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Abstract

We study the computational complexity of computing solu-
tions for the straight-cut and square-cut pizza sharing prob-
lems. We show that finding an approximate solution is PPA-
hard for the straight-cut problem, and PPA-complete for
the square-cut problem, while finding an exact solution for
the square-cut problem is FIXP-hard and in BU. Our PPA-
hardness results apply even when all mass distributions are
unions of non-overlapping squares, and our FIXP-hardness
result applies even when all mass distributions are unions of
weighted squares and right-angled triangles. We also prove
that decision variants of the square-cut problem are hard: the
approximate problem is NP-complete, and the exact problem
is ETR-complete.

Introduction
Mass partition problems ask us to fairly divide measurable
objects that are embedded into Euclidean space (Roldán-
Pensado and Soberón 2020). Perhaps the most popular
mass partition problem is the ham sandwich problem, in
which three masses are given in three-dimensional Eu-
clidean space, and the goal is to find a single plane that cuts
all three masses in half. Recently, there has been interest in
pizza sharing problems, which are mass partition problems
in the two-dimensional plane, and in this paper we study the
computational complexity of such problems.

In the straight-cut pizza sharing problem, we are given
2𝑛 two-dimensional masses in the plane, and we are asked
to find 𝑛 straight lines that simultaneously bisect all of the
masses. See Figure 1(𝑎) for an example. It has been shown
that this problem always has a solution: the first result on
the topic showed that solutions always exist when 𝑛 = 2
(Barba, Pilz, and Schnider 2019), and this was subsequently
extended to show existence for all 𝑛 (Hubard and Karasev
2020).

Another related problem is the square-cut pizza sharing.
In this problem, there are 𝑛 masses in the plane, and the
task is to simultaneously bisect all masses using cuts, but
the method of generating the cuts is different. Specifically,
we seek a square-cut, which consists of a single path that
is the union of horizontal and vertical line segments. See
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Figure 1: Partitions of the plane to 𝑅+ and 𝑅− (shaded and
non-shaded areas respectively). Subfigure (a): a straight-line
partition with four lines. Subfigure (b): a square-cut-path
with six turns. Observe that the path is not 𝑦-monotone. Sub-
figure (c): a 𝑦-monotone square-cut-path with four turns.

Figure 1(𝑏) and 1(𝑐) for two examples of square-cuts. Intu-
itively, we can imagine that a pizza cutter is placed on the
plane, and is then moved horizontally and vertically without
being lifted in order to produce the cut. Note that the path
is allowed to wrap around on the horizontal axis: if it exits
the left or right boundary, then it re-appears on the opposite
boundary. So the cut in Figure 1(𝑐) is still considered to be
a single square-cut.

It has been shown by (Karasev, Roldán-Pensado, and
Soberón 2016) that, given 𝑛 masses, there always exists
a square-cut-path (termed SC-path) which makes at most
𝑛 − 1 turns and simultaneously bisects all of the masses.
This holds even if the SC-path is required to be 𝑦-monotone,
meaning that the path never moves downwards.

Two-dimensional fair division is usually called land di-
vision in the literature. Land division is a prominent topic
of interest in the Economics and AI communities that stud-
ies ways of fairly allocating two-dimensional objects among
𝑛 agents (Chambers 2005; Segal-Halevi et al. 2017; Segal-
Halevi et al. 2020; Elkind, Segal-Halevi, and Suksompong
2021; Aumann and Dombb 2015; Iyer and Huhns 2009;
Husseinov 2011). The first popular appearance of such prob-
lems in a mathematical description was done by (Steinhaus
1948), and since then, the existence of allocations under var-
ious fairness criteria have been extensively studied, together
with algorithms that achieve them. These problems find ap-
plications from division of resources on land itself, to the
Law of the Sea (Simmons and Su 2003), to redistricting
(Landau, Reid, and Yershov 2009; Landau and Su 2014).
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Consensus halving is a problem that asks us to split a one-
dimensional resource into two parts such that 𝑛 agents have
equal value in both parts. Here, we study the same fairness
criterion for 𝑛 agents, but for a two-dimensional resource.
One can see that when we have the same fairness criterion
at hand for any 𝑘-dimensional resource, 𝑘 ≥ 2, we can
always translate the problem into its one-dimensional ver-
sion, by integrating each agent’s measure to a single dimen-
sion. Then a solution can be given by applying consensus
halving. However, the solutions we get by doing so, are not
taking into account the dimensionality of the problem, and
as a result they might produce very unnatural solutions to
a high-dimensional problem. For example, in land division,
applying consensus halving would produce two parts, each
of which can possibly be a union of ⌊𝑛/2⌋ disjoint stripes
of land. Can we get better solutions by exploiting all the di-
mensions of the problem?

In this work we investigate different cutting methods of
the two-dimensional objects, and in particular, two pizza
sharing methods for which a solution is guaranteed. While
based on intuition one might assume that exploiting the
two dimensions would allow the complexity of finding
a solution to be lower, our results show that this is not
the case. We present polynomial time reductions from the
one-dimensional problem to the two-dimensional problems
showing that the latter are at least as hard as the former,
i.e. PPA-hard. Apart from the hardness results themselves,
we believe that our reductions are interesting from another
aspect too. They show ways to efficiently turn a problem
into one of higher dimension, a task that has no standardised
methods to be achieved (even for non-efficient reductions),
and whose inverse is trivially achievable.

Due to space restrictions, we omit full proofs of our results
and illustratory figures that are provided in the full version
of the paper (Deligkas, Fearnley, and Melissourgos 2020).

Computational complexity of fair division problems.
There has been much interest recently in the computational
complexity of fair division problems. In particular, the com-
plexity class PPA has risen to prominence, because it appears
to naturally capture the complexity of solving these prob-
lems. For example, it has recently been shown by (Filos-
Ratsikas and Goldberg 2018, 2019) that the consensus halv-
ing problem, the ham sandwich problem, and the well-
known necklace splitting problem are all PPA-complete.

