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Abstract

In multiwinner approval voting, the goal is to select k-
member committees based on voters’ approval ballots. A
well-studied concept of proportionality in this context is the
justified representation (JR) axiom, which demands that no
large cohesive group of voters remains unrepresented. How-
ever, the JR axiom may conflict with other desiderata, such as
coverage (maximizing the number of voters who approve at
least one committee member) or social welfare (maximizing
the number of approvals obtained by committee members).
In this work, we investigate the impact of imposing the JR
axiom (as well as the more demanding EJR axiom) on so-
cial welfare and coverage. Our approach is threefold: we de-
rive worst-case bounds on the loss of welfare/coverage that
is caused by imposing JR, study the computational complex-
ity of finding ‘good’ committees that provide JR (obtaining a
hardness result, an approximation algorithm, and an exact al-
gorithm for one-dimensional preferences), and examine this
setting empirically on several synthetic datasets.

1 Introduction
What do the tasks of electing members of a parliament, mak-
ing a shortlist of job candidates to invite for an interview, and
selecting dishes for a banquet have in common? They can all
be seen as instances of multiwinner voting: there is a set of
voters with preferences over the candidates, and the goal is
to select a fixed-size subset of the candidates based on these
preferences. Recently, axiomatic and algorithmic questions
related to multiwinner voting have attracted significant at-
tention from the AI community (Faliszewski et al. 2017).

A common form of multiwinner voting involves approval
ballots, wherein each voter specifies the subset of candidates
that she finds acceptable. Depending on the application, one
may want the winning set (also called a committee) to max-
imize the utilitarian social welfare (i.e., to select the can-
didates with the largest number of approvals) or coverage
(i.e., to maximize the number of voters who approve at least
one of the selected candidates). Another objective, which is
somewhat more difficult to capture, is to select a committee
that represents the set of voters in a proportional manner. A
fairly basic proportionality requirement is the justified rep-
resentation (JR) axiom, formulated by Aziz et al. (2017): it
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says that in an n-voter election where the goal is to select
a committee of size k, no group of n/k voters who jointly
approve some candidate should remain unrepresented in the
elected committee.

Our Contribution In this paper, we seek to understand the
effect of imposing the JR axiom on the objectives of social
welfare and coverage. We observe that requiring a commit-
tee to provide JR has no impact on coverage: there is a com-
mittee that offers optimal coverage as well as JR. In contrast,
the impact on welfare is substantial: an example of Lack-
ner and Skowron (2020b) shows that imposing the JR axiom
may result in a committee whose social welfare differs from
optimal by a factor of

√
k/2, and we prove that this bound is

tight; in fact, we can obtain a nearly
√
k/2-approximation to

optimal social welfare, while providing both JR and a 4/3-
approximation to optimal coverage. For coverage, we also
show that the loss caused by imposing a more demanding
axiom of extended justified representation is bounded by 4/3.

We then investigate the complexity of computing a wel-
fare-maximizing JR committee. While both the problem of
computing a JR committee and the problem of maximizing
the social welfare are in P, combining these two objectives
results in a problem that is NP-hard, even to approximate
up to a factor of k1/2−ε for ε > 0. On the positive side,
we show that it can be efficiently approximated up to a fac-
tor of nearly

√
k/2, which means that the inapproximabil-

ity bound is asymptotically tight. Moreover, we present a
polynomial-time exact algorithm for one-dimensional pref-
erences (namely, for the fairly large 1D-VCR domain, re-
cently proposed by Godziszewski et al. (2021)).

We complement our theoretical findings by an empirical
analysis. We consider three standard models of preference
distributions, and estimate the impact of imposing the JR
axiom on welfare and coverage. In contrast to our theoretical
results, this analysis paints a much more optimistic picture:
one can achieve a good approximation to the Pareto frontier
of social welfare and coverage even under the JR constraint.

Related Work There is a quickly growing body of work
on approval-based multiwinner voting; we point the reader
to the survey of Lackner and Skowron (2020a). Our work
builds on several predecessor papers, which study trade-offs
among different desiderata in the context of committee se-
lection, but take a somewhat different perspective.
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Lackner and Skowron (2020b) consider a number of
approval-based multiwinner voting rules and, for each of
them, establish theoretical worst-case guarantees on its per-
formance with respect to social welfare and coverage. They
also provide some experimental results, showing that in
practice these rules often perform much better than their
guarantees suggest. The main difference between their work
and ours is that they consider specific voting rules (including
some that provide JR), whereas we analyze the impact of the
JR axiom itself. Furthermore, Lackner and Skowron (2020b)
take the worst-case approach, i.e., they measure the perfor-
mance of a rule by the minimum welfare/coverage provided
by committees that it outputs, whereas we are interested in
the maximum welfare/coverage that can be obtained by com-
mittees that provide JR. Nevertheless, some of their results
and examples turn out to be relevant for our analysis.

