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Abstract
Walrasian equilibrium is a prominent market equilibrium no-
tion, but rarely exists in markets with indivisible items. We
introduce a new market equilibrium notion, called two-price
equilibrium (2PE). A 2PE is a relaxation of Walrasian equi-
librium, where instead of a single price per item, every item
has two prices: one for the item’s owner and a (possibly)
higher one for all other buyers. Thus, a 2PE is given by a tuple
(S, p̂, p̌) of an allocation S and two price vectors p̂, p̌, where
every buyer i is maximally happy with her bundle Si, given
prices p̌ for items in Si and prices p̂ for all other items. 2PE
generalizes previous market equilibrium notions, such as con-
ditional equilibrium, and is related to relaxed equilibrium no-
tions like endowment equilibrium. We define the discrepancy
of a 2PE — a measure of distance from Walrasian equilibrium
— as the sum of differences p̂j−p̌j over all items (normalized
by social welfare). We show that the social welfare degrades
gracefully with the discrepancy; namely, the social welfare
of a 2PE with discrepancy d is at least a fraction 1

d+1
of the

optimal welfare. We use this to establish welfare guarantees
for markets with subadditive valuations over identical items.
In particular, we show that every such market admits a 2PE
with at least 1/7 of the optimal welfare. This is in contrast to
Walrasian equilibrium or conditional equilibrium which may
not even exist. Our techniques provide new insights regarding
valuation functions over identical items, which we also use to
characterize instances that admit a WE.

1 Introduction
We consider a combinatorial market setting with m items
and n buyers. Every buyer i has a valuation function, vi :
2[m] → R+, which maps every subset of items to a non-
negative real number. A valuation profile is given by a vector
v = (v1, . . . , vn). As standard, we assume that valuation
functions are monotone and normalized, i.e., for every S ⊆
T ⊆ [m], vi(S) ≤ vi(T ) and vi(∅) = 0 for every i.

An allocation is a partition of the items among the buy-
ers; i.e., a vector S = (S1, . . . , Sn) of disjoint sets, where
Si denotes the bundle allocated to buyer i. The social
welfare (SW) of an allocation S under valuation profile
v is the sum of the buyers’ valuations for their bundles,
that is, SW (S, v) =

∑
i∈[n] vi(Si). The optimal (welfare-

maximizing) allocation is denoted by OPT (v).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Suppose every item j has some price pj ∈ R+. Given a
vector of prices p1, . . . , pm, and an allocation S, the (quasi-
linear) utility of buyer i is ui(Si, p) = vi(Si)−

∑
j∈Si

pj .
Walrasian equilibrium (WE) is a classical and appealing

market equilibrium notion that dates back to the 70’s (Walras
(1874)). In a WE, despite competition among buyers, every
buyer is maximally happy with her bundle and the market
clears. That is, a WE is given by a tuple (S,p) satisfying: (i)
Utility maximization: ui(Si, p) ≥ ui(T, p) for every bundle
T ⊆ [m], and (ii) Market clearance: all items are sold. More-
over, by the first welfare theorem (Bikhchandani and Mamer
(1997)), any allocation supported in a WE has optimal social
welfare.

This appealing notion, however, comes with a serious
downside, namely, it rarely exists in markets. In particu-
lar, it is known to exist for a strict subclass of submodular
valuations, known as gross substitutes (Kelso and Crawford
(1982)), and in some precise technical sense, gross substi-
tutes is a maximal class for WE existence (Gul and Stac-
chetti (1999)).

As a result, different relaxations of WE have been intro-
duced and studied. A notable one is the notion of condi-
tional equilibrium (CE) (Fu, Kleinberg, and Lavi (2012)),
which is a tuple (S, p) satisfying: (i) individual rationality:
ui(Si, p) ≥ 0, (ii) outward stability: ui(Si, p) ≥ ui(T ∪
Si, p) for every bundle T ⊆ [m] and (iii) market clearance
(all items are sold). That is, the difference between a WE
and a CE is that it only requires that buyers do not wish to
add items to their bundle, whereas a WE requires that buyers
don’t wish to change their bundle with any other bundle. A
CE is guaranteed to exist for every market with submodular
valuations (or even a superclass of submodular, called XOS).
In addition, the CE notion admits an approximate version of
the first welfare theorem; namely, any allocation supported
in a CE has social welfare of at least half of the optimal so-
cial welfare. However, the notion of CE has its limitations
— it may not exist even in a market with two subadditive
buyers (see Example 3.2).

Two-price equilibrium. We introduce a new notion of
equilibrium that is based on the idea that an item may be
assigned more than a single price. Indeed, item prices often
have different prices based on different buyer characteristics,
such as location, time, and history.

The new notion, termed two-price equilibrium (2PE), uti-
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lizes two prices per item. A 2PE is a relaxation of Wal-
rasian equilibrium, and generalizes other WE relaxations
(e.g., conditional equilibrium). Like WE, it is a tuple of allo-
cation and prices that clears the market (every buyer is max-
imally happy and all items are sold). However, in contrast to
WE, where every item has a single price, 2PE specifies two
prices for each item: one price for the item’s owner and (a
possibly higher) one for all other buyers. The utility maxi-
mization condition then states that every buyer is maximally
happy with her bundle, given that she pays the low price for
items in her possession, and the high price for all other items.

