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Abstract

We revisit the setting of fairly allocating indivisible items
when agents have different weights representing their enti-
tlements. First, we propose a parameterized family of relax-
ations for weighted envy-freeness and the same for weighted
proportionality; the parameters indicate whether smaller-
weight or larger-weight agents should be given a higher pri-
ority. We show that each notion in these families can always
be satisfied, but any two cannot necessarily be fulfilled si-
multaneously. We then introduce an intuitive weighted gen-
eralization of maximin share fairness and establish the opti-
mal approximation of it that can be guaranteed. Furthermore,
we characterize the implication relations between the various
weighted fairness notions introduced in this and prior work,
and relate them to the lower and upper quota axioms from
apportionment.

1 Introduction
Research in fair division is quickly moving from the realm
of theory to practical applications, ranging from the division
of various assets between individuals (Goldman and Procac-
cia 2014) to the distribution of food to charities (Aleksan-
drov et al. 2015) and medical equipment among communi-
ties (Pathak et al. 2021). Two complicating factors in such
applications are that items may be indivisible, and recipients
may have different entitlements. For example, when dividing
food packs or medical supplies among organizations or dis-
tricts, it is reasonable to give larger shares to recipients that
represent more individuals. This raises the need to define ap-
propriate fairness notions taking these factors into account.

With divisible resources and equal entitlements, two
well-established fairness benchmarks are envy-freeness—no
agent prefers the bundle of another agent, and proportion-
ality—every agent receives at least 1/n of her value for the
set of all resources, where n denotes the number of agents.
When the resources consist of indivisible items, neither of
these benchmarks can always be met, for example if one
item is extremely valuable in the eyes of all agents. This has
motivated various relaxations, which can be broadly classi-
fied into two approaches. The first approach allows adding or
removing a single item before applying the fairness notion.
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In particular, envy-freeness up to one item (EF1) requires
that if an agent envies another agent, the envy should disap-
pear upon removing one item from the envied agent’s bundle
(Lipton et al. 2004; Budish 2011). Proportionality up to one
item (PROP1) demands that if an agent falls short of the pro-
portionality benchmark, this should be rectified after adding
one item to her bundle (Conitzer, Freeman, and Shah 2017).
The second approach modifies the fairness threshold itself:
instead of 1/n of the total value, the threshold becomes the
maximin share (MMS), which is the maximum value that
an agent can ensure herself by partitioning the items into n
parts and receiving the worst part (Budish 2011). The exis-
tence guarantees with respect to these relaxations are quite
well-understood by now—an allocation satisfying EF1 and
PROP1 always exists, and even though the same is not true
for MMS fairness, there is always an allocation that gives
every agent a constant fraction of her MMS (Ghodsi et al.
2018; Kurokawa, Procaccia, and Wang 2018; Garg and Taki
2021).

Recently, there have been several attempts to extend these
approximate notions to agents with different entitlements.
However, the resulting notions have been shown to exhibit
a number of unintuitive and perhaps unsatisfactory features.
In the “fairness up to one item” approach, EF1 has been gen-
eralized to weighted EF1 (WEF1) (Chakraborty et al. 2020)
and PROP1 to weighted PROP1 (WPROP1) (Aziz, Moulin,
and Sandomirskiy 2020). Yet, even though (weighted) envy-
freeness implies (weighted) proportionality and EF1 implies
PROP1, Chakraborty et al. (2020) have shown that, coun-
terintuitively, WEF1 does not imply WPROP1. Moreover,
while it is always possible to satisfy each of the two no-
tions separately, these authors have demonstrated that it may
be impossible to satisfy both simultaneously. In the “share-
based” approach, MMS has been generalized to weighted
MMS (WMMS) (Farhadi et al. 2019). A disadvantage of
WMMS is that computing its value for an agent requires
knowing not only the agent’s own entitlement, but also the
entitlements of all other agents. In addition, the definition
of WMMS is rather difficult to understand and explain (es-
pecially when compared to MMS), thereby making it less
likely to be adopted in practice.

In this paper, we expand and deepen our understanding
of weighted fair division for indivisible items by general-
izing existing weighted fairness notions, introducing new

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4949



ones, and exploring the relationships between them. Along
the way, we propose solutions to the aforementioned issues
of existing notions, and uncover a wide range of features of
the weighted setting that are not present in the unweighted
case typically studied in the fair division literature.1

1.1 Our Contributions
As is commonly done in fair division, we assume throughout
the paper that agents have additive utilities. In Section 3, we
focus on fairness up to one item. The role of envy-freeness
relaxations is to provide an upper bound on the amount of
envy that is allowed between agents. In the unweighted set-
ting, EF1 from agent i towards agent j requires that i’s
envy is at most i’s highest utility for an item in j’s bundle.
Formally, denoting i’s utility function by ui and j’s bun-
dle by Aj , the envy should be at most maxg∈Aj

ui(g). In
the weighted setting, however, envy is measured by compar-
ing the scaled utilities ui(Ai)/wi and ui(Aj)/wj . There-
fore, one could reasonably argue that the amount of allowed
envy should be similarly scaled to be either ui(g)/wi or
ui(g)/wj ; the first scaling corresponds to (hypothetically)
adding the value of g to Ai while the second scaling cor-
responds to removing the value of g from Aj . Clearly, the
first scaling yields a smaller envy-allowance if and only if
wi > wj , so it favors agents with larger weights, while
the second scaling favors those with smaller weights. We
generalize both extremes at once by defining the allowed
envy to be a weighted average of the two quantities, i.e.,
ui(g) · (x/wj + y/wi) for x + y = 1. We denote this
envy-freeness relaxation by WEF(x, y). Similarly, we define
WPROP(x, y) as a relaxation of proportionality.