Kocot et al. (2019) consider ordinal elections rather than
the approval ones and analyze the complexity of finding a
specific committee that achieves good scores according to
several different rules. In particular, they consider the prob-
lem of maximizing the k-Borda score subject to achieving a
given Chamberlin–Courant score (Chamberlin and Courant
1983). This is quite similar to our problem of finding com-
mittees that maximize social welfare subject to JR. Our plots
illustrating the trade-off between the social welfare and the
coverage that JR committees may provide are inspired by
analogous plots of Kocot et al. (2019).

Bredereck et al. (2019) initiate the study of committees
that provide JR. In particular, they show that maximizing
welfare or coverage subject to JR is computationally hard;
we strengthen their NP-hardness result for welfare to a
k1/2−ε-inapproximability result. They also conduct experi-
ments in which they study trade-offs between coverage and
social welfare, with and without imposing the JR axiom.
However, for the purposes of their analysis, they only con-
sider three specific elections, whereas we sample many elec-
tions from three different distributions; thus, our empirical
results are much more robust.

2 Preliminaries
We consider elections with a finite set of candidates C of
size m and a finite set of voters N = [n], where we write
[t] := {1, . . . , t} for any positive integer t. Each voter i ∈ N
submits a non-empty ballot Ai ⊆ C, and the goal is to
select a subset of C of size k, which we will refer to as
the winning committee. Thus, an instance I of our prob-
lem can be described by a set of candidates C, a list of bal-
lots A = (A1, . . . , An), and a positive integer k; we write
I = (C,A, k). If c ∈ Ai for some c ∈ C and i ∈ N , we say
that c covers i, or, equivalently, that i approves c.

We consider the following two measures of committee
quality:
1. (Utilitarian) social welfare: For each committee W ⊆ C,

we define the (utilitarian) social welfare of W as

sw(W ) =
∑
i∈N
|Ai ∩W |.

2. Coverage: For each committee W ⊆ C, we define the

coverage of W as

cvr(W ) = |{i ∈ N : Ai ∩W 6= ∅}|.

Given an instance I = (C,A, k) withA = (A1, . . . , An),
we say that a group of voters N ′ ⊆ N is cohesive if
∩i∈N ′Ai 6= ∅. Further, we say that a committee W rep-
resents a group of voters N ′ ⊆ N if W ∩ Ai 6= ∅ for some
i ∈ N ′. We are now ready to state the justified representation
axiom of Aziz et al. (2017).
Definition 2.1 (JR). Given an instance I = (C,A, k) with
A = (A1, . . . , An), we say that a committee W ⊆ C,
|W | = k, provides justified representation (JR) for I if it
represents every cohesive group of voters N ′ ⊆ N such that
|N ′| ≥ n/k. Let JR(I) be the set of all committees that pro-
vide justified representation for I .

Fix an instance I = (C,A, k). We write

sw(I) = max
W⊆C
|W |=k

sw(W ), swJR(I) = max
W∈JR(I)

sw(W ),

cvr(I) = max
W⊆C
|W |=k

cvr(W ), cvrJR(I) = max
W∈JR(I)

cvr(W ),

Psw(I) =
sw(I)

swJR(I)
, Pcvr(I) =

cvr(I)

cvrJR(I)
.

We refer to Psw(I) and Pcvr(I) as the social welfare price
of JR on I and the coverage price of JR on I , respectively.
Given a committee size k, the social welfare price of JR and
the coverage price of JR are defined as the largest values Psw

and Pcvr can take on instances with committee size k:

Psw(k) = sup
I=(C,A,k)

Psw(I), Pcvr(k) = sup
I=(C,A,k)

Pcvr(I).

We note that the sheer fact that a committee provides JR
does not imply anything about its utilitarian social welfare or
coverage. Indeed, there exist instances where the JR axiom
is non-binding, in the sense that there are no cohesive groups
of size n/k. For such instances even a committee that consists
of candidates not approved by any voter provides JR. This is
why we defined the social welfare price (the coverage price)
of JR in terms of the maximum welfare (coverage) achiev-
able by a JR committee and not the minimum one.

