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Abstract
We study single-item single-unit Bayesian posted price auc-
tions, where buyers arrive sequentially and their valuations for
the item being sold depend on a random, unknown state of
nature. The seller has complete knowledge of the actual state
and can send signals to the buyers so as to disclose informa-
tion about it. For instance, the state of nature may reflect the
condition and/or some particular features of the item, which
are known to the seller only. The problem faced by the seller
is about how to partially disclose information about the state
so as to maximize revenue. Unlike classical signaling prob-
lems, in this setting, the seller must also correlate the signals
being sent to the buyers with some price proposals for them.
This introduces additional challenges compared to standard
settings. We consider two cases: the one where the seller can
only send signals publicly visible to all buyers, and the case
in which the seller can privately send a different signal to
each buyer. As a first step, we prove that, in both settings, the
problem of maximizing the seller’s revenue does not admit
an FPTAS unless P = NP, even for basic instances with a
single buyer. As a result, in the rest of the paper, we focus
on designing PTASs. In order to do so, we first introduce a
unifying framework encompassing both public and private
signaling, whose core result is a decomposition lemma that
allows focusing on a finite set of possible buyers’ posteriors.
This forms the basis on which our PTASs are developed. In
particular, in the public signaling setting, our PTAS employs
some ad hoc techniques based on linear programming, while
our PTAS for the private setting relies on the ellipsoid method
to solve an exponentially-sized LP in polynomial time. In the
latter case, we need a custom approximate separation oracle,
which we implement with a dynamic programming approach.

1 Introduction
In posted price auctions, the seller tries to sell an item by
proposing take-it-or-leave-it prices to buyers arriving sequen-
tially. Each buyer has to choose between declining the offer—
without having the possibility of coming back—or accepting
it, thus ending the auction. Nowadays, posted pricing is the
most used selling format in e-commerce (Einav et al. 2018),
whose sales reach over $4 trillion in 2020 (eMarketer 2021).
Posted price auctions are ubiquitous in settings such as, for
example, online travel agencies (e.g., Expedia), accommoda-
tion websites (e.g., Booking.com), and retail platforms (e.g.,
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Amazon and eBay). As a result, growing attention has been de-
voted to their analysis, both in economics (Seifert 2006) and
in computer science (Chawla et al. 2010; Babaioff et al. 2015,
2017; Adamczyk et al. 2017; Correa et al. 2017), within AI
and machine learning in particular (Kleinberg and Leighton
2003; Shah, Johari, and Blanchet 2019; Romano et al. 2021).

We study Bayesian posted price auctions, where the buyers’
valuations for the item depend on a random state of nature,
which is known to the seller only. By applying the Bayesian
persuasion framework (Kamenica and Gentzkow 2011), we
consider the case in which the seller (sender) can send signals
to the buyers (receivers) so as to disclose information about
the state. Thus, in a Bayesian auction, the seller does not
only have to decide price proposals for the buyers, but also
how to partially disclose information about the state so as to
maximize revenue. Our model finds application in several real-
world scenarios. For instance, in an e-commerce platform,
the state of nature may reflect the condition (or quality) of
the item being sold and/or some of its features. These are
known to the seller only since the buyers cannot see the item
given that the auction is carried out on the web.