For a fixed x + y, a higher x yields a stronger
guarantee (e.g., low envy-allowance) for lower-entitlement
agents, while a lower x yields a stronger guarantee for
higher-entitlement agents. We show that WEF(x, y) implies
WPROP(x, y) for all x, y. WEF1 corresponds to WEF(1, 0)
while WPROP1 corresponds to WPROP(0, 1); this provides
an explanation as well as a resolution of the counterintu-
itive fact that WEF1 is incompatible with WPROP1. With
equal entitlements, WEF(x, 1− x) is equivalent to EF1 and
WPROP(x, 1− x) is equivalent to PROP1 for all x ∈ [0, 1].
But with different entitlements, the conditions obtained for
different values of x are different and incompatible. For each
x ∈ [0, 1], WEF(x, 1−x), and therefore WPROP(x, 1−x),
can always be satisfied. On the other hand, for any distinct
x, x′ ∈ [0, 1], an allocation that fulfills both WPROP(x, 1−
x) and WPROP(x′, 1− x′) may not exist, and an analogous
impossibility result holds for WEF relaxations.

In Section 4, we explore share-based fairness notions.
We propose a new weighted generalization of MMS called
normalized MMS (NMMS), which is simply the MMS of
an agent scaled by the agent’s weight. Not only is NMMS
intuitive, but its definition also depends only on the rela-
tive entitlement of the agent in question (that is, the enti-

1For an overview of previous work on weighted fair division of
indivisible items, we refer to the related work sections of (Babaioff,
Ezra, and Feige 2021) and (Chakraborty, Schmidt-Kraepelin, and
Suksompong 2021).

tlement of the agent divided by the sum of entitlements),
rather than on the entire vector of entitlements. We show
that the best approximation factor that can always be at-
tained for NMMS is 1/n, matching the WMMS guaran-
tee of Farhadi et al. (2019). As with WMMS, the 1/n-
NMMS guarantee can be achieved using the (unweighted)
round-robin algorithm, with the agents taking turns in de-
creasing order of their weights. Interestingly, however, we
show that WEF1 also implies 1/n-NMMS—this means that
a weighted round-robin algorithm as well as a generaliza-
tion of Barman, Krisnamurthy, and Vaish (2018)’s market-
based algorithm, which are known to ensure WEF1, also
provide the worst-case optimal approximation of NMMS. In
addition, we establish relations between several fairness no-
tions, thereby extending the work of Amanatidis, Birmpas,
and Markakis (2018) to the weighted setting.

In Section 5, we consider the case of identical items, also
known as apportionment (Balinski and Young 2001). In this
case, if the items were divisible, it would be clear that each
agent should receive exactly the quota proportional to her
weight. Hence, two important desiderata in apportionment
are that each agent should obtain at least her lower quota
(the quota rounded down), and at most her upper quota (the
quota rounded up). We show that WEF(x, 1−x) guarantees
lower quota if and only if x = 0 and upper quota if and only
if x = 1, whereas WMMS, NMMS, and WPROP(x, 1− x)
for any x ∈ [0, 1] do not guarantee either quota. Similarly,
the maximum weighted Nash welfare rule does not always
respect either quota. Nevertheless, we introduce a new allo-
cation rule, called weighted egalitarian (WEG), which aims
to maximize the leximin vector of the agents’ utilities, with
a carefully chosen normalization. We show that, in contrast
to all other rules and notions studied herein, the WEG rule
satisfies both quotas. This indicates that the egalitarian ap-
proach may be worthy of further study in settings with dif-
ferent entitlements.

2 Preliminaries
We consider a setting with a set N = [n] of agents and a set
M = [m] of items, where n ≥ 2 and [k] := {1, 2, . . . , k} for
each positive integer k. A subset of items is called a bundle.
The entitlement or weight of each agent i ∈ N is denoted
by wi > 0. For any subset of agents N ′ ⊆ N , we denote
wN ′ :=

∑
i∈N ′ wi. An allocation A = (A1, A2, . . . , An)

is a partition of M into m bundles such that bundle Ai is
assigned to agent i. Each agent i ∈ N has a utility function
ui, which we assume to be additive. This means that for any
M ′ ⊆ M , ui(M ′) =

∑
j∈M ′ ui({j}). For simplicity, we

will sometimes write ui(j) instead of ui({j}) for j ∈M .

3 Fairness up to One Item
In this section, we define the envy-freeness and proportion-
ality relaxations WEF(x, y) and WPROP(x, y), and study
them particularly for the case where x+ y = 1.