In our proofs, we will often refer to a family of algorithms
known as GreedyCC. Each algorithm in this family takes an
instance I = (C,A, k) as input, outputs a committee W ⊆
C of size k, and proceeds in two stages. In the first stage,
it adds candidates to W one by one, starting with W = ∅.
At each iteration, for each candidate c 6∈ W it computes
cvr(W ∪{c})−cvr(W ); let c be a candidate that maximizes
this quantity. If cvr(W ∪{c})−cvr(W ) ≥ n/k then the algo-
rithm adds c to the committee and proceeds to the next itera-
tion. The first stage ends when cvr(W∪{c})−cvr(W ) < n/k
for all c 6∈ W ; let W ′ be the committee obtained at this
point, and let k′ = |W ′|. As each candidate added in the first
stage covers n/k ‘fresh’ voters, we have k′ ≤ k, and we have
W ∈ JR(I) for any size-k committee W with W ′ ⊆ W .
In the second stage, k − k′ further candidates are added to
the committee. Specifically, we denote by GreedyCCsw the
variant of GreedyCC that adds k − k′ candidates with the
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highest number of approvals among candidates in C \ W ′
(breaking ties in favor of lower-indexed candidates).

All omitted proofs can be found in the full version of our
paper (Elkind et al. 2021b).

3 Price of Justified Representation
In this section we provide nearly tight bounds on Psw(k)
and Pcvr(k). Lackner and Skowron (2020b) give an example
showing that Psw(k) ≥

√
k/2; we provide an upper bound on

Psw(k) that (nearly) matches this lower bound. On the other
hand, we observe that Pcvr(k) = 1. Then we show that so-
cial welfare and coverage are surprisingly compatible when
considering JR committees. We also discuss how to extend
our analysis to extended justified representation (EJR).

3.1 Social Welfare
We first consider Psw(k). In addition to the lower bound of√
k/2, Lackner and Skowron (2020b) also show that the so-

cial welfare of the committees output by the Proportional
Approval Voting rule (PAV), which is well-known to pro-
vide JR (Aziz et al. 2017), is within a factor of

√
k + 2

from the optimal social welfare; this implies that Psw(k) ≤√
k+2. We improve this upper bound to one that, in essence,

matches the bound from Lackner and Skowron’s example.
Theorem 3.1. For each positive number β < 2, there is a
committee size k′ such that for all k ≥ k′, we havePsw(k) ≤
1
β (1 +

√
k).

Proof. Consider an n-voter instance I = (C,A, k). Let W
be the committee computed by GreedyCCsw (so that W ∈
JR(I)), and let S = {s1, . . . , sk} be a committee such that
sw(S) = sw(I). For each i ∈ [k], let ai be the number of
approvals received by candidate si. We can assume without
loss of generality that a1 ≥ a2 ≥ · · · ≥ ak. For each i ∈ [k],
let Si = {s1, . . . , si} be the set of i candidates with the
highest approval scores; note that sw(Si) ≥ i

k · sw(S). By
definition, some candidate with a1 approvals is selected in
the first iteration of GreedyCCsw; we can assume without
loss of generality that this candidate is s1.

Suppose first that GreedyCCsw selects at most k−b2
√
kc

candidates during the first stage. Consider a candidate si,
i ≤ d2

√
ke. If si is not selected during the first stage, then si

will necessarily be selected during the second stage.1 Hence,
we have:

sw(W ) ≥ (d2
√
ke/k) · sw(S) ≥ (2/

√
k) · sw(S).

So, in this case Psw(I) ≤
√
k/2 ≤ 1+

√
k

β for each β < 2.

Thus let us assume that GreedyCCsw selects k − x
√
k first-

stage candidates for some 0 ≤ x < 2. Let r = x
√
k; note

that r is an integer. We will assume that k ≥ 2r + 1; this is
true for large enough values of k.

Recall that in the first iteration, GreedyCCsw chooses can-
didate s1, who is approved by a1 voters. Afterwards, it se-
lects k − r − 1 further first-stage candidates, with each

1We bound i by d2
√
ke and not b2

√
kc because we know that

s1 was selected in the first stage.

of these candidates covering at least n/k additional voters.
Hence, it must be the case that:

n− a1 ≥ n
k (k − r − 1) .

Recalling that r = x
√
k, we obtain a1 ≤ n

k +
xn√
k

and hence
ai ≤ n

k +
xn√
k

for i ∈ [r]. On the other hand, since each of the
k−r−1 ≥ r candidates selected in the first stage besides s1
covers at least nk additional voters, for each i ∈ [r] we have
ai ≥ n

k . Hence, there exists a real value α ∈ [0, 1] such that
the average number of approvals obtained by candidates in
Sr is:

1
r

∑r
i=1 ai =

n
k + αxn√

k
.

Thus the social welfare of S can be upper-bounded as:

sw(S) ≤ k ·
(
n
k + αxn√

k

)
= n(1 + αx

√
k).