Formally, a 2PE is given by a tuple (S, p̂, p̌) where
p̂, p̌ ∈ R[m] are the high and low prices, respectively (p̂j ≥
p̌j for every item j), and where (i) Utility maximization:
vi(Si) −

∑
j∈Si

p̌j ≥ vi(T ) −
∑

j∈T∩Si
p̌j −

∑
j∈T\Si

p̂j
for every bundle T ⊆ [m], and (ii) all items are sold.
We note that Condition (i) of 2PE can be also written as
vi(Si)−

∑
j∈Si\T p̌j ≥ vi(T )−

∑
j∈T\Si

p̂j for every bun-
dle T ⊆ [m].

A 2PE for which p̂j = p̌j for every item j is a Wal-
rasian equilibrium. Furthermore, one can show that (S, p)
is a conditional equilibrium iff (S, p, 0) is a 2PE (see Propo-
sition 3.3). The 2PE notion is related to other relaxations of
WE, such as the endowment equilibrium ((Babaioff, Dobzin-
ski, and Oren 2018), (Ezra, Feldman, and Friedler 2019)),
named after the endowment effect, discovered by Nobel
laureate Richard Thaler ((Kahneman, Knetsch, and Thaler
1990), (Kahneman, Knetsch, and Thaler 1991), (Knetsch,
Tang, and Thaler 2001)), stating that buyers tend to inflate
the value of items they own. Moreover, as we show in Sec-
tion 3.1, 2PE is also related to Nash equilibria of simul-
taneous item auctions — a simple auction format that at-
tracted much research in the last decade ((Bhawalkar and
Roughgarden 2011), (Christodoulou, Kovács, and Schapira
2016), (Feldman et al. 2013), (Feldman and Shabtai 2020),
(Christodoulou et al. 2016), (Cai and Papadimitriou 2014)).

Clearly, a 2PE is guaranteed to exist for every market
instance. Moreover, every allocation can be supported in a
2PE. Indeed, for every allocation S, the tuple (S, p̂, p̌) where
p̂j = ∞ and p̌j = 0 for every item j is a 2PE. Thus, arbi-
trarily bad allocations can be supported in a 2PE. This is in
stark contrast to Walrasian equilibrium or conditional equi-
librium, where supported allocations have optimal welfare
(for WE (Bikhchandani and Mamer 1997)) or at least half of
the optimal welfare (for CE (Fu, Kleinberg, and Lavi 2012)).
Moreover, 2PE’s in which the high and low prices of items
admit a large difference seem to be far from the notion of
Walrasian equilibrium.

To study 2PE’s that are “close” to WE, we define a new
metric, called the discrepancy of a 2PE, defined as the sum
of price differences over all items,

∑
j∈[m] (p̂j − p̌j), nor-

malized by the social welfare. The discrepancy of a 2PE can
be viewed as a measure of the distance between a given 2PE
and a Walrasian equilibrium. Indeed, a 2PE with discrepancy
0 is a WE. Thus, every 2PE with discrepancy 0 has optimal
welfare. We then ask whether there are instances that do not
admit WE, or WE relaxations (such as CE), but do admit
2PE with low discrepancy and high welfare.

A particularly interesting class of valuations is the class of
subadditive valuations — where v(S)+v(T ) ≥ v(S∪T ) for
every sets S, T ⊆ [m]. This is a natural class of valuations,
known to be the frontier of “complement-free” valuations
(Lehmann, Lehmann, and Nisan 2006). Markets with sub-
additive valuations may not admit any WE or CE, even in
cases where all the items are identical. The following ques-
tion arises:

Question: Do markets with subadditive valuations admit
2PE’s with low discrepancy and high welfare?

1.1 Our Results
We first show that the social welfare of a 2PE degrades
gracefully with its discrepancy. Namely, the social welfare
of a 2PE with discrepancy d is at least a fraction 1

d+1 of the
optimal social welfare. Armed with this welfare guarantee,
our goal is to show the existence of 2PE’s with low discrep-
ancy. We establish such results for markets with subadditive
valuations over identical items.

It should be noted that the problem of efficiently allo-
cating identical items among multiple buyers has played a
starring role in classical and algorithmic mechanism design.
Identical item settings are of particular interest in our con-
text, where a WE is guaranteed to exist for submodular val-
uations, but beyond submodular, even simple instances may
not admit a WE, or even a relaxed equilibrium notion, such
as conditional euilibrium.

We first establish a low discrepancy result for markets
with 2 identical subadditive valuations over identical items.
Theorem 1: (see Theorem 7.1) Every market with 2 identi-
cal subadditive valuations over identical items admits a 2PE
with discrepancy of at most 2, thus welfare of at least 1/3 of
the optimal welfare.

Moreover, we show an instance with 2 identical subad-
ditive valuations, where the minimum discrepancy for any
2PE is 1.3895 (see Theorem 7.2).