More generally, PPA captures all problems whose solu-
tion is verifiable in polynomial time and is guaranteed by
the Borsuk-Ulam theorem. Finding an approximate solu-
tion to a Borsuk-Ulam function, or finding an exact solu-
tion to a linear Borsuk-Ulam function are both known to
be PPA-complete problems (Papadimitriou 1994; Deligkas
et al. 2021). The existence of solutions to the ham sand-
wich problem, the necklace splitting problem, and indeed
the square-cut pizza sharing problem can all be proved via
the Borsuk-Ulam theorem1.

1It has also been shown that the Borsuk-Ulam theorem is equiv-
alent to the ham sandwich theorem which states that the volumes
of any 𝑛 compact sets in R𝑛 can always be simultaneously bisected
by an (𝑛− 1)-dimensional hyperplane (S. and Saha 2017).

Theorem 1 (Borsuk-Ulam). Let 𝑓 : 𝑆𝑑 ↦→ R𝑑 be a con-
tinuous function, where 𝑆𝑑 is a 𝑑-dimensional sphere. Then,
there exists an 𝑥 ∈ 𝑆𝑑 such that 𝑓(𝑥) = 𝑓(−𝑥).

The other class of relevance here is the class BU, which
consists of all problems that can be polynomial-time reduced
to finding an exact solution to a Borsuk-Ulam function. This
class was defined by (Deligkas et al. 2021) and is believed
to be substantially harder than the class PPA, because it is
possible to construct a Borsuk-Ulam function that only has
irrational solutions. Due to this, it is not currently expected
that BU will be contained in FNP, whereas the containment
of PPA in FNP is immediate. 2

Our contribution. We study the computational complex-
ity of the straight-cut and square-cut pizza sharing prob-
lems, and we specifically study the case where all masses
are unions of weighted polygons. We show that it is PPA-
hard to find approximate solutions of either problem. All of
our hardness results are summarized in Tables 1 and 2.

We also note that pizza sharing problems do not need
a circuit as part of the input, which makes them in some
sense more “natural” than problems that are specified by
circuits. Other known “natural” PPA-hard problems are
one-dimensional, such as consensus halving (Filos-Ratsikas
et al. 2020) and necklace splitting (Filos-Ratsikas and Gold-
berg 2019). Here we show the first known PPA-hardness re-
sult for a “natural” two-dimensional problem. 3

For the straight-cut problem, we show that it is PPA-hard
to find an 1/poly(𝑛)-approximate solution to the problem
and PPAD-hard to find a 𝑐-approximate solution for some
constant 𝑐. Both hardness results hold even when 𝑛 + 𝑛1−𝛿

lines are permitted, for constant 𝛿 > 0, and even when
each mass distribution is a union of polynomially-many non-
overlapping squares.

For the square-cut problem, we show that finding a square
cut with 𝑛 − 1 turns that 𝜀-approximately bisects 𝑛 mass
distributions is a PPA-complete problem. In fact, we show
three different hardness results for the approximate problem.

• Our main hardness result shows hardness for 𝜀 =
1/poly(𝑛), and we are able to show that it is PPA-hard
even to find an SC-path with 𝑛+𝑛1−𝛿 turns, where 𝛿 > 0
is a constant.

• By making adjustments to the result above, we are able to
extend the hardness to the case where all of the polygons
are axis-aligned unweighted non-overlapping squares.

• Finally, we are able to show a hardness result for constant
𝜀, but in this case the hardness is PPAD-hardness.

We remark that our reductions from consensus halving to
the pizza sharing problems are such that the additive error
in the solution quality is only weakened by at most an addi-
tional inverse polynomial. This is fact automatically implies
an improvement of the PPA-hardness for the pizza sharing

2For a recent improvement towards showing BU-hardness of ex-
act consensus halving see (Batziou, Hansen, and Høgh 2021).

3Shortly after the appearance of our result, (Schnider 2021)
proved that the discrete version of straight-cut pizza sharing where
each mass is represented by equal-weight points is PPA-complete.
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Hardness 𝜀 Lines Pieces Overlap Theorem
PPA 1

poly(𝑛) 𝑛+ 𝑛1−𝛿 poly(𝑛) 1 5
PPAD 𝑐 𝑛+ 𝑛1−𝛿 poly(𝑛) 1 6

Table 1: A summary of our hardness results for 𝜀-
STRAIGHT-PIZZA-SHARING. Here, 𝑐 and 𝛿 > 0 are ab-
solute constants. “Lines” refers to the number of lines we
allow. “Pieces” refers to the maximum number of distinct
polygons that define every mass distribution. “Overlap” de-
notes the number of different mass distributions that can
contain any point of [0, 1]2.

problems to 𝜀 < 1/5 due to a recent result on the hardness
of consensus halving (Deligkas et al. 2022).

We then turn our attention to the computational com-
plexity of finding an exact solution to the square-cut prob-
lem. We show that the problem of finding an SC-path with
at most 𝑛 − 1 turns that exactly bisects 𝑛 masses lies in
BU, and is FIXP-hard. This hardness result applies even if
all mass distributions are unions of weighted axis-aligned
squares and right-angled triangles. In order to prove this
result, we provide a simpler existence proof for a solution
to the square-cut pizza sharing problem that follows the
lines of the original proof by (Karasev, Roldán-Pensado, and
Soberón 2016).

Finally, we study the decision version of the square-cut
problem. While a solution to the problem is guaranteed to
exist for cuts that make 𝑛 − 1 turns, this is not the case if
only 𝑛−2 turns are allowed. We show that deciding whether
there exists an approximate solution that makes at most 𝑛−2
turns is NP-complete, and deciding whether there is an exact
solution that makes at most 𝑛− 2 turns is ETR-complete.

From a technical point of view, our containment results
are shown by directly reducing the square-cut pizza sharing
problem to the BORSUK-ULAM problem. Our hardness re-
sults are obtained by reducing from the consensus halving
problem, which was one of the first fair-division problems
shown to be PPA-complete by (Filos-Ratsikas and Goldberg
2018). We remark that, if in the future, consensus halving
is shown to be BU-complete under block and triangle valua-
tions for the agents, then our work implies that exact square-
cut pizza sharing is BU-complete.