We will now establish a lower bound on the social welfare
of W . Since we add r candidates in the second stage, W
necessarily contains all candidates in Sr, who contribute a
total of at least r(nk + αxn√

k
) to the social welfare. Moreover,

in the first stage, we add at least k− r− |Sr| = k− 2r can-
didates who are not contained in Sr. Each of the first-stage
candidates covers at least n/k additional voters and therefore
contributes at least n/k to the social welfare. Hence, we can
lower-bound sw(W ) as:

sw(W ) ≥
(
n
k + αxn√

k

)
· r + (k − 2r) · nk ,

or, rewriting,

sw(W ) ≥ n− xn√
k
+ αx2n = n

(
1− x√

k
+ αx2

)
.

Now, Psw(I) can be upper-bounded as:

sw(S)
sw(W ) ≤

1+αx
√
k

1− x√
k
+αx2 =

√
k+αxk√

k−x+αx2
√
k
.

We claim that for each β ∈ (0, 2) and sufficiently large k it
holds that: √

k+αxk√
k−x+αx2

√
k
≤ 1+

√
k

β .

Note first that this inequality can be rewritten as:
√
k − x+ αx2

√
k + k − x

√
k + αx2k ≥ β

√
k + αβxk,

or, regrouping the terms and dividing by
√
k,

−1− αx2 + x+ β + x√
k
≤
√
k
(
αx2 − αβx+ 1

)
. (1)

Now, observe that

αx2 − αβx+ 1 =
(
αx2 − αβx+ αβ2

4

)
+
(
1− αβ2

4

)
= α

(
x− β

2

)2
+
(
1− αβ2

4

)
≥ 1− αβ2

4 ≥ 1− β2

4 > 0.

As a consequence, inequality (1) holds for sufficiently
large k since the left-hand side does not increase as k grows,
whereas the right-hand side grows proportionally to

√
k.
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For an explicit bound on k in the statement of Theo-
rem 3.1, we refer to the full version of our paper (Elkind
et al. 2021b). One may wonder if it is possible to strengthen
the theorem so that it matches the

√
k/2 lower bound exactly,

for all values of k. While it might be possible, it would likely
require an approach that is different from ours: the approx-
imation of the social welfare provided by GreedyCCsw is
quite good, but insufficient for small committees.

3.2 Coverage
Next we consider the coverage price of justified represen-
tation. Since the committees selected by the Chamberlin–
Courant rule are known to both provide JR and maximize the
coverage (Aziz et al. 2017), we have the following corollary.
Corollary 3.2. For every instance I = (C,A, k), there ex-
ists a committeeW ∈ JR(I) such that cvr(W ) ≥ cvr(S) for
all S ⊆ C with |S| = k. Thus, Pcvr(k) = 1 for all k ∈ N.

3.3 Combining Social Welfare and Coverage
Social welfare and coverage are often viewed as two desider-
ata that are at the opposite ends of the spectrum: maximiz-
ing the social welfare may lead to low coverage and vice
versa. We show that for JR committees these two properties
are surprisingly compatible: if the committee size is suffi-
ciently large, there always exists a JR committee that pro-
vides nearly optimal social welfare as well as coverage that
is nearly 3/4 of the maximum possible coverage.
Theorem 3.3. For every β ∈ (0, 2) and ε > 0, there ex-
ists a k0 ∈ N such that for every instance I = (C,A, k)
with k ≥ k0, there exists a committee W ∈ JR(I) with
sw(I)/sw(W ) ≤ 1

β (1+
√
k) and cvr(I)/cvr(W ) ≤ 4/3+ε.

The proof of Theorem 3.3 relies on a variant of GreedyCC
that runs in exponential time. This is inevitable since, unless
P = NP, the best approximation ratio for coverage that is
guaranteed in polynomial time is 1− 1/e (see, e.g., Skowron
and Faliszewski 2017), and 1/(1 − 1/e) > 4/3. It is thus
desirable to have a variant of Theorem 3.3 for committees
computable in polynomial time. It turns out that in this case
we can achieve a near-perfect result.
Theorem 3.4. Let β < 2 be a positive number. For every
instance I = (C,A, k) with sufficiently large k, there is a
committee W ∈ JR(I) with sw(I)/sw(W ) ≤ 1

β (1 +
√
k)

and cvr(I)/cvr(W ) ≤ 1/(1− (1/e)(1−2/
√

k−1/k)).

3.4 Extended Justified Representation
We also study a strengthening of the JR axiom, known as
extended justified representation (EJR) (Aziz et al. 2017),
which is typically interpreted as a proportionality axiom. Let
us consider an election with n voters, where we seek a com-
mittee of size k. We say that a group of voters is `-cohesive
if there are at least ` candidates that are approved by all the
voters in this group, and we say that this group is `-large if
it contains at least `n/k members.
Definition 3.5 (EJR). Given an instance I = (C,A, k), we
say that a committee W ⊆ C, |W | = k, provides extended
justified representation (EJR) for I if for each ` ∈ [k] and

each `-cohesive, `-large group of voters, there is at least one
voter in this group who approves at least ` members of W .
Let EJR(I) denote the set of all committees that provide
extended justified representation for I .

