial result for the EF1+PO problem for chores. Our al-
gorithm is novel and relies on several involved arguments.
Given that the general case is a challenging open problem,
we believe extending our algorithm and its analysis to the
class of k-ary chores is an interesting and natural next step.
Another interesting question is whether we can compute an
EFX allocation in this setting. We also presented a strongly
polynomial-time algorithm for computing an EF+PO allo-
cation of divisible bivalued chores. Computing an EF+PO
allocation of divisible chores in polynomial-time is also a
compelling direction for future work.
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