Further related work. Since mass partitions lie in the in-
tersection of topology, discrete geometry, and computer sci-
ence there are several surveys on the topic; (Blagojević
et al. 2018; De Loera et al. 2019; Matoušek 2008; Živaljević
2017) focus on the topological point of view, while (Agar-
wal, Erickson et al. 1999; Edelsbrunner 2012; Kaneko and
Kano 2003; Kano and Urrutia 2020; Matousek 2013) fo-
cus on computational aspects. Consensus halving (Simmons
and Su 2003) is the mass partition problem that received
the majority of attention in Economics and Computation
so far (Deligkas, Filos-Ratsikas, and Hollender 2020; Filos-
Ratsikas et al. 2018; Filos-Ratsikas and Goldberg 2019;
Filos-Ratsikas et al. 2020, 2021).

Hardness 𝜀 Turns Pieces Overlap Theorem
PPA 1

poly(𝑛) 𝑛+ 𝑛1−𝛿 poly(𝑛) 𝑂(𝑛) 8
PPAD 𝑐 𝑛+ 𝑛1−𝛿 6 3 9
NP 1

poly(𝑛) 𝑛− 2 6 3 10

PPA 1
poly(𝑛) 𝑛+ 𝑛1−𝛿 poly(𝑛) 1 11

FIXP 0 𝑛− 1 6 3 13
ETR 0 𝑛− 2 6 3 14

Table 2: A summary of our hardness results for 𝜀-SC-
PIZZA-SHARING. Here, 𝑐 and 𝛿 > 0 are absolute con-
stants. “Turns” denotes the maximum number of turns the
path can have. “Pieces” refers to the maximum number of
distinct polygons that define every mass distribution. “Over-
lap” denotes the number of different mass distributions that
can contain any point of [0, 1]2.

Preliminaries
Mass distributions. A mass distribution 𝜇 on [0, 1]2 is a
measure on the plane such that all open subsets of [0, 1]2 are
measurable, 0 < 𝜇

(︀
[0, 1]2

)︀
< ∞, and 𝜇(𝑆) = 0 for ev-

ery subset of [0, 1]2 with dimension lower than 2. A mass
distribution 𝜇 is finite-separable, or simply separable, if it
can be decomposed into a finite set of non-overlapping areas
𝑎1, 𝑎2, . . . , 𝑎𝑑 such that 𝜇([0, 1]2) =

∑︀𝑑
𝑗=1 𝜇(𝑎𝑗). In addi-

tion, a separable mass distribution 𝜇 is piece-wise uniform,
if for every 𝑗 and every 𝑆 ⊆ 𝑎𝑗 it holds that 𝜇(𝑎𝑗 ∩ 𝑆) =
𝑐𝑗 · area(𝑎𝑗 ∩ 𝑆) for some 𝑐𝑗 > 0 independent of 𝑆. When
additionally 𝑐𝑗 = 1 for all 𝑗 ∈ [𝑑] then the mass distribution
is called uniform. Finally, a mass distribution is normalised
if 𝜇([0, 1]2) = 1. The support of mass distribution 𝑖, denoted
by 𝑠𝑢𝑝𝑝(𝑖), is the area 𝐴𝑖 ⊆ [0, 1]2 which has the property
that for every 𝑆 ⊆ 𝐴𝑖 with non-zero Lebesgue measure we
have 𝜇𝑖(𝑆) > 0. Let 𝑁 := {𝐼 ⊆ [𝑛] :

⋂︀
𝑖∈𝐼 𝑠𝑢𝑝𝑝(𝑖) ̸= ∅}.

A set of mass distributions 𝜇1, . . . , 𝜇𝑛 has overlap 𝑘 if
max𝐼∈𝑁 |𝐼| = 𝑘.

Mass distributions can be categorized according to their
shape as well. So, a separable mass distribution is a:
• 𝑑-polygon, if it can be decomposed into 𝑑 non-

overlapping polygons 𝑝1, 𝑝2, . . . , 𝑝𝑑;
• 𝑑-ℓ-square, if it can be decomposed into 𝑑 squares
𝑠1, 𝑠2, . . . , 𝑠𝑑 each of edge-length ℓ, when ℓ = 1 we say
that it is a unit-square.

Set of straight-cuts. A set of straight cuts (or lines) defines
subdivisions of the plane 𝑅. Figure 1(a) shows an example
of a set of straight-cuts. Each line creates two half-spaces,
and arbitrarily assigns number “0” to one and “1” to the
other. A subdivision of 𝑅 is labeled “+” (and belongs to 𝑅+)
if its parity is odd (according to the labels given to the half-
spaces) and “−” (and belongs to 𝑅−) otherwise. Observe
that by flipping the numbers of two half-spaces defined by a
line, we flip all the subdivisions’ labels. Thus, there are only
two possible labelings of the subdivisions.

Square-cut-path. A square-cut-path, denoted for brevity
SC-path, is a non-crossing directed path that is formed only
by horizontal and vertical line segments and in addition it
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is allowed to “wrap around” in the horizontal dimension.
Figure 1(b,c) shows two examples of SC-paths. A turn of
the path is where a horizontal segment meets with a vertical
segment. An SC-path is 𝑦-monotone if all of its horizontal
segments are monotone with respect to the 𝑦 axis. Any SC-
path partitions the plane into two regions, that we call 𝑅+

and 𝑅−.

Pizza sharing. A set of lines (resp. a SC path) 𝜀-bisects
a mass distribution 𝜇, if |𝜇(𝑅+) − 𝜇(𝑅−)| ≤ 𝜀. It si-
multaneously 𝜀-bisects a set of mass distributions 𝑀 if
|𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀 for every 𝜇𝑖 ∈ 𝑀 .