For an arbitrary number of identical valuations over iden-
tical items we show the following:
Theorem 2: (see Theorem 7.3) Every market with (any
number of) identical subadditive valuations over identical
items admits a 2PE with discrepancy of at most 2.5, thus
welfare of at least 2/7 of the optimal welfare.

Our main result establishes a constant factor guarantee
for markets with heterogeneous subadditve valuations over
identical items.
Main Theorem: (see Theorem 8.1) Every market with (any
number of) subadditive valuations over identical items ad-
mits a 2PE with discrepancy of at most 6, thus welfare of at
least 1/7 of the optimal welfare.

Furthermore, we find an interesting connection between
2PE and pure Nash equilibria (PNE) of simultaneous item
auctions (Christodoulou, Kovács, and Schapira 2008). In
these auctions every bidder submits a bid for every item, and
items are sold simultaneously, each one in a separate auc-
tion given its own bids. For example, a simultaneous second
price auction (S2PA) is one where every item is sold in a 2nd
price auction.

We show a correspondence between 2PEs of a market and
PNE of S2PA for the corresponding market (see Proposi-
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tion 3.5). Similar correspondences have been shown for WE
and PNE of simultaneous first price auctions (Hassidim et al.
2011) and for conditional equilibria and PNE of S2PA un-
der the no-overbidding assumption (Fu, Kleinberg, and Lavi
2012).

Combined with our welfare guarantees for 2PEs in mar-
kets with subadditive valuations over identical items, this
correspondence implies that S2PA for such markets admit
PNE (without no-overbidding) with a constant fraction of
the optimal welfare. Note that S2PAs for such markets do
not necessarily admit PNE with no-overbidding (Bhawalkar
and Roughgarden 2011).

To obtain our results, we provide new tools for the anal-
ysis of valuation functions over identical items. Using these
tools, we also establish a necessary and sufficient condition
for the existence of WE given an arbitrary valuation profile
over identical items (see Theorem 9.1).

Due to space limitations, most proofs are deferred to the
full version (Feldman, Shabtai, and Wolfenfeld 2021).

Open Problems: Our model and results constitute a first
step in the analysis of 2PE, and leave some open problems
for future work. Most immediately, it would be interesting to
close the gaps between the upper and lower bounds on the
discrepancy of the markets we study. In addition, it would
be interesting to conduct a similar analysis for markets with
heterogeneous items. Specifically, do markets with subaddi-
tive valuations over heterogeneous items admit a 2PE with
constant discrepancy? (This is true for XOS valuations.) If
the answer to this question is affirmative, then it implies that
every S2PA admits a PNE with constant approximation to
the optimal welfare.

Finally, in Section 3.1 we show that every PNE of a
S2PA has a corresponding 2PE with the same allocation
(see Proposition 3.5). Feldman and Shabtai (2020) establish
bounds on the price of anarchy of S2PA under a “no under-
bidding” assumption for different valuation classes. It would
be interesting to study whether a PNE satisfying no under-
bidding corresponds to a 2PE with bounded discrepancy.

1.2 Additional Related Work
Our work belongs to the line of research proposing re-
laxed market equilibrium notions that exist quite broadly
and gives good welfare guarantees. Obvious examples in-
clude the conditional equilibrium notion of Fu, Kleinberg,
and Lavi (2012) discussed above and the combinatorial Wal-
rasian equilibrium notion introduced by Feldman, Gravin,
and Lucier (2013). Fu, Kleinberg, and Lavi (2012) show
that a market admits a conditional equilibrium if and only
if a S2PA for the corresponding market admits a PNE with
no overbidding. A related notion is local equilibrium, intro-
duced by Lehmann (2018), which generalizes conditional
equilibrium by relaxing individual rationality and outward
stability. The endowment equilibrium notion was proposed
by Babaioff, Dobzinski, and Oren (2018) to capture the en-
dowment effect discovered by (Kahneman, Knetsch, and
Thaler 1990). Babaioff, Dobzinski, and Oren (2018) showed
that every market with submodular valuations admits an en-
dowment equilibrium with at least a half of the optimal wel-

fare. Ezra, Feldman, and Friedler (2019) introduced a gen-
eral framework that captures a wide range of formulations
for the endowment effect, and showed that stronger endow-
ment effects can lead to existence of endowment equilibrium
also in XOS markets. We show conditions under which one
can transform an endowment equilibrium to a 2PE and vice
versa. Ezra et al. (2020) provide welfare guarantees via pric-
ing for markets with identical items.

2 Preliminaries
Recall that we consider a combinatorial market setting with
n buyers and m items, where every buyer has a valuation
function that maps every subset of items into a real number.
In this paper we consider mainly valuations over identical
items, where vi : [m] → R+, specifies the value of buyer
i for every number of items between 0 and m. Such valua-
tions are also called symmetric valuations. We consider the
following valuation classes1.