We define the social welfare price of EJR and the cover-
age price of EJR analogously to these notions for JR. The
results of Lackner and Skowron (2020b) imply that the so-
cial welfare price of EJR is between

√
k/2 and 2 +

√
k, as

well as that the coverage price of EJR is at least 4/3. We
show that, in fact, this latter bound is tight.
Theorem 3.6. The coverage price of EJR is 4/3.

The proof is very similar to that of Theorem 3.3. The main
difference is that we replace GreedyCC with an exponential-
time greedy algorithm that is guaranteed to output a commit-
tee that provides EJR, and we do not have a stage where we
select candidates so as to maximize the social welfare.

4 Optimizing Social Welfare under JR
In this section we focus on the complexity of maximizing
the social welfare over the set of all committees that provide
JR. We do not discuss maximizing coverage, as this topic is
already covered in the rich literature on the approval-based
Chamberlin–Courant rule; see, e.g., the works of Procaccia,
Rosenschein, and Zohar (2008), Lu and Boutilier (2011),
Betzler, Slinko, and Uhlmann (2013), Skowron et al. (2015),
and Godziszewski et al. (2021).

4.1 Hardness of Approximation
Interestingly, while there are polynomial-time algorithms for
finding committees that provide JR (Aziz et al. 2017), and
we can find a social welfare-maximizing committee by sim-
ply picking k candidates with the highest number of ap-
provals, finding a social welfare-maximizing JR committee
turns out to be NP-hard. This was first observed by Bred-
ereck et al. (2019); we will now strengthen their hardness
result to an inapproximability result. We show that, for any
constant ε > 0, it is NP-hard to approximate swJR(I) to
within a factor of k1/2−ε. This hardness result holds even
when n = 2k.
Theorem 4.1. For any ε ∈ (0, 1/2), the following problem
is NP-hard:2 Given an instance I = (C,A, k), find a com-
mittee W ∈ JR(I) such that sw(W ) ≥ swJR(I)/k

1/2−ε.
This problem remains NP-hard even if k = n/2.

Since GreedyCCsw runs in polynomial time and the op-
timal social welfare under JR is at most the optimal social
welfare overall, Theorem 3.1 implies that the inapproxima-
bility factor in Theorem 4.1 is asymptotically tight.

4.2 The case n = k

Our k1/2−ε-inapproximability result holds for the case
where n = 2k, and it is easy to extend it to some cases
with smaller k. For example, for n = 4k it suffices to clone
each voter. Yet, if k is extremely small, e.g., if it is bounded

2When saying that this search problem is NP-hard, we mean
that a polynomial-time algorithm for the problem would enable us
to solve all problems in NP in polynomial time.
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by a constant, then, of course, we can find a social welfare-
maximizing committee in JR(I) in polynomial time.

Larger values of k can also become easier. In what fol-
lows, we will focus on the case n = k. In this case, the
JR axiom is equivalent to requiring perfect coverage: every
voter forms a group of size n/k and thus must be represented
in the committee (recall that we require that Ai 6= ∅ for
all i ∈ [n]). It turns out that maximizing the social welfare
under this condition remains hard.

Theorem 4.2. For some constant ε > 0, the following prob-
lem is NP-hard: Given an instance I = (C,A, k) with
n = k, find W ∈ JR(I) with sw(W ) ≥ swJR(I)/(1 + ε).

In spite of the hardness, the case n = k admits a 2-
approximation algorithm, which means that it is easier than
the case n = 2k (Theorem 4.1).

Theorem 4.3. There is a polynomial-time algorithm that,
given an instance I = (C,A, k) where n = k, finds a com-
mittee W ∈ JR(I) such that sw(W ) ≥ swJR(I)/2.

4.3 Structured Preferences
Another approach to circumvent intractability is to focus on
instances where voters have structured preferences. In this
section, we consider one such domain, namely, the 1D-VCR
domain, recently introduced by Godziszewski et al. (2021).
The name of the domain, 1D-VCR, stands for 1-dimensional
voter/candidate range model.

Definition 4.4. Given an instance I = (C,A, k), with voter
set N , we say that the voters have 1D-VCR preferences if
there exists a collection (xa, ra)a∈C∪N of points xa ∈ R
and nonnegative real values ra ∈ R such that for each voter
i ∈ N and candidate c ∈ C, it holds that i approves c if and
only if |xc − xi| ≤ rc + ri.