Definition 2. For any 𝑛 ≥ 1, the problem 𝜀-STRAIGHT-
PIZZA-SHARING is defined as follows:

• Input: 𝜀 ≥ 0 and mass distributions 𝜇1, 𝜇2, . . . , 𝜇2𝑛

on [0, 1]2.
• Output: A partition of [0, 1]2 to 𝑅+ and 𝑅− using at

most 𝑛 lines such that for each mass distribution 𝑖 it
holds that |𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀.

In particular, the mass distributions are weighted poly-
gons with holes.

Definition 3. For any 𝑛 ≥ 1, the problem 𝜀-SC-PIZZA-
SHARING is defined as follows:

• Input: 𝜀 ≥ 0 and mass distributions 𝜇1, 𝜇2, . . . , 𝜇𝑛

on [0, 1]2.
• Output: A partition of [0, 1]2 to 𝑅+ and 𝑅− using

a 𝑦-monotone SC-path with at most 𝑛 − 1 turns
such that for each mass distribution 𝑖 it holds that
|𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀.

In particular, the mass distributions are weighted poly-
gons with holes.

(Karasev, Roldán-Pensado, and Soberón 2016) proved
that 𝜀-SC-PIZZA-SHARING always admits a solution for ar-
bitrary continuous measures with respect to the Lebesgue
measure, and for any 𝜀 ≥ 0. In this work, we are interested
in the computational aspect of the problem, hence we need
to specify its input representation. For simplicity, we deal
with measures determined by sets of polygons with holes,
since even these simply-defined measures suffice to yield
PPA-hardness.

We also study the decision version of the problem, in
which we ask whether we can find a solution with 𝑘 turns,
where 𝑘 < 𝑛− 1.

Consensus halving. The hardness results that we will show
in this paper will be shown by a reduction from the consen-
sus halving problem.

In the 𝜀-CONSENSUS-HALVING problem, there is a set of
𝑛 agents with valuation functions 𝑣𝑖 over the interval [0, 1],
and the goal is to find a partition of the interval into subin-
tervals labelled either “+” or “−”, using at most 𝑛 cuts. This
partition should satisfy that for every agent 𝑖, the total value
for the union of subintervals ℐ+ labelled “+” and the total
value for the union of subintervals ℐ− labelled “−” is the

same up to 𝜀, i.e., |𝑣𝑖(ℐ+)− 𝑣𝑖(ℐ−)| ≤ 𝜀. We will consider
the following types for a valuation function 𝑣𝑖:

• 𝑘-block. 𝑣𝑖 can be decomposed into at most
𝑘 non-overlapping (but possibly adjacent) in-
tervals [𝑎ℓ𝑖1, 𝑎

𝑟
𝑖1], . . . , [𝑎

ℓ
𝑖𝑘, 𝑎

𝑟
𝑖𝑘] where interval

[𝑎ℓ𝑖𝑗 , 𝑎
𝑟
𝑖𝑗 ] has density 𝑐𝑖𝑗 and 0 otherwise. So,

𝑣𝑖([𝑎
ℓ
𝑖𝑗 , 𝑥]) = (𝑥− 𝑎ℓ𝑖𝑗) · 𝑐𝑖𝑗 for every 𝑥 ∈ [𝑎ℓ𝑖𝑗 , 𝑎

𝑟
𝑖𝑗 ] and

𝑣𝑖([0, 1]) =
∑︀

𝑗 𝑣𝑖([𝑎
ℓ
𝑖𝑗 , 𝑎

𝑟
𝑖𝑗 ]) = 1.

• 2-block uniform. 𝑣𝑖 is two-block and the density of every
interval is 𝑐𝑖.

• 𝑘-block-triangle. 𝑣𝑖 is the union of a 𝑘-block valu-
ation function and an extra interval [𝑎ℓ𝑖1, 𝑎

𝑟
𝑖1], where

𝑣𝑖([𝑎
ℓ
𝑖1, 𝑥]) = (𝑎ℓ𝑖1 − 𝑥)2 for every 𝑥 ∈ [𝑎ℓ𝑖1, 𝑎

𝑟
𝑖1] and

(𝑎ℓ𝑖1, 𝑎
𝑟
𝑖1) ∩ [𝑎ℓ𝑖𝑗 , 𝑎

𝑟
𝑖𝑗 ] = 0 for every 𝑗 ∈ [𝑘].

Complexity classes. 𝜀-SC-PIZZA-SHARING is an example
of a total problem, which is a problem that always has a
solution. The complexity class TFNP (Total Function
NP) defined by (Megiddo and Papadimitriou 1991), contains
all total problems whose solutions can be verified in polyno-
mial time.

There are several well-known subclasses of TFNP that we
will use in this paper. The class PPA, defined by (Papadim-
itriou 1994), captures problems whose totality is guaranteed
by the parity argument on undirected graphs. The complex-
ity class PPAD ⊆ PPA is the subclass of PPA containing all
problems whose totality is guaranteed by the parity argu-
ment on directed graphs. We will show hardness and com-
pleteness results for these classes by reducing from the con-
sensus halving problem, which is discussed below.

The complexity class ETR consists of all decision prob-
lems that can be formulated in the existential theory of the
reals (Matoušek 2014; Schaefer 2009). It is known that
NP ⊆ ETR ⊆ PSPACE (Canny 1988), and it is generally be-
lieved that ETR is distinct from the other two classes. The
class FETR (Function ETR) consists of all search problems
whose decision version is in ETR.

Hardness Results for PIZZA-SHARING

Here we show all hardness results regarding the exact and
approximate versions of our pizza sharing problems. We
first provide sketches of the hardness reductions for 𝜀-
STRAIGHT-PIZZA-SHARING, and consequently, for 𝜀-SC-
PIZZA-SHARING and exact SC-PIZZA-SHARING.

Hardness of 𝜀-STRAIGHT-PIZZA-SHARING

In this section we sketch the proof of the PPA-hardness for
𝜀-STRAIGHT-PIZZA-SHARING when 𝜀 = 1

poly(𝑛) . We prove
our result via a reduction from 𝜀-CONSENSUS-HALVING
with 2-block uniform valuations. In addition, we explain
how to modify our reduction so we can get PPAD-hardness
for 𝜀-STRAIGHT-PIZZA-SHARING for a constant 𝜀 > 0.