• Unit demand: there exist a value a, s.t. v(k) = a for every
0 < k ≤ m

• Additive: there exist a value a, s.t. v(k) = a · k for every
0 < k ≤ m

• Submodular: v(k)−v(k−1) ≥ v(k+1)−v(k) for every
0 < k ≤ m

• XOS: v(k) ≥ k
t · v(t) for any 0 < k < t ≤ m

• Subadditive: v(k)+v(t) ≥ v(k+t) for any 0 < k, t ≤ m
s.t. k + t ≤ m

2.1 Walrasian Equilibrium and Relaxations
In this section we present the definitions of Walrasian equi-
librium and conditional equilibrium (for general valuations).
Definition 2.1 (Walrasian equilibrium (WE) (Walras
1874)). A pair (S,p) of an allocation S = (S1, . . . , Sn) and
item prices p = (p1, . . . , pm), is a Walrasian equilibrium if:
1. Utility maximization: Every buyer receives an alloca-

tion that maximizes her utility given the item prices, i.e.,
vi(Si)−

∑
j∈Si

pj ≥ vi(T )−
∑

j∈T pj for every i ∈ [n]

and bundle T ⊆ [m].
2. Market clearance: All items are allocated.2

Through the rest of this paper we focus attention on WE in
which all items are allocated since if there is an unallocated
item with price 0, we can allocate it to an arbitrary buyer.
Clearly, the new allocation together with the same price vec-
tor, is also a WE.
Definition 2.2 (Conditional equilibrium (CE) (Fu, Klein-
berg, and Lavi 2012)). A pair (S,p) of an allocation S =
(S1, . . . , Sn) and item prices p = (p1, . . . , pm), is a Condi-
tional equilibrium if:

1The definitions of these valuation classes for heterogeneous
items appear in the full version.

2More precisely, if an item j is not allocated, then pj = 0. One
can easily verify that every such unallocated item can be allocated
to an arbitrary buyer, and the resulting allocation, together with the
original price vector, is also a Walrasian equilibrium. For simplicity
of presentation, we assume throughout the paper that all items are
allocated.
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1. Individual rationality: Every buyer has a non-negative
utility, i.e., vi(Si)−

∑
j∈Si

pj ≥ 0 for every i ∈ [n].
2. Outward stability: No buyer wishes to add items to

her bundle, i.e., vi(Si) −
∑

j∈Si
pj ≥ vi(Si ∪ T ) −∑

j∈Si∪T pj for every i ∈ [n] and bundle T ⊆ [m].
3. Market clearance: All items are allocated.

An additional interesting relaxation of WE that attracted
some attention recently is the notion of endowment equilib-
rium (Babaioff, Dobzinski, and Oren 2018; Ezra, Feldman,
and Friedler 2019), called after the endowment effect (Kah-
neman, Knetsch, and Thaler 1990, 1991; Knetsch, Tang, and
Thaler 2001). An endowment equilibrium is a Walrasian
equilibrium with respect to endowed valuations, which in-
flate the value of items owned by the buyer. In the full ver-
sion we discuss the relation between an endowment equilib-
rium and 2PE.

3 Two-Price Equilibrium (2PE)
In this section we introduce a new equilibrium notion termed
Two Price Equilibrium (2PE). As we shall see, 2PE general-
izes some market equilibrium notions considered in the lit-
erature.

A 2PE resembles a Walrasian equilibrium, but instead of
one price per item, it has two prices per item: high and low. It
requires that every buyer receives the bundle that maximizes
her utility, given that she pays the low price on items in her
bundle, and would have to pay the high price for items not
in her bundle. The formal definition follow.

Definition 3.1 (Two Price Equilibrium (2PE)). Given a
valuation profile v, a triplet, (S, p̂, p̌), of an allocation S,
and high and low price vectors p̂, p̌, s.t. p̂j ≥ p̌j ≥ 0 for
every item j ∈ [m], is called a two price equilibrium (2PE)
if the following hold:

1. Utility maximization: For every bundle T ⊆ [m] and
every buyer i ∈ [n]:

vi(Si)−
∑

j∈Si\T

p̌j ≥ vi(T )−
∑

j∈T\Si

p̂j (1)

2. Market clearance: All items are allocated.

2PE generalizes both Walrasian equilibrium and condi-
tional equilibrium. We next present a market that admits no
Walrasian equilibrium nor conditional equilibrium, and yet,
the optimal allocation can be supported in a 2PE.

Example 3.2. Consider a market with 2 buyers and an item
set M = {x, y, z, w}. Suppose buyer 1 has the following
subadditive valuations

v1(S) =


0 S = ∅
1 1 ≤ |S| ≤ 3

2 S = M

and buyer 2 has a unit-demand valuation, where v2(S) = 0.9
for every non-empty bundle. We claim that this market has
no conditional equilibrium (CE). To see this, consider two
cases. Case 1: all items are allocated to buyer 1. For this al-
location to be supported by a CE, pj ≥ 0.9 for every item

j. However, this violates individual rationality for buyer 1.
Case 2: buyer 2 receives a non-empty bundle. To satisfy indi-
vidual rationality, the sum of prices in buyer 2’s bundle can-
not exceed 0.9. This, however, violates outward stability for
buyer 1. We conclude that no CE exists for this market. The
optimal allocation gives all items to buyer 1. One can verify
that this allocation is supported by a 2PE with p̂j = 0.9 and
p̌j =

1
3 for every item j.