3.1 Weighted Envy-Freeness Notions
We define a continuum of weighted envy-freeness relax-
ations parameterized by two nonnegative real values, x and
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y. We require that for any pair of agents i and j, for some
item in j’s bundle, after removing an x fraction of the value
of this item and adding a y fraction of this value to i’s bun-
dle, i does not envy j. Formally:

Definition 3.1 (WEF(x, y)). For x, y ∈ [0, 1], an allocation
(A1, . . . , An) is said to satisfy WEF(x, y) if for any i, j ∈
N , there exists B ⊆ Aj with |B| ≤ 1 such that2

ui(Ai) + y · ui(B)

wi
≥ ui(Aj)− x · ui(B)

wj
.

Equivalently, the condition can be stated in terms of the max-
imum allowed weighted envy:

ui(Aj)

wj
− ui(Ai)

wi
≤
(
y

wi
+

x

wj

)
· ui(B).

WEF(x, y) generalizes and interpolates between several
previously studied notions. In particular, WEF(0, 0) is the
same as weighted envy-freeness, WEF(1, 0) is equivalent to
the notion WEF1 proposed by Chakraborty et al. (2020), and
WEF(1, 1) corresponds to what these authors called “trans-
fer weighted envy-freeness up to one item”. The WWEF1
condition of Chakraborty et al. (2020) is strictly weaker than
WEF(x, 1−x) for every x ∈ [0, 1]; see the full version of our
paper (Chakraborty, Segal-Halevi, and Suksompong 2021).

WEF(x, y) requires that the weighted envy of i towards j,
defined as max

{
0,

ui(Aj)
wj

− ui(Ai)
wi

}
, should be at most(

y
wi

+ x
wj

)
· ui(B). It is evident that, with equal entitle-

ments, this condition depends only on the sum x+ y; in par-
ticular, whenever x+y = 1, WEF(x, y) is equivalent to EF1.
However, with different entitlements, every selection of x, y,
even with x+ y = 1, leads to a different condition: a higher
x yields a stronger guarantee (i.e., lower allowed envy) for
agent i when wi < wj , while a higher y yields a stronger
guarantee for the agent when wi > wj . This raises two natu-
ral questions. First, for what values of x, y can WEF(x, y) be
guaranteed? Second, is it possible to guarantee WEF(x, y)
for multiple pairs (x, y) simultaneously?

For the first question, whenever x + y < 1, a standard
example of two agents with equal weights and one valuable
item shows that WEF(x, y) cannot always be satisfied. We
will show next that WEF(x, y) can always be satisfied when
x + y = 1, thereby implying existence for x + y > 1
as well. To this end, we characterize picking sequences3

whose output is guaranteed to satisfy WEF(x, 1 − x); this
generalizes the WEF(1, 0) characterization of Chakraborty,
Schmidt-Kraepelin, and Suksompong (2021, Thm. 3.1). For
brevity, we say that a picking sequence satisfies a fairness
notion if its output always satisfies that notion. The proof
of this theorem, along with all other missing proofs, can be

2We use a set B ⊆ Aj with |B| ≤ 1 instead of an item g ∈ Aj

in order to handle the case where Aj = ∅.
3A picking sequence is a sequence (p1, . . . , pm) where pi ∈ N

for each i. The output of a picking sequence is the allocation result-
ing from the process in which, in the i-th turn, agent pi picks her
favorite item from the remaining items, breaking ties in a consistent
manner (for example, in favor of lower-numbered items).

found in the full version of our paper (Chakraborty, Segal-
Halevi, and Suksompong 2021).

Theorem 3.2. Let x ∈ [0, 1]. A picking sequence π satisfies
WEF(x, 1 − x) if and only if for every prefix P of π and
every pair of agents i, j, where agent i has ti picks in P and
agent j has tj picks in P , we have ti+(1−x) ≥ wi

wj
·(tj−x).

We can now prove that a WEF(x, 1− x) allocation exists
in every instance.

Theorem 3.3. Let x ∈ [0, 1]. Consider a picking sequence
π such that in each turn, the pick is assigned to an agent i
with the smallest ti+(1−x)

wi
, where ti is the number of times

agent i has picked so far. Then, π satisfies WEF(x, 1− x).

Proof. Consider any pair of agents i, j. It suffices to show
that after every pick of agent j, the condition in Theorem 3.2
is satisfied. Suppose that after j’s pick, the two agents have
picked ti and tj times. Since j was assigned the pick, it must
be that (tj+(1−x))−1

wj
≤ ti+(1−x)

wi
. In other words, we have

ti + (1− x) ≥ wi

wj
· (tj − x), as desired.

In particular, Webster’s apportionment method, which
corresponds to the picking sequence in Theorem 3.3 with
x = 1/2, satisfies WEF(1/2, 1/2). This strengthens a re-
sult of Chakraborty, Schmidt-Kraepelin, and Suksompong
(2021) that the method guarantees WWEF1.

While every WEF(x, 1− x) notion can be satisfied on its
own, it is unfortunately impossible to guarantee WEF(x, 1−
x) for two different values of x. We prove this strong incom-
patibility result even for the weaker notion of WPROP(x, y),
which we define next.