Original Contributions. We study the problem of maxi-
mizing seller’s revenue in single-item single-unit Bayesian
posted price auctions, focusing on two different settings: pub-
lic signaling, where the signals are publicly visible to all
buyers, and private signaling, in which the seller can send a
different signal to each buyer through private communication
channels. As a first negative result, we prove that, in both set-
tings, the problem does not admit an FPTAS unless P = NP,
even for basic instances with a single buyer. Then, we provide
tight positive results by designing a PTAS for each setting. In
order to do so, we first introduce a unifying framework en-
compassing both public and private signaling. Its core result
is a decomposition lemma that allows us to focus on a finite
set of buyers’ posterior beliefs over states of nature—called
q-uniform posteriors—, rather than reasoning about signaling
schemes with a (potentially) infinite number of signals. Com-
pared to previous works on signaling, our framework has to
deal with some additional challenges. The main one is that, in
our model, the seller (sender) is not only required to choose
how to send signals, but they also have to take some ac-
tions in the form of price proposals. This requires significant
extensions to standard approaches based on decomposition
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lemmas (Cheng et al. 2015; Xu 2020; Castiglioni and Gatti
2021). The framework forms the basis on which we design
our PTASs. In the public setting, it establishes a connection
between signaling schemes and probability distributions over
q-uniform posteriors. This allows us to formulate the seller’s
revenue-maximizing problem as an LP of polynomial size,
whose objective coefficients are not readily available. How-
ever, they can be approximately computed in polynomial time
by an algorithm for finding approximately-optimal prices in
(non-Bayesian) posted price auctions, which may also be of
independent interest.Solving the LP with approximate coeffi-
cients then gives the desired PTAS. As for the private setting,
our framework provides a connection between marginal sig-
naling schemes of each buyer and probability distributions
over q-uniform posteriors, which, to the best of our knowl-
edge, is the first of its kind, since previous works are limited
to public settings (Cheng et al. 2015; Castiglioni, Celli, and
Gatti 2020b).1 Such connection allows us to formulate an
LP correlating marginal signaling schemes together and with
price proposals. Although the LP has an exponential number
of variables, we show that it can still be approximately solved
in polynomial time by means of the ellipsoid method. This re-
quires the implementation of a problem-specific approximate
separation oracle that can be implemented in polynomial
time by means of a dynamic programming algorithm.

Related Works. The computational study of Bayesian per-
suasion has received terrific attention (Vasserman, Feldman,
and Hassidim 2015; Castiglioni, Celli, and Gatti 2020a; Ra-
binovich et al. 2015; Candogan 2019; Castiglioni, Marchesi,
and Gatti 2022; Castiglioni et al. 2021a). The works most
related to ours are those addressing second-price auctions.
Emek et al. (2014) provide an LP to compute an optimal
public signaling scheme in the known-valuation setting, and
they show that the problem is NP-hard in the Bayesian set-
ting. Cheng et al. (2015) provide a PTAS for this latter case.
Bacchiocchi et al. (2022) extend the framework to study
ad auctions with Vickrey–Clarke–Groves payments. Finally,
Badanidiyuru, Bhawalkar, and Xu (2018) focus on the design
of algorithms whose running time is independent from the
number of states of nature. They initiate the study of pri-
vate signaling, showing that, in second-price auctions, it may
introduce non-trivial equilibrium selection issues.

2 Preliminaries
2.1 Bayesian Posted Price Auctions and Signaling
In a posted price auction, the seller tries to sell an item to
a finite set N := {1, . . . , n} of buyers arriving sequentially
according to a fixed ordering. W.l.o.g., we let buyer i ∈ N be
the i-th buyer according to such ordering. The seller chooses
a price proposal pi ∈ [0, 1] for each buyer i ∈ N . Then, each
buyer in turn has to decide whether to buy the item for the
proposed price or not. Buyer i ∈ N buys only if their item
valuation is at least the proposed price pi.2 In that case, the

1A notable exception is (Castiglioni and Gatti 2021), which stud-
ies a specific case in between private and public signaling schemes.

2As customary in the literature, we assume that buyers always
buy when they are offered a price that is equal to their valuation.

auction ends and the seller gets revenue pi for selling the
item, otherwise the auction continues with the next buyer.

We study Bayesian posted price auctions, characterized by
a finite set of d states of nature, namely Θ := {θ1, . . . , θd}.
Each buyer i ∈ N has a valuation vector vi ∈ [0, 1]d, with
vi(θ) representing buyer i’s valuation when the state is θ ∈ Θ.
Each valuation vi is independently drawn from a probability
distribution Vi supported on [0, 1]d. For the ease of presenta-
tion, we let V ∈ [0, 1]n×d be the matrix of buyers’ valuations,
whose entries are V (i, θ) := vi(θ) for all i ∈ N and θ ∈ Θ.3
Moreover, by letting V := {Vi}i∈N be the collection of all
distributions of buyers’ valuations, we write V ∼ V to denote
that V is built by drawing each vi independently from Vi.