Indeed, buyer 1 is maximally happy with the grand bun-
dle, since dropping any item (or both) would give her a lower
utility. Similarly, buyer 2 cannot increase her utility, since in
order to obtain any item j, she would need to pay p̂j = 0.9,
for a utility of 0.

Relation between 2PE and other market equilibrium no-
tions. Clearly, every 2PE in which p̂j = p̌j for every item
j is a WE. That is,

for every valuation profile v, (S,p) is a WE if and only if
(S,p,p) is a 2PE for v.

The following proposition shows that CE is a special case
of 2PE as well.
Proposition 3.3. For every valuation profile v, (S,p) is a
CE if and only if (S,p,0) is a 2PE.

In the full version we show a strong connection between
endowment equilibrium and 2PE; namely, we show how a
2PE can be transformed into an endowment equilibrium and
vice versa.

3.1 Relation Between 2PE and Simultaneous
Second Price Auctions

A simultaneous second price auction (S2PA) is a simple auc-
tion format, where, despite the complex valuations of the
bidders, every bidder submits a bid on every item, and ev-
ery item is sold separately in a 2nd price auction; i.e., every
item is sold to the biider who submitted the highest bid for
that item, and the winner pays the second highest bid for that
item.

A bid profile in a S2PE is denoted by b = (b1, . . . ,bn),
where bi = (bi1, . . . , bim) is the bid vector of bidder i; bij
being bidder i’s bid on item j, for j = 1, . . . ,m. Let Si(b)
denotes the set of items won by buyer i, and let S(b) =
(S1(b), . . . , Sn(b)) denote the obtained allocation. Finally,
let pj(b) denote the price paid by the winner of item j (i.e.,
the second highest bid on item j).

A S2PA is not a truthful auction, and its performance is
often measured in equilibrium. A bid profile is said to be a
pure Nash equilibrium in a S2PA if the following holds.
Definition 3.4. A bid profile b in a S2PA is a pure
Nash equilibrium (PNE) if for any i ∈ [n] and for
any b

′

i, vi(Si(b)) −
∑

j∈Si(b)
pj(b) ≥ vi(Si(b

′

i,b−i) −∑
j∈Si(b

′
i,b−i)

pj(b
′

i,b−i).

The following proposition shows that a pure Nash equi-
librium of S2PA corresponds to a 2PE of the corresponding
market.
Proposition 3.5. Consider a valuation profile v. The triplet
(S, p̂, p̌) is a 2PE for v if and only if there exists a bid pro-
file, b, which is a PNE of the S2PA for v (under some tie
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breaking rule), such that S(b) = S, and for every item j,
p̂j = maxk∈[n]bkj and p̌j = max2k∈[n]bkj .

4 Discrepancy Factor of 2PE
The main difference between a two-price equilibrium and a
Walrasian equilibrium is the use of two prices per item (high
price p̂j and low price p̌j) rather than a single price. This
makes the notion of 2PE similar in spirit to WE. Namely,
prices are still almost anonymous (in contrast to other ap-
proaches where prices are buyer-dependent, see, e.g., (Hart-
line and Roughgarden 2009)), and every buyer is maximally
happy with her bundle. The closer the two prices p̂j and p̌j
are together, the better the 2PE resembles a WE. Indeed, in
the extreme case, where p̂j = p̌j for every item j, the two
notions coincide.

Consequently, a natural measure of distances of a 2PE
from WE is the sum of price differences over all items. We
further normalize the sum of price differences by the social
welfare of the allocation, so that the discrepancy is indepen-
dent of the units used (e.g., USD vs. Euros)3.

This motivate us to define the discrepancy as follows.
Definition 4.1 (Discrepancy). The discrepancy of a 2PE
(S, p̂, p̌) under valuation profile v is

D(S, p̂, p̌) =

∑
j∈[m](p̂j − p̌j)

SW (S, v)
(2)

Low discrepancy is a desired property; a 2PE with low
discrepancy is closer in spirit to WE in both fairness and
simplicity. As we shall soon show, low discrepancy also im-
plies high efficiency.

The 2PE notion is appealing from an existence perspec-
tive; indeed, every allocation S can be supported in a 2PE
by setting p̂j = ∞, p̌j = 0 for every item j. However,
from a welfare maximization perspective, no guarantee can
be given. This is in stark contrast to WE (where, by the 1st
welfare theorem, every allocation supported in a WE has op-
timal welfare), and to weaker equilibrium notions, such as
conditional equilibrium (where every allocation supported
in a CE gives at least half of the optimal welfare (Fu, Klein-
berg, and Lavi 2012)). In contrast, an allocation supported
in a 2PE may have an arbitrarily low welfare.

The following proposition shows that the social welfare
of a 2PE degrades gracefully with its discrepancy.
Proposition 4.2. (low discrepancy implies high welfare) Let
(S, p̂, p̌) be a 2PE for valuation v with discrepancy d. Then,
SW (S, v) ≥ 1

1+dOPT (v).
We also define the discrepancy of an allocation S as the

discrepancy of the smallest-discrepancy 2PE supporting S.
Definition 4.3. Given valuation profile v, the discrepancy of
an allocation S is defined as

D(S) = min(S,p̂,p̌)∈2PED(S, p̂, p̌)

3Formally, suppose (S, p̂, p̌) is a 2PE with respect to valuation
profile v, and let v′ be a valuation profile such that v′i(T ) = c ·
vi(T ) for every buyer i and bundle T and some constant c ∈ R+.
Clearly, (S, c · p̂, c · p̌) is a 2PE w.r.t. v′, which has the same
discrepancy as that of (S, p̂, p̌).