Reduction. We reduce from CONSENSUS-HALVING,
where for every agent we create a mass. Firstly, we finely
discretize the [0, 1] interval into blocks and we place the
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blocks on 𝑦 = 𝑥2, where 𝑥 ≥ 0. This guarantees that ev-
ery line can cut this “bended” interval at most twice and in
addition the part of each mass that is in 𝑅+ is almost the
same as value of the corresponding agent for the piece of
[0, 1] labelled with “+′′. Next we show how to construct an
instance 𝐼𝑃 of (𝜀−𝜀′)-STRAIGHT-PIZZA-SHARING, for any
𝜀′ = 1

poly(𝑛) < 𝜀, given an instance 𝐼𝐶𝐻 of 𝜀-CONSENSUS-
HALVING with 2𝑛 agents with 2-block uniform valuations.

Let 𝑐max := max𝑖∈[2𝑛] 𝑐𝑖, where 𝑐𝑖 is the value den-
sity of agent 𝑖 ∈ [2𝑛] in 𝐼𝐶𝐻 . In what follows, it will
help us to think of the interval [0, 1] in 𝐼𝐶𝐻 as being dis-
cretized in increments of some 𝑑 ≤ 1

4·𝑛2·𝑐max
. For every

agent 𝑖 ∈ [2𝑛] the starting or finishing position of the two
blocks of positive density in the valuation function of each,
namely numbers {𝑎ℓ𝑖1, 𝑎𝑟𝑖1, 𝑎ℓ𝑖2, 𝑎𝑟𝑖2} are rational since they
are part of the problem’s input. We refer to the subinter-
val [(𝑗 − 1) · 𝑑, 𝑗 · 𝑑] as the 𝑗-th 𝑑-block of interval [0, 1] in
𝐼𝐶𝐻 .

We now describe the instance 𝐼𝑃 . For ease of presentation

the space of the instance is inflated to
[︁
0,
(︀

6
𝑑2

)︀2
+ 1

]︁2
, but

by scaling the construction down, the results are attained.
We consider two kinds of square tiles; 1/𝑑 large tiles of size
1× 1, each of which contains 2𝑛 smaller square tiles of size
1
2𝑛 × 1

2𝑛 on its diagonal. We will call the former type big-tile
and denote it by 𝑡𝑗 and the latter one small-tile and denote it
by 𝑡𝑖,𝑗 for some 𝑖 ∈ [2𝑛], 𝑗 ∈ [1/𝑑].

The centers of consecutive big-tiles are positioned with
6
𝑑2 distance apart in the 𝑥-axis. For 𝑗 ∈ [1/𝑑] we define
𝑠𝑗 =

6
𝑑2 ·𝑗. For every agent 𝑖 ∈ [2𝑛] we will create a uniform

mass distribution 𝜇𝑖 that consists of at most 1/𝑑 many axis-
aligned small-tiles. Each big-tile 𝑡𝑗 is centered at

(︀
𝑠𝑗 , 𝑠

2
𝑗

)︀
while, in it, each small-tile 𝑡𝑖𝑗 belonging to mass distribution
𝜇𝑖 has its bottom left corner at

(︀
𝑠𝑗 +

𝑖−1
2𝑛 , 𝑠2𝑗 +

𝑖−1
2𝑛

)︀
. Each

small-tile 𝑡𝑖𝑗 contains a rectangle mass (that belongs to 𝜇𝑖)
of size 1

2𝑛 × (𝑑 · 2𝑛 · 𝑐𝑖 · 𝑇𝑖𝑗), where 𝑇𝑖𝑗 = 0 if the density
is zero in the 𝑗-th 𝑑-block of agent 𝑖 in 𝐼𝐶𝐻 , and 𝑇𝑖𝑗 = 1
otherwise.

Lemma 4. Let ℒ = {ℓ1, . . . , ℓ𝑛+𝑛1−𝛿} be a set of lines.
If ℒ is a solution for (𝜀 − 𝜀′)-STRAIGHT-PIZZA-SHARING
instance 𝐼𝑃 for some 𝜀′ ∈ [ 1

𝑛𝑟 , 𝜀), where 𝑟 ≥ 1, then we
can find in polynomial time a solution for 𝜀-CONSENSUS-
HALVING instance 𝐼𝐶𝐻 with 2(𝑛+ 𝑛1−𝛿) cuts for any con-
stant 𝛿 > 0.

Theorem 5. 𝜀-STRAIGHT-PIZZA-SHARING is PPA-hard
for 𝜀 = 1

poly(𝑛) even when 𝑛 + 𝑛1−𝛿 lines are allowed for
any given constant 𝛿 > 0, every mass distribution is uniform
over polynomially many squares, and there is no overlap be-
tween any two mass distributions.

In addition to the result above, we can derive PPAD
hardness if we reduce from the instances of CONSENSUS-
HALVING from (Filos-Ratsikas et al. 2018) for constant 𝜀.
The construction and the proof follow exactly the same lines
as the one above. The only difference is that this time the
square associated to mass 𝜇𝑖 in tile 𝑡𝑗 will be weighted by
the density of the value of the agent for the 𝑗th 𝑑-block.
Then, the proof of correctness of the following theorem is

verbatim as the proof of Lemma 4.
Theorem 6. 𝜀-STRAIGHT-PIZZA-SHARING is PPAD-hard
for a constant 𝜀 > 0 even when every mass distribution
is piece-wise uniform over polynomially many squares and
there is no overlap between any two mass distributions.

Hardness of Approximate SC-PIZZA-SHARING
In this section we prove several hardness results for 𝜀-SC-
PIZZA-SHARING. We give two different reductions that al-
low us to prove a variety of results. The first one, which
we call the “overlapping” reduction, is conceptually sim-
pler, and it reduces from 𝜀-CONSENSUS-HALVING with
𝑘-block valuations. It produces SC-PIZZA-SHARING in-
stances where every mass distribution is a union of piece-
wise uniform unit-squares. We use this to prove PPA-
hardness, PPAD-hardness, and NP-hardness for the problem
when we have overlapping mass distributions.