3.2 Weighted Proportionality Notions
Similarly to WEF(x, y), we define a continuum of weighted
proportionality relaxations.

Definition 3.4 (WPROP(x, y)). For x, y ∈ [0, 1], an alloca-
tion (A1, . . . , An) is said to satisfy WPROP(x, y) if for any
i ∈ N , there exists B ⊆M \Ai with |B| ≤ 1 such that

ui(Ai) + y · ui(B)

wi
≥ ui(M)− n · x · ui(B)

wN
,

or equivalently,

ui(Ai) ≥
wi

wN
· ui(M)−

(
wi

wN
· n · x+ y

)
· ui(B).

WPROP(0, 0) is the same as weighted proportionality,
while WPROP(0, 1) is equivalent to the notion WPROP1
put forward by Aziz, Moulin, and Sandomirskiy (2020). As
noted above, an equivalent condition is that, if the utility that
agent i derives from her bundle is less than her (weighted)
proportional share wi

wN
· ui(M), then the amount by which

it falls short should not exceed
(

wi

wN
· n · x+ y

)
· ui(B).

The factor n can be thought of as a normalization factor,
since B is removed from the entire set of items M , which is
distributed among n agents, rather than from another agent’s
bundle as in the definition of WEF(x, y). This normalization
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ensures that, similarly to the WEF(x, y) family, when all en-
titlements are equal, WPROP(x, y) reduces to PROP1 when-
ever x + y = 1. With different entitlements and x + y = 1,
a higher x yields a stronger guarantee for agent i (i.e., the
agent’s utility cannot be far below her proportional share)
when wi < wN/n, while a higher y yields a stronger guar-
antee for the agent when wi > wN/n (note that the quantity
wN/n is the average weight of the n agents). This raises the
same two questions that we posed for WEF(x, y): For which
pairs (x, y) can WPROP(x, y) always be attained? And is it
possible to attain it for different pairs (x, y) simultaneously?

To answer these questions, we first define a stronger ver-
sion of WPROP(x, y) which we call WPROP∗(x, y).

Definition 3.5 (WPROP∗(x, y)). For x, y ∈ [0, 1], an allo-
cation (A1, . . . , An) is said to satisfy WPROP∗(x, y) if for
any i ∈ N , the following holds: There exists B ⊆ M \ Ai

with |B| ≤ 1 and, for every j ∈ N \ {i}, there exists
Bj ⊆ Aj with |Bj | ≤ 1 such that

ui(Ai) + y · ui(B)

wi
≥
ui(M)− x ·

∑
j∈N\{i} ui(Bj)

wN
.

Since
∑

j∈N\{i} ui(Bj) ≤ (n− 1) · ui(B) ≤ n · ui(B),
where we take B to be the singleton set containing i’s most
valuable item in M \Ai if Ai 6= M and the empty set other-
wise, WPROP∗(x, y) is a strengthening of WPROP(x, y).
Nevertheless, it is less intuitive than WPROP(x, y). As
such, we do not propose WPROP∗(x, y) as a major fairness
desideratum in its own right, but it will prove to be a useful
concept in establishing some of our results.

We first prove that for all x and y, WEF(x, y) implies
WPROP∗(x, y), which in turn implies WPROP(x, y); this
generalizes the fact that weighted envy-freeness implies
weighted proportionality, which corresponds to taking x =
y = 0. Note that while we generally think of x and y as being
constants not depending on n or w1, . . . , wn, in the follow-
ing three implications we will derive more refined bounds in
which x and y may depend on these parameters.

Lemma 3.6. For any x, y ∈ [0, 1] and y′ ≥ (1 −
mini∈N wi

wN
)y, WEF(x, y) implies WPROP∗(x, y′).

In particular, WEF(x, y) implies WPROP∗(x, y).

Lemma 3.7. For any x, y ∈ [0, 1] and x′ ≥
(
1− 1

n

)
x,

WPROP∗(x, y) implies WPROP(x′, y).
In particular, WPROP∗(x, y) implies WPROP(x, y).

Corollary 3.8. For any x, y ∈ [0, 1], WEF(x, y) implies
WPROP(x, y).

Combining Corollary 3.8 and Theorem 3.3, we find that
WPROP(x, 1 − x) can be guaranteed for any fixed x. Can
it be guaranteed for two different x simultaneously? Can it
be guaranteed for x, y such that x + y < 1? The following
theorem (along with the discussion after it) shows that the
answer to both questions is no.

Theorem 3.9. For any x, x′, y, y′ ∈ [0, 1], if x′ + y < 1 or
x+y′ < 1, there is an instance with identical items in which
no allocation is both WPROP(x, y) and WPROP(x′, y′).

Theorem 3.9 has several corollaries.

First, taking y = 1 − x and y′ = 1 − x′ yields that,
if x 6= x′, there is an instance in which no allocation is
both WPROP(x, 1 − x) and WPROP(x′, 1 − x′). Combin-
ing this with Corollary 3.8 gives the same incompatibility
for WEF(x, 1− x) and WEF(x′, 1− x′).