For all reasons mentioned above, it is desirable to identify
allocations with low discrepancy.

Clearly, if S is supported by a WE, then D(S) = 0. In-
deed, every allocation supported by a WE has optimal wel-
fare.

It is also known that every allocation supported by a con-
ditional equilibrium has at least a half of the optimal wel-
fare (Fu, Kleinberg, and Lavi 2012). The following proposi-
tion shows that the discrepancy of every such allocation is at
most 1. Together with Proposition 4.2, it gives an alternative
proof to the welfare guarantee of a conditional equilibrium.

Proposition 4.4. Let S be an allocation that is supported by
a conditional equilibrium. Then, D(S) ≤ 1. Moreover, this
is tight.

It is shown in (Christodoulou, Kovács, and Schapira
2008) that for any XOS valuation profile, the optimal allo-
cation is supported by a S2PA PNE with no-overbidding. By
(Fu, Kleinberg, and Lavi 2012), every S2PA PNE with no-
overbidding can be transformed into a CE that preserves the
same allocation. It then follows by Proposition 4.4 that the
discrepancy of the optimal allocation in every XOS valua-
tion profile is at most 1. In the full version we show that
for any general valuation profile, every welfare-maximizing
allocation has a discrepancy of at most m.

Notably, there exist markets that admit neither Walrasian
equilibrium, nor conditional equilibrium, and yet, the opti-
mal allocation is supported by a 2PE with small discrepancy.
For example, the market in Example 3.2 admits no Walrasian
equilibrium, nor conditional equilibrium, and yet, the opti-
mal allocation, S∗, is supported in a 2PE with discrepancy
D(S∗, p̂, p̌) =

3.6− 4
3

2 = 17
15 .

5 Geometric Properties of Valuations over
Identical Items

In this section we introduce new geometric properties of val-
uations over identical items, which prove useful in establish-
ing upper bounds on the discrepancy of 2PE in such markets.
Hereafter, we refer to a valuation over identical items as a
symmetric valuation.

Definition 5.1 (max-forward-slope (
−→
∆)). Given a symmet-

ric valuation v, and some 0 ≤ k < m, and 1 ≤ r ≤ m− k,
the (k, r)-max-forward-slope is defined as

−→
∆v(k, r) = max

l=1,2,...,r

{
v(k + l)− v(k)

l

}
(3)

We say that l′ realizes
−→
∆v(k, r), if l′ is the minimum index

s.t.
−→
∆v(k, r) =

v(k+l′)−v(k)
l′ . In addition, we use

−→
∆v(k) to

denote
−→
∆v(k,m − k), and refer to

−→
∆v(k) as the k-max-

forward-slope.

The sorted vector of the max-forward slopes is defined by
−→
∆s

v(k). That is,
−→
∆s

v(k) ≤
−→
∆s

v(k + 1) for every 0 ≤ k <
m− 1.

Definition 5.2 (min-backward-slope (
←−
∆)). Given a sym-

metric valuation v, and some 0 ≤ k < m, and 1 ≤ r ≤
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m− k, the (k, r)-min-backward-slope is defined as

←−
∆v(k, r) = min

l=1,2,...,r

{
v(k)− v(k − l)

l

}
(4)

We say that l′ realizes
←−
∆v(k, r), if l′ is the minimum index

s.t.
←−
∆v(k, r) = v(k)−v(k−l′)

l′ . In addition, we use
←−
∆v(k)

to denote
←−
∆v(k, k), and refer to

←−
∆v(k) as the k-min-

backward-slope.

Submodular closure: Given a symmetric valuation v,
the minimal submodular valuation that (point-wise) upper
bounds it is called the submodular closure (SM-closure) of
v. The SM-closure of a function is known to be unique (see,
e.g., Ezra et al. (2020));

Given a symmetric valuation function v : [m]→ R+, we
define the following: Let ṽ : [m] → R+ be the SM-closure
of v, and let Iv be the set of indices k ∈ [m] for which
v(k) = ṽ(k), i.e., the set of points in which the v and ṽ inter-
sect. We refer to Iv as the set of intersection indices. For 0 ≤
l < |Iv| − 1, let Tl be the right triangle between two adja-
cent intersecting indices, il and il+1, with vertices (il, v(il)),
(il+1, v(il)) and (il+1, v(il+1)). Let αl = v(il+1)−v(il)

il+1−il
be

the slope of the triangle Tl. If v(il+1) = v(il), then Tl

is a degenerated triangle (a line), with slope αl = 0. Let
Tv =

{
T0, T1, . . . , T|Iv|−2

}
be the set of all right triangles

of v. For every 0 ≤ l < |Iv| − 1, and every il ≤ k < il+1,
we say that k ∈ Tl.