The second reduction, which we call the “checker-
board” reduction is more technical and reduces from 𝜀-
CONSENSUS-HALVING with 2-block uniform valuations. It
allows us to prove PPA-hardness even when every mass dis-
tribution is 𝑑𝑖-ℓ𝑖-unit-square uniform. While the overlapping
reduction produces mass distributions that can overlap each
other, the checkerboard reduction produces an instance in
which the mass distributions do not touch each other.

Since both reductions are from 𝜀-CONSENSUS-HALVING
with block valuations, we will begin by introducing some
notation. For both reductions, we will reduce from an in-
stance 𝐼𝐶𝐻 of 𝜀-CONSENSUS-HALVING with k-block valu-
ations for the agents. Thus, the valuation function of agent 𝑖
is defined by the subintervals [𝑎ℓ𝑖𝑗 , 𝑎

𝑟
𝑖𝑗 ] for 𝑗 ∈ [𝑘].

The first step of both reductions is to partition [0, 1] to
subintervals that are defined by points of interest. We say
that a point 𝑥 ∈ [0, 1] is a point of interest if it coincides with
the beginning or the end of a valuation block of an agent;
formally, 𝑥 is a point of interest if 𝑥 ∈ {𝑎ℓ𝑖𝑗 , 𝑎𝑟𝑖𝑗} for some
𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘]. These points conceptually split [0, 1]
into blocks, since in between any pair of consecutive points
of interest, all agents have a non-changing valuation. Let 0 ≤
𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑚 ≤ 1 denote the points of interest
and [𝑥𝑗 , 𝑥𝑗+1] denote the intervals of interest. Observe that
𝑚 ≤ 2 · 𝑛 · 𝑘. Also, observe that for every 𝑗, 𝑥𝑗+1 − 𝑥𝑗 is
polynomially bounded with respect to the input size.

Overview of the overlapping reduction. The key idea be-
hind the reduction is to encode any CONSENSUS-HALVING
instance where agents have 𝑘-block uniform valuations as
a sequence of diagonal squares in the SC-PIZZA-SHARING
instance.

The instance consists of a sequence of squares, which
are lined up diagonally, and each square corresponds to the
corresponding block from the CONSENSUS-HALVING in-
stance. Square 𝑠1 corresponds to the region between 𝑥1 and
𝑥2, square 𝑠2 corresponds to the region between 𝑥2 and 𝑥3,
and so on. The weight of each square for each agent equals
the block of interest’s length times the valuation density of
the agent in the CONSENSUS-HALVING instance.

The key observation is that if an SC-path cuts two distinct
squares, then it must make at least one turn in between due to
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the diagonal arrangement of the squares. This will allow us
to transform an SC-path with 𝑛− 1 turns into a sequence of
𝑛 cuts for the CONSENSUS-HALVING instance: every time
the path passes through a square, we transform it into a cut in
the corresponding block in the CONSENSUS-HALVING in-
stance. The weighting of the squares ensures that, if the SC-
path cuts each of the mass distributions in half, then the cuts
will be a solution to the CONSENSUS-HALVING instance.

The construction. We are ready to formally define the re-
duction. Starting from an instance 𝐼𝐶𝐻 of CONSENSUS-
HALVING, we will construct an 𝜀-SC-PIZZA-SHARING in-
stance 𝐼SC.

For every agent 𝑖 we will create a mass distribution
𝜇𝑖. We will create 𝑚 − 1 unit-squares 𝑠1, 𝑠2, . . . , 𝑠𝑚−1

which will be the locations where the mass distributions are
placed. Unit-square 𝑠𝑗 is defined by the points (𝑗, 𝑗), (𝑗 +
1, 𝑗), (𝑗, 𝑗 + 1), and (𝑗 + 1, 𝑗 + 1), meaning that squares 𝑠𝑗
and 𝑠𝑗+1 are diagonally adjacent.

If agent 𝑖 has positive value 𝑐𝑖𝑗 over the interval of interest
[𝑥𝑗 , 𝑥𝑗+1], then mass distribution 𝜇𝑖 has density 𝑐𝑖𝑗 ·(𝑥𝑗+1−
𝑥𝑗) over the 𝑗-th unit-square. This means that for any mass
distribution that appears in square 𝑠𝑗 and any area 𝑆 ⊆ 𝑠𝑗 of
size |𝑆|, we have 𝜇𝑖(𝑆) = |𝑆| · 𝑐𝑖𝑗 · (𝑥𝑗+1 − 𝑥𝑗).

Observe that by the way the instance 𝐼SC is constructed,
any SC-path with 𝑘 turns can traverse at most 𝑘+1 squares.
We must now show how the SC-path can be mapped to a
solution for 𝐼𝐶𝐻 .

Let us now translate an SC-path into a sequence of cuts
for 𝐼𝐶𝐻 . If the SC-path passes through a square without
turning then this line segment is mapped back to a single
cut in 𝐼𝐶𝐻 that cuts the same proportion of mass from the
block. If the SC-path turns inside a square 𝑠𝑗 , then we must
be more careful. If the path turns inside 𝑠𝑗 , and the square
right before and the squares right before and after 𝑠𝑗 are both
on the same side of the cut, then we cannot use a single cut
in 𝐼𝐶𝐻 , and instead we have to use two cuts. This is not a
problem, because the extra turn inside the square means that
we can afford to use an extra cut inside the corresponding
block in 𝐼𝐶𝐻 .

Even if the path passes through the square multiple times,
we never need to use more than two cuts in 𝐼𝐶𝐻 . In general,
if the lower left corner of the square and the upper right cor-
ner of the square are on the same side of the SC-path, then
we use two cuts in 𝐼𝐶𝐻 . Formally, the translation between
SC-paths and cuts in 𝐼𝐶𝐻 is given in the following lemma.

Lemma 7. Every solution of the 𝜀-SC-PIZZA-SHARING in-
stance 𝐼SC with an SC-path with 𝑘 turns corresponds to a
solution of the 𝜀-CONSENSUS-HALVING instance 𝐼𝐶𝐻 with
𝑘 + 1 cuts.