Second, taking x′ = x and y′ = y yields that, when x +
y < 1, a WPROP(x, y) allocation is not guaranteed to exist,
and therefore a WEF(x, y) allocation may not exist.

Third, we can generalize Chakraborty et al. (2020)’s result
that WEF(1, 0) does not imply WPROP(0, 1):

Corollary 3.10. For any distinct x, x′ ∈ [0, 1], WEF(x, 1−
x) does not imply WPROP(x′, 1− x′).

Proof. Assume for contradiction that WEF(x, 1 − x) im-
plies WPROP(x′, 1−x′) for some x 6= x′. By Theorem 3.2,
a WEF(x, 1−x) allocation always exists, and therefore such
an allocation is WPROP(x′, 1 − x′). By Corollary 3.8, this
allocation is also WPROP(x, 1 − x). Hence, an allocation
that is both WPROP(x, 1 − x) and WPROP(x′, 1 − x′) al-
ways exists, contradicting the first corollary of Theorem 3.9
mentioned above.

3.3 Weighted Nash Welfare
The WEF and WPROP criteria consider individual agents or
pairs of agents. A different approach, known in economics
as “welfarism” (Moulin 2003), takes a global view and tries
to find an allocation that maximizes a certain aggregate func-
tion of the utilities. A common aggregate function is the
product of utilities, also called the Nash welfare. This no-
tion extends to the weighted setting as follows.

Definition 3.11 (MWNW). A maximum weighted Nash wel-
fare allocation is an allocation that maximizes the weighted
product

∏
i∈N ui(Ai)

wi . 4

With equal entitlements, MWNW implies EF1 (Cara-
giannis et al. 2019). However, with different entitlements,
MWNW is incompatible with WEF(1, 0) (Chakraborty
et al. 2020) and with WPROP(0, 1) (Chakraborty, Schmidt-
Kraepelin, and Suksompong 2021). We generalize both of
these incompatibility results at once.

Theorem 3.12. For each x ∈ [0, 1], there exists an instance
with identical items in which every MWNW allocation is not
WPROP(x, 1− x), and hence not WEF(x, 1− x).

Proof. We prove the case x < 1 here and leave the case
x = 1 to the full version. Consider an instance with n iden-
tical items and n agents, with n > w1 > 2−x

1−x (the range
is nonempty when n is sufficiently large), and w2 = · · · =
wn = (n − w1)/(n − 1), so wN = n. Any MWNW al-
location must give a single item to each agent. But this vi-
olates the WPROP(x, 1 − x) condition for agent 1, since
1+(1−x)

w1
< 2−x

2−x
1−x

= 1− x = n−nx
wN

.

4If the maximum weighted product is zero (that is, when all
allocations give a utility of zero to one or more agents), then the
MWNW rule first maximizes the number of agents who get a posi-
tive utility, and subject to that, maximizes the weighted product for
these agents.
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4 Share-Based Notions
In this section, we turn our attention to share-based no-
tions, which assign a threshold to each agent representing
the agent’s “fair share”. Denote by Π(M,n) the collection
of all ordered partitions of M into n subsets. In the equal-
entitlement setting, the (1-out-of-n) maximin share of an
agent i is defined as follows:

MMS1-out-of-n
i (M) := max

(Z1,...,Zn)∈Π(M,n)
min
j∈[n]

ui(Zj).

Sometimes we drop M and the superscript ‘1-out-of-n’
and simply write MMSi. An allocation is called MMS-fair
or simply MMS if the utility that each agent receives is at
least as high as the agent’s MMS. Similarly, for a parameter
α, an allocation is called α-MMS-fair or α-MMS if every
agent receives utility at least α times her MMS. We will use
analogous terminology for other share-based notions.

There are several ways to extend this notion to the
unequal-entitlement setting. The first definition is due to
Farhadi et al. (2019). Denote by w = (w1, . . . , wn) the vec-
tor of weights.
Definition 4.1 (WMMS). The weighted maximin share of
an agent i ∈ N is defined as:

WMMSw
i (M) := max

(Z1,...,Zn)∈Π(M,n)
min
j∈[n]

wi

wj
· ui(Zj)

= wi · max
(Z1,...,Zn)∈Π(M,n)

min
j∈[n]

ui(Zj)

wj
.

Sometimes we will drop w andM from the notation when
these are clear from the context; the same convention applies
to other notions.

Intuitively, WMMS tries to find the most proportional al-
location with respect to all agents’ weights and agent i’s
utility function. Note that the WMMS of agent i depends
not only on i’s entitlement, but also on the entitlements of
all other agents. In particular, even if i’s entitlement remains
fixed, her WMMS might vary due to changes in the other
weights. This can be seen as a disadvantage of the WMMS
notion. Farhadi et al. (2019) showed that a 1/n-WMMS al-
location always exists, and this guarantee is tight for every n.