In what follows we present some useful lemmas and the-
orems regarding symmetric valuation functions. The com-
plete proofs, as well as additional observations, appear in
the full version.

The following lemma gives a lower bound on v(k) as a
function of the max-forward-slopes of v up to k.

Lemma 5.3. For every symmetric subadditive valua-
tion function v, and 0 < k ≤ m, v(k) ≥ k ·
min0≤k′<k

{−→
∆v(k

′)
}

.

The flat function of a symmetric valuation v is defined as

ϕv(k) =

{
0 0 ≤ k < m

v(m) k = m

The following observation specifies the max-forward-
slope of the flat function.

Observation 5.4. Let v be a symmetric function and let ϕv

be its flat function. Then,
−→
∆ϕv

(k) = v(m)
m−k .

We now show that given a valuation v and its correspond-
ing flat function ϕv , the sorted-max-forward-slope of v is at
most the max-forward-slope of ϕv .

Theorem 5.5. For every symmetric valuation v, for every
0 ≤ k < m,

−→
∆s

v(k) ≤
−→
∆ϕv (k).

To prove Theorem 5.5, we introduce the ”reorder and
unify of adjacent triangles” operation in the full version. The
idea is to repeatedly switch two adjacent triangles in v, until
the obtained valuation comprises of a single triangle.

Definition 5.6. Given a symmetric valuation v, a constant
c ≥ 1 and an integer 0 ≤ k < m, we say that k is c−bad if
−→
∆v(k) > c · v(m)

m ; otherwise, we say that k is c−good.
The following lemma establishes an upper bound on the

number of c−bad numbers in [m− 1].
Lemma 5.7. For every symmetric valuation v, for every c ≥
1, there are at most m− ⌊ (c−1)

c ·m⌋ − 1 c−bad integers in
{0, 1, . . . ,m− 1}.

6 Properties of 2PEs with Identical Items
In this section we present some properties of 2PEs in mar-
kets with identical items.

We first define 2PE with uniform prices:
Definition 6.1 (2PE with uniform prices (U-2PE)). A
triplet (S, p̂, p̌) is a 2PE with uniform prices (U-2PE) for
valuation profile v, if it is a 2PE for v and for every buyer
i ∈ [n], every items j, j′ ∈ Si, p̂j = p̂j′ and p̌j = p̌j′ . Let
p̂(i) and p̌(i) denote these prices, respectively.

The following proposition shows that for studying the dis-
crepancy in markets with identical items it is without loss of
generality to restrict attention to U-2PEs.
Proposition 6.2. If (S, p̂, p̌) is a 2PE for some symmetric
valuation profile v, then there exists a U-2PE (S, p̂′, p̌′) s.t.
D(S, p̂′, p̌′) = D(S, p̂, p̌).

The proof of Proposition 6.2 follows by an iterative invo-
cation of the following lemma for every buyer i ∈ [n].
Lemma 6.3. Let (S, p̂, p̌) be a 2PE for some symmetric val-
uation profile v. Let l be some buyer. Let p̌′j =

1
|Sl|

∑
t∈Sl

p̌t

and p̂′j = 1
|Sl|

∑
t∈Sl

p̂t for every item j ∈ Sl and p̌′j = p̌j
and p̂′j = p̂j for every item j /∈ Sl. Then:

• (S, p̂, p̌′) is a 2PE.
• (S, p̂′, p̌) is a 2PE.
• D(S, p̂, p̌′) = D(S, p̂′, p̌) = D(S, p̂, p̌)

The following proposition gives necessary and sufficient
conditions for the utility maximization property of a U-2PE.
Proposition 6.4. Consider a symmetric valuation profile v
and a triplet (S, p̂, p̌), s.t. for every item j ∈ [m], p̌j ≤
p̂j and for every buyer i ∈ [n] and every items j, j′ ∈ Si,
p̂j = p̂j′ and p̌j = p̌j′ . Then, the following conditions are
necessary and sufficient for utility maximization of a U-2PE:

1. p̌(i) ≤ mini′∈[n] p̂
(i′), for every i ∈ [n].

2. p̌(i) ≤
←−
∆vi

(|Si|), for every i ∈ [n].
3.

∑
i′ ̸=i |T ∩ Si′ | · p̂(i

′) ≥ vi(|T |) − vi(|Si|), for every
i ∈ [n] and every T ⊆ [m] s.t.
T ⊃ Si.

Given Proposition 6.4, we can now specify simple suffi-
cient conditions for U-2PE in market with identical items.
Proposition 6.5. Consider a symmetric valuation profile v
and let (S, p̂, p̌) be a triplet satisfying the following condi-
tions for every buyer i ∈ [n]:

1. For every items j, j′ ∈ Si, p̂j = p̂j′ and p̌j = p̌j′ . Let
p̂(i) and p̌(i) denote these prices, respectively.
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2. p̌(i) ≤ mini′∈[n] p̂
(i′).

3. p̌(i) ≤
←−
∆vi

(|Si|).

4. p̂(i) ≥ maxi′ ̸=i

{−→
∆vi′ (|Si′ |)

}
.