Given an agent a ∈ C ∪ N , we refer to xa and ra as the
position and radius of a, respectively. We assume that the
positions and radii of the agents are specified in the input in-
stance. This assumption carries no computational cost, since
we can decide in polynomial time whether a given instance I
is a 1D-VCR instance and compute the respective positions
and radii; this follows from the work of Müller (1997) and
Rafiey (2012).

The 1D-VCR domain is a generalization of both the
candidate interval (CI) and voter interval (VI) domains of
Elkind and Lackner (2015) (which translate the classic def-
initions of single-peaked (Black 1958) and single-crossing
elections (Mirrlees 1971; Roberts 1977) to the approval set-
ting): the CI domain (resp., the VI domain) corresponds to
all candidates (resp., voters) having zero radii.

Given a 1D-VCR instance I = (C,A, k) and an agent
a ∈ C ∪ N , we denote by s(a) = xa − ra and t(a) =
xa + ra the leftmost and the rightmost point of a’s range
of influence, respectively. We call [s(a), t(a)] the interval of
a. Note that voter i approves candidate c if and only if i’s
interval [s(i), t(i)] and c’s interval [s(c), t(c)] have a non-
empty intersection, i.e.,

s(c) ≤ t(i) and s(i) ≤ t(c). (2)

The main result of this section is that the problem of maxi-
mizing the social welfare under the JR constraint is tractable
for 1D-VCR instances.

Theorem 4.5. There is a polynomial-time algorithm that,
given a 1D-VCR instance I = (C,A, k), computes a com-
mittee that maximizes the social welfare under JR.

We first prove Theorem 4.5 for the case where the
intervals of the candidates have a non-nested structure
(Lemma 4.6). Below, we denote by JR≤k(I) the set of com-
mittees of size at most k that satisfy JR (with parameter k)
for an instance I = (C,A, k). Note that for this lemma, we
do not make the usual assumption that |C| ≥ k.

Lemma 4.6. Let I = (C,A, k) be a 1D-VCR instance such
that for every pair of candidates c, c′ ∈ C with t(c) ≤ t(c′)
it holds that s(c) ≤ s(c′). Then, there is a polynomial-time
algorithm that, given k∗ ∈ [min{k, |C|}], computes a com-
mittee W ⊆ C that maximizes the social welfare under the
constraints that W ∈ JR≤k(I) and |W | = k∗ (or reports
that no such committee exists).

Our general algorithm consists of two phases: First, we
compute a committee (possibly of size smaller than k) that
provides JR for the original instance and only contains can-
didates whose intervals are maximal. Second, we supple-
ment this committee with highly-approved candidates.

To formalize this idea, we introduce the notion of rep-
resentatives. Given a 1D-VCR instance I = (C,A, k), we
say that candidate c∗ is a representative of candidate c if
the interval of c∗ strictly includes that of c and is a max-
imal interval with this property. We denote the set of all
representatives by C∗; we have C∗ = { c ∈ C | @c′ ∈
C : [s(c), t(c)] ( [s(c′), t(c′)] }. We denote the instance re-
stricted to the representatives by I∗ = (C∗,A|C∗ , k). By
Lemma A.1 of Elkind et al. (2021a), if voter i approves
c, then i also approves its representative c∗. The following
lemma states that a committee that consists of representa-
tives satisfies JR if and only if it satisfies JR for the restricted
instance.

Lemma 4.7. Let I = (C,A, k) be a 1D-VCR instance,
and let I∗ = (C∗,A|C∗ , k) be the instance restricted to
the representatives. Then for each W ⊆ C∗ it holds that
W ∈ JR≤k(I

∗) if and only if W ∈ JR≤k(I).

Lemma 4.7 allows us to decompose our instance into its
restrictions to C∗ and C \ C∗.
Lemma 4.8. Let I = (C,A, k) be a 1D-VCR instance, and
let I∗ = (C∗,A|C∗ , k) be the instance restricted to the rep-
resentatives. Then, we have swJR(I) = α, where

α = max{ sw(W ∗) + sw(W ′) |W ∗ ∈ JR≤k(I
∗),

|W ∗|+ |W ′| = k,W ′ ⊆ C \ C∗ }.

We can now use Lemma 4.8 in order to prove Theorem 4.5
by iterating over the size of W ∗.

Proof of Theorem 4.5. Let I = (C,A, k) be a 1D-VCR in-
stance and let I∗ = (C∗,A|C∗ , k) be the instance restricted
to the representatives. By Lemma 4.8, we can proceed as
follows. We try all values of k∗ in {0, 1, . . . ,min{|C∗|, k}}.
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For each value of k∗, since the intervals of the candidates
in C∗ are not properly contained in each other, we can use
Lemma 4.6 to compute a committee W ∗ that maximizes
the social welfare subject to the requirements that W ∗ ∈
JR≤k(I

∗) and |W ∗| = k∗ (or determine that no such com-
mittee exists). We can then find a committee W ′ ⊆ C \ C∗
of size k − k∗ maximizing the social welfare among such
committees, by choosing k− k∗ candidates with the highest
number of approvals. For each value of k∗ for whichW ∗ ex-
ists, we evaluate sw(W ∗ ∪W ′), and return the best of these
committees.