The second definition was implicitly considered by
Babaioff, Nisan, and Talgam-Cohen (2021), who did not
give it a name. Following Segal-Halevi (2019), we call it
the ordinal maximin share. Babaioff, Ezra, and Feige (2021)
called it the pessimistic share. To define this share, we first
extend the notion of 1-out-of-n MMS as follows. For any
positive integers ` ≤ d,

MMS`-out-of-d
i (M) := max

P∈Π(M,d)
min

Z∈Unions(P,`)
ui(Z),

where the minimum is taken over all unions of ` bundles
from a given d-partition P . Based on this generalized MMS
notion, we define the ordinal MMS:
Definition 4.2 (OMMS). The ordinal maximin share of an
agent i ∈ N is defined as:

OMMSw
i (M) := max

`,d: `
d≤

wi
wN

MMS`-out-of-d
i (M).

With equal entitlements, the OMMS is equal to the MMS.
Therefore, an OMMS allocation always exists for agents
with identical valuations, but may not exist for n ≥ 3 agents
with different valuations (Kurokawa, Procaccia, and Wang
2018). With different entitlements, it is an open question
whether an OMMS allocation always exists for agents with
identical valuations.

The third notion, the AnyPrice Share, is due to Babaioff,
Ezra, and Feige (2021). Instead of partitioning the items into
n disjoint bundles, an agent is allowed to choose any collec-
tion of (possibly overlapping) bundles. However, the agent
must then assign a weight to each chosen bundle so that the
sum of the bundles’ weights is wN , and each item belongs
to bundles whose total weight is at most the agent’s entitle-
ment. The AnyPrice Share is the agent’s utility for the least
valuable chosen bundle. Formally:

Definition 4.3 (APS). The AnyPrice share of an agent i ∈
N is defined as:

APSw
i (M) := max

P∈AllowedBundleCollections(M,wi)
min
Z∈P

ui(Z).

where the maximum is taken over all collections P of bun-
dles such that for some assignment of weights to the bundles
in P , the total weight of all bundles in P is wN , and for each
item, the total weight of the bundles to which the item be-
longs is at most wi.

Observe that when all entitlements are equal (to wN/n),
the agent can choose any 1-out-of-n MMS partition and as-
sign a weight of wN/n to each part; this shows that the
APS is at least the MMS in the equal-entitlement setting.
Babaioff, Ezra, and Feige (2021) proved that a 3/5-APS
allocation exists for agents with arbitrary entitlements, and
that the APS is always at least as large as the OMMS. Hence,
their result implies the existence of a 3/5-OMMS allocation.
Babaioff et al. also gave an equal-entitlement example in
which the APS is strictly larger than the MMS. Their exam-
ple shows a disadvantage of the APS: an allocation that gives
every agent her APS may not exist even when all agents have
identical valuations and equal entitlements.

The fourth notion, which is new to this paper, is the nor-
malized maximin share. The idea is that we take an agent’s
1-out-of-n MMS and scale it according to the agent’s enti-
tlement.

Definition 4.4 (NMMS). The normalized maximin share of
an agent i ∈ N is defined as:

NMMSw
i (M) :=

wi

wN
· n ·MMS1-out-of-n

i (M).

Compared to the previous three notions, the definition
of NMMS is rather simple. Moreover, unlike WMMS, the
NMMS of an agent depends only on the agent’s relative en-
titlement (i.e., wi/wN ).

APS-fairness and OMMS-fairness are both “ordinal” no-
tions in the sense that, even though the APS and OMMS val-
ues are numerical, whether an allocation is APS- or OMMS-
fair can be determined by only inspecting each agent’s or-
dinal ranking over bundles. On the other hand, WMMS-
fairness and NMMS-fairness are both “cardinal” notions,
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since they depend crucially on the numerical utilities. We
prove that there are no implication relations between ordinal
and cardinal notions: each type of notions does not imply
any nontrivial approximation of the other type.
Theorem 4.5. (a) An APS-fair or OMMS-fair allocation
does not necessarily yield any positive approximation of
WMMS-fairness or NMMS-fairness.

(b) A WMMS-fair or NMMS-fair allocation does not nec-
essarily yield any positive approximation of APS-fairness or
OMMS-fairness.

Given that NMMS is a new notion, an important question
is whether any useful approximation of it can be ensured.
Farhadi et al. (2019) proved that the best possible WMMS
guarantee is 1/n-WMMS. We prove that the same holds for
NMMS, starting with the upper bound.
Theorem 4.6. For each n, there is no NMMS guarantee over
all instances with n agents better than 1/n-NMMS.

We establish a matching lower bound by proving that
WPROP∗(1, 0), and hence WEF(1, 0), implies 1/n-NMMS.
Lemma 4.7. WPROP∗(1, 0) implies 1/n-NMMS.

Theorem 4.8. WEF(1, 0) implies 1/n-NMMS. In particular,
every instance admits a 1/n-NMMS allocation. The factor
1/n in both statements cannot be improved.