Hardness results. So far we have reduced CONSENSUS-
HALVING to 𝜀-SC-PIZZA-SHARING, but the hardness re-
sult that we obtain depends on the instance of CONSENSUS-
HALVING that we start with. We will show that, by varying
this instance, we can obtain a variety of hardness results.

We begin by showing PPA-hardness. By combining the
PPA-hardness result of (Filos-Ratsikas et al. 2020) with
Lemma 7 we get the following.

Theorem 8. 𝜀-SC-PIZZA-SHARING is PPA-hard for 𝜀 =
1/poly(𝑛), even when an SC-path with 𝑛+𝑛1−𝛿 turns is al-
lowed for some constant 𝛿 > 0, and every mass distribution
is piece-wise uniform over polynomially many unit-squares.

Next we show PPAD-hardness. In (Filos-Ratsikas et al. 2018)
it was proven that 𝜀-CONSENSUS-HALVING is PPAD-hard
for a constant 𝜀, 6-block valuation functions, and even when
we are allowed to use 𝑛 + 𝑘 cuts, for some constant 𝑘. In
addition, every agent has positive value for at most six inter-
vals of interest and for every interval of interest at most three
agents have positive value. By combining the PPAD-hardness
result of the aforementioned paper with Lemma 7 we get the
following.

Theorem 9. 𝜀-SC-PIZZA-SHARING is PPAD-hard for some
absolute constant 𝜀, even when an SC-path with 𝑛 + 𝑛1−𝛿

turns is allowed, for some constant 𝛿 > 0, every mass dis-
tribution is piece-wise uniform over six unit-squares, and at
any point of the plane at most three mass-distributions over-
lap.

Finally, Lemma 7 is general enough to imply yet another
result when combined with the NP-hardness result of the
aforementioned paper.

Theorem 10. It is NP-hard to decide if an 𝜀-SC-PIZZA-
SHARING instance admits a solution with an SC-path with
𝑛− 2 turns, even when every mass distribution is piece-wise
uniform over six unit-squares, and at any point of the plane
at most three mass-distributions overlap.

The checkerboard reduction. Finally, we show that the
problem remains PPA-hard even for unweighted non-
overlapping squares. More formally, this means that the 𝑖-th
mass distribution consists of 𝑑𝑖 squares of size ℓ𝑖 × ℓ𝑖 each
and 𝜇𝑖 is uniformly distributed over the 𝑑𝑖 squares. In addi-
tion, there is no overlap between the mass distributions.

To do this, we use the same ideas as the overlapping re-
duction, but rather than producing overlapping squares, we
create blocks that are filled with a checkerboard pattern to
ensure that none of the mass distributions overlap. Now each
block is filled by a tiling that contains squares from the mass
distributions that appear in the corresponding interval of in-
terest. This ensures that no two mass distributions overlap.

The size of the squares associated with a specific mass
distribution that appear in a tile are in proportion to the
agent’s valuations in the CONSENSUS-HALVING instance.
However, we show that with a sufficiently dense tiling, the
difference in proportions is bounded, and so we can still re-
cover an 𝜀-solution for CONSENSUS-HALVING from an 𝜀′-
solution for SC-PIZZA-SHARING.

Theorem 11. 𝜀-SC-PIZZA-SHARING is PPA-hard even
when 𝜀 is inverse-polynomial with respect to 𝑛, one is al-
lowed to use 𝑛+ 𝑛1−𝛿 turns for some constant 𝛿 > 0, every
mass distribution 𝜇𝑖 is uniform 𝑑-ℓ𝑖-square with 𝑑 = 𝑂(𝑛),
and there is no overlap between any two mass distributions.

Hardness of Exact SC-PIZZA-SHARING

In this section we show hardness results for exact
SC-PIZZA-SHARING. We prove that solving SC-PIZZA-
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SHARING is FIXP-hard and that deciding whether there ex-
ists a solution for SC-PIZZA-SHARING with fewer than
𝑛−1 turns is ETR-hard. We prove these results using a reduc-
tion from the exact version of CONSENSUS-HALVING. This
time however we will use the instances of CONSENSUS-
HALVING produced in (Deligkas et al. 2021), which we will
denote by 𝐼DFMS

𝐶𝐻 . We note that here the input consists of sets
of points, i.e., we describe polygons by chains of vertices.
In (Deligkas et al. 2021) the FIXP-hard family of instances
we reduce from had as input 𝑛 arithmetic circuits captur-
ing the cumulative valuation of 𝑛 agents on [0, 1], which
were piece-wise polynomials of maximum degree 2. How-
ever, since their (density) valuation functions consist of only
rectangles and triangles, the input can also be sets of points
that define the aforementioned shapes. So, there is no need
for extra translation of the input of CONSENSUS-HALVING
to that of SC-PIZZA-SHARING.

FIXP-hardness. Here we show that finding an exact solu-
tion to SC-PIZZA-SHARING is FIXP-hard. The key differ-
ence between this reduction and the previous reductions on
the approximate versions is that the instance 𝐼DFMS

𝐶𝐻 contains
triangular shaped valuations for agents. More specifically,
all of the following hold:

1. the valuation function of every agent is 4-block-triangle,
or 6-block;

2. every triangle has height 2 and belongs to exactly one
interval of interest of the form [𝑎, 𝑎+ 1];

3. for every agent 𝑖 ∈ [𝑛] there exists an interval [𝑎, 𝑏] that
contains more than half of their total valuation and in ad-
dition for every 𝑖 ̸= 𝑖′ we have (𝑎, 𝑏) ∩ (𝑎′, 𝑏′) = ∅.