5 Experimental Evaluation
We analyze the trade-off between maximizing social welfare
and maximizing coverage while requiring JR in randomly
generated instances. We illustrate this trade-off in the form
of Pareto curves, as depicted in Figure 1. In addition, we ex-
plore how well a variant of GreedyCC performs in selecting
committees that are close to these Pareto curves.

Setup We consider three different models for generating
random elections. All take as input the number of voters n,
the number of candidates m, and one additional parameter.

• The impartial culture (IC) model is parameterized by
p ∈ [0, 1]. Each candidate is approved by every voter
independently with probability p.

• The n-dimensional Euclidean model takes as input a
parameter r ∈ [0,

√
n], also referred to as the radius.

Every voter i and every candidate c is associated with
points xi, xc ∈ [0, 1]n, respectively, which are drawn
uniformly at random. Candidate c is approved by voter i
iff d(xi, xc) ≤ r, where d(·, ·) is the Euclidean distance.
We utilize the 1-dimensional (1D) and 2-dimensional
(2D) Euclidean model in our experiments.

All three models are frequently used in the literature (see,
e.g., Bredereck et al. 2019; Godziszewski et al. 2021). We
focus on elections with parameters n = m = 100 and
k = 10. To make the results for the three models compa-
rable, we chose the parameters p and r so that on average
each voter approves n/k = 10 candidates. Bredereck et al.
(2019) observe that, for the above models, JR is especially
demanding for this ratio. This leads to parameters p = 0.1
(for IC), r = 0.054 (for 1D) and r = 0.195 (for 2D).

Part of our implementation builds upon code con-
tributed by Andrzej Kaczmarczyk (Bredereck et al. 2019).
Our code can be found at https://github.com/Project-
PRAGMA/PriceOfJR-AAAI-2022.

Trade-off between social welfare and coverage under JR
The Pareto curves depicted in the top row of Figure 1 are cre-
ated as follows. For each of the three models we sample 100
instances. For a given instance I , we iterate over α ∈ [0, 1]
(in 0.01 increments) and compute a size-k committee WI,α

so as to maximize the social welfare subject to the constraint
that at least α·cvr(I) coverage is achieved and JR is satisfied.
To compute WI,α, we use an IP formulation. Then, for each
αwe define f(α) as the average of sw(WI,α)/sw(I) over all
generated instances of the model and illustrate f by a blue

line in Figures 1a to 1c. For comparison, we repeat this pro-
cess without requiring committees to provide JR, and depict
the resulting curve by a red dashed line.

The bottom row of Figure 1 is created by exchanging the
roles of the two objectives. That is, for α ∈ [0, 1] (with 0.005
increments) the committeeWI,α is chosen so as to maximize
coverage subject to the constraints that the social welfare is
at least α · sw(I) and JR is satisfied. There is one important
difference to the previous experiments, namely, that for large
values of α, such a committee need not exist since high so-
cial welfare and JR can be incompatible. In these cases, we
set WI,α = ∅. Then, we compute g(α) as the average of
cvr(WI,α)/cvr(I) over 100 instances, and illustrate it by a
blue line in the bottom row of Figure 1. Again, for compar-
ison we drop the JR constraint and repeat the computation;
the result is depicted by a red dashed line. Observe that the
two figures in each column are not symmetric.

Greedy Heuristic In order to find committees that are
close to the Pareto curves, is it necessary to solve an IP?
To answer this question, we implement a greedy heuristic
and analyze the distance from its selected committees to the
Pareto curves. This heuristic proceeds as follows.

First, the algorithm computes sw(I) and a greedy esti-
mate of cvr(I), which is done by computing a committee
W returned by GreedyCC. Then, the algorithm starts with
an empty committee W = ∅, and in each iteration decides
between one of two steps: In a coverage step, the algorithm
selects the next candidate c so as to maximize cvr(W ∪{c});
among all such candidates, it chooses one with maximum
approval score. In a social welfare step, the algorithm selects
a candidate c with maximum approval score; among all such
candidates c it chooses one that maximizes cvr(W ∪ {c}).
As long as JR is not satisfied, the greedy algorithm performs
coverage steps. After that, it compares cvr(W )/cvr(W ) with
sw(W )/sw(I). If the former is smaller, it performs a cover-
age step; otherwise it performs a social welfare step.