5. All items are allocated.

Then, (S, p̂, p̌) is a U-2PE for v.

Notice that for the case of two buyers, condition (4) of
Proposition 6.5 is identical to condition (3) of Proposition
6.4, and therefore the conditions specified in Proposition 6.5
are also necessary conditions.

7 Discrepancy in Markets with Identical
Subadditive Buyer

In this section we establish the existence of 2PEs with small
discrepancy for markets with identical items and identical
subadditive buyers.

We first show that every market with identical items and 2
identical subadditive buyers admits a 2PE with discrepancy
of at most 2.

Theorem 7.1. Every market with 2 identical subadditive
symmetric valuations admits a U-2PE (S, p̂,0) with dis-
crepancy of at most 2.

We next establish a lower bound on the discrepancy of a
2PE for 2 identical subadditive buyers.

Theorem 7.2. There exists a market with identical items and
2 identical subadditive buyers that admits no 2PE with dis-
crepancy smaller than 1.3895.

We now extend the result of Theorem 7.1 to markets with
an arbitrary number of identical subadditive buyers.

Theorem 7.3. Every market with n > 2 identical subaddi-
tive symmetric valuations admits a U-2PE, (S, p̂, p̌), with

discrepancy of at most max
{
2, n+2

n−1

}
≤ 2.5.

8 Discrepancy in Markets with
Heterogeneous Subadditive Buyers

In this section we show that for every market with identical
items and any number of subadditive buyers, there exists a
2PE with discrepancy of at most 6.

Theorem 8.1. Every market with subadditive symmetric
valuations admits a U−2PE, (S, p̂,0), with discrepancy of
at most 6.

To prove Theorem 8.1, we present an algorithm that
computes some allocation (k1, k2, . . . , kn), and show in

Lemma 8.2 that the obtained allocation is supported in a 2PE
with discrepancy of at most 6.

Line 11 in the algorithm refers to a 3−good pair. For two
buyers x, y ∈ [n] and integers kx, lx, ky, ly, r ∈ [m], we
say that a pair (lx, ly) is 3−good w.r.t. r, kx and ky if (i)
lx, ly ≥ 0: (ii) lx+ly = r, (iii)

−→
∆vx

(kx+lx) ≤ 3·
−→
∆vx

(kx),
and (iiii)

−→
∆vy

(ky + ly) ≤ 3 ·
−→
∆vy

(ky).

Algorithm 1: An algorithm for finding an allocation with dis-
crepancy of at most 6 for heterogeneous buyers.
Input: m,n, (v1, v2, . . . , vn)
Output: (k1, k2, . . . , kn), s.t.

∑
i∈[n] ki = m and ki ≥ 0 for

every i ∈ [n]

1: Let ki = 0 for every i ∈ [n]
2: Let r = m
3: while r > 0 do
4: Let x = argmaxi∈[n]

{−→
∆vi(ki)

}
5: Let t ≥ 1 be the number of items in x’s current trian-

gle.
6: if r ≥ t then
7: kx = kx + t
8: r = r − t
9: else

10: Let y = argmaxi∈[n]\x

{−→
∆vi

(ki)
}

11: Find a 3−good pair, (lx, ly) w.r.t. r,kx,ky , s.t. lx ≥
r
2

12: kx = kx + lx
13: ky = ky + ly
14: r = 0
15: end if
16: end while
17: return (k1, k2, . . . , kn)

Given the output (k1, k2, . . . , kn) of Algorithm 1, let S =
(S1, S2, . . . , Sn) be an allocation satisfying |Si| = ki, and
let p̂j = maxi′ ̸=i

{−→
∆vi′ (ki′)

}
for every j ∈ Si and p̌j = 0 for every j ∈ [m]. It is easy

to see that (S, p̂,0) satisfies all the conditions of Proposition
6.5, and hence it is a U−2PE. The following lemma shows
that (S, p̂,0) has the desired discrepancy.
Lemma 8.2. The discrepancy of (S, p̂,0) is at most 6.

To conclude the proof of Theorem 8.1 it remains to estab-
lish the existence of a 3−good pair that satisfies the condi-
tion in line 11 of Algorithm 1.
Lemma 8.3. For every two buyers x, y in line 11 of Algo-
rithm 1, there exists a 3−good pair (lx, ly) with respect to r,
kx, and ky such that lx ≥ r

2 .

9 WE in Markets with Identical Items
In markets with identical items, one can restrict attention
to WE in which all prices are equal. Indeed, if there are at
least two allocated buyers, then it is clear. Otherwise, simply
replace all prices by their average (see Lemma 6.3). A WE
with a uniform price p and allocation S is denoted by (S, p).

The following theorem establishes necessary and suffi-
cient conditions for the existence of a WE in markets with
identical items.
Theorem 9.1. Let v = (v1, . . . , vn) be a symmetric valua-
tion profile.

Let ṽi be the SM-closure of vi for every i ∈ [n], and let
ṽ = (ṽ1, . . . , ṽn). (S, p) is a WE for valuation profile v if
and only if (S, p) is a WE for valuation profile ṽ and |Si| ∈
Ivi

for every i ∈ [n].
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