Theorem 4.8 is an immediate consequence of Lemmas 3.6
and 4.7 and Theorem 4.6. It generalizes the result that EF1
implies 1/n-MMS in the unweighted setting (Amanatidis,
Birmpas, and Markakis 2018, Prop. 3.6), and stands in con-
trast to a result of Chakraborty et al. (2020, Prop. 6.2)
that WEF(1, 0) does not imply any positive approxima-
tion of WMMS. Since a weighted round-robin algorithm
as well as a generalization of Barman, Krisnamurthy, and
Vaish (2018)’s market-based algorithm ensure WEF(1, 0)
(Chakraborty et al. 2020), these algorithms guarantee 1/n-
NMMS as well. Moreover, we prove that if each agent values
each item at most her NMMS, then the approximation factor
can be improved to 1/2, thereby providing a direct analog to
a WMMS result by Farhadi et al. (2019, Thm. 3.2).
Theorem 4.9. Given an instance, if ui(g) ≤ NMMSi for
all i ∈ N and g ∈ M , then there exists a 1/2-NMMS allo-
cation.

Unlike WEF(1, 0), we prove that for each x ∈ [0, 1),
WEF(x, 1 − x) does not imply any positive approximation
of NMMS, so the same holds for WPROP(x, 1 − x). In ad-
dition, the same holds even for WPROP(1, 0), which ex-
plains why using WPROP∗(1, 0) is necessary in Lemma 4.7.
Further, MWNW does not imply any positive approxima-
tion of NMMS, thereby providing evidence that 1/n-NMMS
is not trivial to achieve. This also contrasts with the un-
weighted setting, where maximum Nash welfare implies
Θ(1/

√
n)-MMS (Caragiannis et al. 2019). The proofs for

all of these results can be found in the full version of our
paper (Chakraborty, Segal-Halevi, and Suksompong 2021).

Farhadi et al. (2019, Thm. 2.2) established the 1/n-
WMMS guarantee through a well-known algorithm, the (un-
weighted) round-robin algorithm, which simply lets agents
take turns picking their favorite item from the remaining

items. A crucial specification required for their guarantee to
work is that the agents must take turns in non-increasing or-
der of their weights. This motivates the following definition:

Definition 4.10 (OEF1). An allocation is ordered-EF1 if

(i) it is EF1 when we disregard weights, and
(ii) the agents can be renumbered so that w1 ≥ w2 ≥ · · · ≥

wn and no agent i ∈ N has (unweighted) envy towards
any later agent j ∈ {i+ 1, i+ 2, . . . , n}.

The standard proof that the unweighted round-robin algo-
rithm outputs an EF1 allocation5 implies that the algorithm
with the aforementioned ordering specification outputs an
OEF1 allocation. Moreover, it follows from Farhadi et al.
(2019)’s proof that OEF1 implies 1/n-WMMS. We estab-
lish next that, interestingly, OEF1 also implies 1/n-NMMS,
which means that the same algorithm guarantees the optimal
approximation of both WMMS and NMMS.

Theorem 4.11. Any OEF1 allocation is also 1/n-NMMS.

WMMS and NMMS are both cardinal extensions of MMS
to the weighted setting. However, we prove in the next two
theorems that the relationship between them is rather weak.

Theorem 4.12. WMMS implies 1/n-NMMS, and the factor
1/n is tight.6

Theorem 4.13. For n ≥ 3, NMMS does not imply any pos-
itive approximation of WMMS.

Chakraborty et al. (2020) showed that WEF(1, 0) does not
guarantee any positive approximation of WMMS. In the full
version, we prove a similar negative result for WEF(x, 1−x)
and WPROP(x, 1− x) for all x ∈ [0, 1].

5 Identical Items: Lower and Upper Quota
We have seen many fairness notions and proved that sev-
eral of them are incompatible with one another. In this sec-
tion, we add another dimension to the comparison between
fairness notions by focusing on the case where all items are
identical. The motivation for studying this case is twofold.
First, due to its simplicity, it is easier to agree on a fairness
criterion. If the items were divisible, agent i should clearly
receive her quota of qi := wi

wN
· m items. With indivisible

items, one may therefore expect agent i to receive either her
lower quota bqic or her upper quota dqie. Second, the case
of identical items is practically relevant when allocating par-
liament seats among states or parties, a setting commonly
known as apportionment (Balinski and Young 1975, 2001).
Both quotas are frequently considered in apportionment.

We determine whether each fairness notion implies lower
quota (resp., upper quota) in the identical-item setting, i.e.,
whether it ensures that each agent i ∈ N receives at least
bqic items (resp., at most dqie items). Our results are sum-
marized in Table 1; all proofs are in the full version of our
paper (Chakraborty, Segal-Halevi, and Suksompong 2021).

To illustrate the ideas behind some of these proofs, con-
sider an instance with n = m = 3 and entitlements 4, 1, 1.

5See, e.g., (Caragiannis et al. 2019, p. 7).
6Note that the tightness does not follow from Theorem 4.6,

since a WMMS allocation does not always exist.
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Notion Lower quota Upper quota

WEF(x, 1− x)
Yes if x = 0

No if x ∈ (0, 1]

Yes if x = 1

No if x ∈ [0, 1)

WPROP(x, 1− x) No No
MWNW No No
WMMS No No
NMMS No No
OMMS Yes No

APS Yes No

Table 1: Summary of whether each fairness notion implies
lower or upper quota in the identical-item setting.