After termination, we compute the exact approximation
ratio of W , i.e., the point (cvr(W )/cvr(I), sw(W )/sw(I))
and indicate it by a blue triangle or a red dot in Figures 1a
to 1c. More precisely, we depict the point by a red dot
if it is not on the Pareto curve of the instance I . That
is, we check whether there exists a committee W ′ achiev-
ing coverage at least cvr(W ) and social welfare strictly
greater than sw(W ). In this case we also note the distance
(sw(W ′) − sw(W ))/sw(I) for the optimal W ′. Otherwise,
the point lies on the Pareto curve and is indicated by a blue
triangle. For the bottom row of Figure 1 we perform the anal-
ogous procedure.

Maximizing social welfare with respect to α-coverage
Consider the top row of Figure 1. For the impartial culture
model with approval probability p = 0.1 (Figure 1a), the
restriction to JR committees has no effect as the two Pareto
curves coincide. Also, the trade-off between social welfare
and coverage does not appear to be very strong. Even when
demanding optimal coverage, we can obtain (on average)
88% of optimal social welfare. Regarding the performance
of the greedy algorithm, 52% of the committees are posi-
tioned on the Pareto curve of their instance. Among the re-
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(a) 0.1-IC Model (b) 0.054-1D Euclidean Model (c) 0.195-2D Euclidean Model

(d) 0.1-IC Model (e) 0.054-1D Euclidean Model (f) 0.195-2D Euclidean Model

Figure 1: In the top row (resp., bottom row) we indicate the function f (resp., g) by a blue solid line and the benchmark line
(where we drop the JR requirement) by a red dashed line. Dots and triangles indicate the committees computed by the greedy
algorithm: a committee is indicated by a blue triangle if it lies on the Pareto curve, and by a red dot otherwise.

maining points, the average distance towards their respective
Pareto curve (along the sw-axis) is 0.012. 3

The trade-off between the two objectives becomes more
apparent for the Euclidean models (Figures 1b and 1c). Even
without any constraints regarding the coverage of the com-
mittee, the constraint that the committee has to provide JR
induces a social welfare loss of roughly 4% (for the 1D
model) and 1.5% (for the 2D model). Although the abso-
lute loss, as compared to the best achievable social welfare,
becomes larger for higher values of α, namely 21.5% for the
1D model and 25% for the 2D model, the distance from the
benchmark line diminishes. Regarding the performance of
the greedy heuristic, 33% (for 1D) and 15% (for 2D) of the
committees lie on the Pareto curve of their instance. The av-
erage distance of the remaining points from their respective
Pareto curve is 0.022 (for 1D) and 0.024 (for 2D).

Maximizing coverage with respect to α-social welfare
Figure 1d shows that, again, for the IC model, the JR con-
straint has no impact on maximizing coverage under the con-
straint that an α-fraction of social welfare is achieved. Re-
garding the performance of the greedy heuristic, 45% of the
committees are positioned on the Pareto curve of their in-
stance. For the remaining points, the distance towards the
Pareto curve (along the cvr-axis) is 0.026 on average. For
the 1D model (Figure 1e), requiring JR has no impact on the
maximum coverage achievable up to a social welfare frac-
tion of 85%. Starting from there, more and more instances
do not admit a committee that provides JR while attaining

3We observe a grid-like pattern of the greedy points along both
axes; see the full version for an explanation of this effect.

sufficient social welfare. For the 2D model (Figure 1f) the
situation is similar, though JR becomes restrictive only for
α ≥ 0.94. Considering the greedy heuristic, 29% (for 1D)
and 16% (for 2D) of the committees are positioned on the
Pareto curves of their instance. For the remaining points, the
average distance from their Pareto curve (along the cvr-axis)
is 0.036 and 0.038 for the 1D and 2D model, respectively.

Conclusions of experiments In contrast to our theoretical
results, the experiments show that in practice, providing JR
is often compatible with high social welfare. Moreover, for
all three models, if we require at least 80% coverage, de-
manding JR on top does not lead to additional social welfare
loss. Our greedy heuristic performs well in finding commit-
tees that are close to the Pareto curve: For all models, more
than 20% of the committees are optimal and the remaining
ones are close to the Pareto curve on average.

The full version of our paper (Elkind et al. 2021b) con-
tains a comparison to experiments from the literature and
details on the computational infrastructure.

6 Conclusions and Future Work
We have provided an extensive analysis of the impact of the
justified representation (JR) axiom on both the (utilitarian)
social welfare and the coverage, both from a worst-case per-
spective and from an algorithmic perspective, and comple-
mented our theoretical results with an empirical analysis.

It would be interesting to perform a similar analysis for
the EJR axiom, as well as other proportionality axioms such
as PJR (Fernández et al. 2017) and the core (Aziz et al.
2017); Theorem 3.6 is the first step in this direction.
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