We will follow the same approach as in the overlapping re-
duction. Namely, every interval of interest will correspond to
a unit-square located on the diagonal of the instance. Block-
shaped valuations will be translated as before. For the trian-
gular valuations, Point 2 guarantees that no triangle is split
over two different intervals of interest. Hence, we can create
an axis-aligned triangle inside the unit-square. Formally, if
there exists a triangle in the interval of interest [𝑥𝑗 , 𝑥𝑗+1],
then we create a triangle with vertices (𝑗, 𝑗 + 1), (𝑗 + 1, 𝑗),
(𝑗 + 1, 𝑗 + 1) with density 1; this is because all triangles in
the CONSENSUS-HALVING instance have the same value.

One complication is that, if the SC-path turns inside a
square, then it may not be possible to map this back to cuts
in the SC-PIZZA-SHARING instance. One example of this
would be when the path cuts a portion of the square with-
out cutting the triangle at all. Fortunately, we are able to
use point 3 above to show that all exact solutions to the
SC-PIZZA-SHARING instance must pass through 𝑛 distinct
squares. Therefore, if a SC-path “wastes” a turn by turning
inside a square, then it can pass through at most 𝑛 − 1 dis-
tinct squares, and so it cannot be an exact solution to the
SC-PIZZA-SHARING instance.

Hence we can restrict ourselves to SC-paths that do
not turn inside a square. The mapping from SC-paths to
CONSENSUS-HALVING cuts is the same as the overlap-
ping reduction. Here, in particular, we rely on the fact that
if the SC-path does not turn inside a square, then it must

pass through the triangular mass either horizontally or ver-
tically, and so we can map this back to a single cut in the
CONSENSUS-HALVING instance.
Lemma 12. Any SC-path that is a solution for the pro-
duced SC-PIZZA-SHARING instance, does not turn inside
any unit-square.

Combining Lemma 12 and the FIXP-hardness proven for
𝐼DFMS
𝐶𝐻 in (Deligkas et al. 2021) gives us the following result.

Theorem 13. SC-PIZZA-SHARING is FIXP-hard even
when every mass distribution consists of at most six pieces
that can be unit-squares or right-angled triangles, and they
have overlap 3.

ETR-hardness. We can also show that deciding whether
there is an exact SC-PIZZA-SHARING solution with 𝑛 − 2
turns exists is ETR-hard. To show this, we will use a result
of (Deligkas et al. 2021), where it was shown that deciding
whether there exists an exact CONSENSUS-HALVING solu-
tion with 𝑛 agents and 𝑛− 1 cuts is ETR-hard. We give a re-
duction from this version of CONSENSUS-HALVING to the
decision problem for SC-PIZZA-SHARING. The reduction
uses the same ideas that we presented for the BU-hardness
reduction.
Theorem 14. It is ETR-hard to decide if an exact SC-
PIZZA-SHARING instance admits a solution with a SC-path
with 𝑛− 2 turns.

Containment Results
In this section we present containment results for the exact
and approximate versions of SC-PIZZA-SHARING that we
study in this paper. All of our containment results revolve
around a proof that solutions exist for SC-PIZZA-SHARING
which utilizes the Borsuk-Ulam theorem. A proof of this
kind was already presented in (Karasev, Roldán-Pensado,
and Soberón 2016), but we present our own proof which is
conceptually simpler, as it does not use any involved topo-
logical techniques. An advantage of our proof is that it can
be made algorithmic, and so it can be used to show that SC-
PIZZA-SHARING is contained in BU. Then, by making sim-
ple modifications to the BU containment proof, we show the
other containment results hold.
Theorem 15. Exact SC-PIZZA-SHARING for weighted
polygons with holes is in BU.
Theorem 16. Deciding whether there exists an SC-path
with 𝑘 turns that is an exact solution for SC-PIZZA-
SHARING with 𝑛 mass distributions is in ETR.
Theorem 17. 𝜀-SC-PIZZA-SHARING for weighted poly-
gons with holes is in PPA.
Theorem 18. Deciding whether there exists an SC-path
with 𝑘 turns that is a solution for 𝜀-SC-PIZZA-SHARING
with 𝑛 mass distributions is in NP.

Open Problems
One of the most interesting open problems is to settle the
complexity of the more general pizza sharing problems
where, instead of two, we ask to fairly split the plane into
𝑑 ≥ 3 equal parts.
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Matoušek, J. 2008. Using the Borsuk-Ulam theorem: lec-
tures on topological methods in combinatorics and geome-
try. Springer Science & Business Media.
Megiddo, N.; and Papadimitriou, C. H. 1991. On total
functions, existence theorems and computational complex-
ity. Theoretical Computer Science, 81(2): 317–324.
Papadimitriou, C. H. 1994. On the complexity of the parity
argument and other inefficient proofs of existence. Journal
of Computer and System Sciences, 48(3): 498–532.
Roldán-Pensado, E.; and Soberón, P. 2020. A Survey of
mass partitions. CoRR, abs/2010.00478.
S., K. C.; and Saha, A. 2017. Ham sandwich is equiva-
lent to Borsuk-Ulam. In Aronov, B.; and Katz, M. J., eds.,
33rd International Symposium on Computational Geometry
(SoCG 2017), volume 77 of Leibniz International Proceed-
ings in Informatics (LIPIcs), 24:1–24:15. Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-038-5.
Schaefer, M. 2009. Complexity of some geometric and topo-
logical problems. In International Symposium on Graph
Drawing, 334–344. Springer.
Schnider, P. 2021. The Complexity of Sharing a Pizza. In
Ahn, H.; and Sadakane, K., eds., 32nd International Sympo-
sium on Algorithms and Computation, ISAAC, volume 212
of LIPIcs, 13:1–13:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.
Segal-Halevi, E.; Nitzan, S.; Hassidim, A.; and Aumann,
Y. 2017. Fair and square: Cake-cutting in two dimensions.
Journal of Mathematical Economics, 70: 1–28.
Segal-Halevi, E.; Nitzan, S.; Hassidim, A.; and Aumann, Y.
2020. Envy-Free Division of Land. Math. Oper. Res., 45(3):
896–922.
Simmons, F. W.; and Su, F. E. 2003. Consensus-halving via
theorems of Borsuk-Ulam and Tucker. Mathematical social
sciences, 45(1): 15–25.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica, 16: 101–104.
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