The quotas are 2, 0.5, 0.5. We denote an allocation by
(a1, . . . , an), where ai = |Ai| = the number of items that
agent i receives.

The unique allocation satisfying WEF(1, 0) is (1, 1, 1):
any agent that gets no item would have weighted envy to-
wards any agent that gets two or more items, even after re-
moving a single item. Note that (1, 1, 1) is also the unique
MWNW allocation as well as the unique allocation satis-
fying WMMS- and NMMS-fairness, since the WMMS and
NMMS are positive for all agents. However, this allocation
violates the lower quota of agent 1, which is 2 items.

In contrast, the unique allocation satisfying WEF(0, 1)
is (3, 0, 0): if agent 1 gets two or fewer items, she feels
weighted envy—even after getting an additional item—
towards another agent who gets (at least) one item. The al-
location (3, 0, 0) also satisfies OMMS- and APS-fairness, as
the OMMS and APS of agents 2 and 3 are both 0. However,
it violates the upper quota of agent 1.

No notion that we have seen so far guarantees both lower
and upper quotas. In light of this, we introduce a new
rule based on the well-known leximin principle (Moulin
2003). With equal entitlements, leximin aims to maximize
the smallest utility, then the second smallest utility, and so
on. To extend it to the setting with different entitlements, we
have to carefully consider how the utilities should be nor-
malized. A first idea is to normalize the agents’ utilities by
their proportional share, that is:

arg max
(A1,...,An)

leximin
i∈N

wN · ui(Ai)

wi · ui(M)
.

where “leximin” means that we maximize the smallest
value, then the second smallest, and so on. However, this
rule yields a blatantly unfair outcome when there is a single
item and two agents: since the smallest utility is always 0,
the item is allocated to the agent with a smaller entitlement,
as this makes the ratio wN/wi larger. Therefore, we instead
maximize the minimum difference between the agents’ nor-
malized utilities and their proportional shares.
Definition 5.1 (WEG). A weighted egalitarian allocation is
an allocation in

arg max
(A1,...,An)

leximin
i∈N

(
ui(Ai)

ui(M)
− wi

wN

)
.

This rule is similar to the “Leximin rule” for apportion-
ment (Biró, Kóczy, and Sziklai 2015); the latter rule min-
imizes the leximin vector of the departures, defined as the
absolute difference

∣∣∣ wi·ui(M)
wN ·ui(Ai)

− 1
∣∣∣.

Note that in the instance with one item and two agents, a
WEG allocation gives the item to the agent with a larger en-
titlement, as one would reasonably expect. Moreover, in the
aforementioned example with n = m = 3, the WEG allo-
cations are (2, 1, 0) and (2, 0, 1), which satisfy both quotas.
The next theorem shows that this holds in general.
Theorem 5.2. With identical items, every WEG allocation
satisfies both lower and upper quota.7

In contrast to share-based notions, a WEG allocation al-
ways exists by definition. Moreover, it is relatively easy to
explain such an allocation. For example, if a WEG alloca-
tion in a particular instance yields a minimum difference
ui(Ai)
ui(M) −

wi

wN
= −0.05, one can explain to the agents that

“each of you receives only 5% less than your proportional
share, and there is no allocation with a smaller deviation”.
This makes the egalitarian approach attractive for further
study in the context of unequal entitlements.

6 Conclusion and Future Work
In this paper, we have revisited known fairness notions for
the setting where agents can have different entitlements to
the resource, and introduced several new notions for this set-
ting. Our work further reveals the richness of weighted fair
division that has been uncovered by several recent papers.
Indeed, when all agents have the same weight, WEF(x, 1 −
x) reduces to EF1 and WPROP(x, 1−x) reduces to PROP1
for all x ∈ [0, 1], while WMMS, NMMS, and OMMS
all reduce to MMS. We believe that the concepts we in-
troduced add meaningful value beyond those proposed in
prior work. In particular, the notions WEF(x, 1 − x) and
WPROP(x, 1−x) allow us to choose the degree to which we
want to prioritize agents with larger weights in comparison
to those with smaller weights. A natural middle ground is
x = 1/2—the notion WEF(1/2, 1/2) is particularly appeal-
ing because Webster’s apportionment method, which satis-
fies it (Theorem 3.3), is known to be the unique unbiased
method under various definitions of bias in the apportion-
ment context (Balinski and Young 2001, Sec. A.5). Further-
more, our NMMS notion provides an intuitive generalization
of the well-studied MMS criterion for which a nontrivial ap-
proximation can always be attained.

An interesting direction for future work is to study our
new fairness notions in conjunction with other properties,
for example the economic efficiency property of Pareto op-
timality (PO). Chakraborty et al. (2020) have shown, by
means of generalizing Barman, Krisnamurthy, and Vaish
(2018)’s market-based algorithm, that WEF(1, 0) is compat-
ible with PO, but it remains unclear whether their argument
can be further generalized to work for WEF(x, 1− x) when
x < 1. Extending some of our results to non-additive utili-
ties is a challenging but important direction as well.

7In the full version we show that, in the more general case of
binary valuations, a WEG allocation satisfies APS and OMMS.
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