We model signaling with the Bayesian persuasion frame-
work by Kamenica and Gentzkow (2011). We consider the
case in which the seller—having knowledge of the state of
nature—acts as a sender by issuing signals to the buyers (the
receivers), so as to partially disclose information about the
state and increase revenue. As customary in the literature, we
assume that the state is drawn from a common prior distri-
bution µ ∈ ∆Θ, explicitly known to both the seller and the
buyers.4 We denote by µθ the probability of state θ ∈ Θ. The
seller commits to a signaling scheme φ, which is a random-
ized mapping from states of nature to signals for the receivers.
Letting Si be the set of signals for buyer i ∈ N , a signaling
scheme is a function φ : Θ → ∆S , where S :=×i∈N Si.
An element s ∈ S—called signal profile—is a tuple speci-
fying a signal for each buyer. We use si to refer to the i-th
component of any s ∈ S (i.e., the signal for buyer i), so that
s = (s1, . . . , sn). We let φθ(s) be the probability of drawing
signal profile s ∈ S when the state is θ ∈ Θ. Furthermore, we
let φi : Θ→ ∆Si be the marginal signaling scheme of buyer
i ∈ N , with φi(θ) being the marginalization of φ(θ) with
respect to buyer i’s signals. As for general signaling schemes,
φi,θ(si) :=

∑
s′∈S:s′i=si

φθ(s
′) denotes the probability of

drawing signal si ∈ Si when the state is θ ∈ Θ.
Price proposals may depend on the signals being sent to

the buyers. Formally, the seller commits to a price function
f : S → [0, 1]n, with f(s) ∈ [0, 1]n being the price vector
when the signal profile is s ∈ S. We assume that prices
proposed to buyer i only depend on the signals sent to them,
and not on the signals sent to other buyers. Thus, w.l.o.g., we
can work with functions fi : Si → [0, 1] defining prices for
each buyer i ∈ N independently, with fi(si) denoting the
i-th component of f(s) for all s ∈ S and i ∈ N .5

The interaction involving the seller and the buyers goes on
as follows (Figure 1): (i) the seller commits to a signaling
scheme φ : Θ → ∆S and a price function f : S → [0, 1]n,
and the buyers observe such commitments; (ii) the seller ob-
serves the state of nature θ ∼ µ; (iii) the seller draws a signal

3Sometimes, we also write Vi := v>i to denote the i-th row of
matrix V , which is the valuation of buyer i ∈ N .

4In this work, given a finite set X , we denote with ∆X the
(|X| − 1)-dimensional simplex defined over the elements of X .

5Let us remark that our assumption on the seller’s price function
ensures that a buyer does not get additional information about the
state of nature by observing the proposed price, since the latter only
depends on the signal which is revealed to them anyway.
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Figure 1: Interaction between the seller and the buyers.

profile s ∼ φ(θ); and (iv) the buyers arrive sequentially, with
each buyer i ∈ N observing their signal si and being pro-
posed price fi(si). Then, each buyer rationally updates their
prior belief over states according to Bayes rule, and buys the
item only if their expected valuation for the item is greater
than or equal to the offered price. The interaction terminates
whenever a buyer decides to buy the item or there are no more
buyers arriving. The following paragraph formally defines
the elements involved in step (iv).

Buyers’ Posteriors. In step (iv), a buyer i ∈ N receiving a
signal si ∈ Si infers a posterior belief over states (also called
posterior), which we denote by ξi,si ∈ ∆Θ, with ξi,si(θ)
being the posterior probability of state θ ∈ Θ. Formally,

ξi,si(θ) :=
µθφi,θ(si)∑

θ′∈Θ µθ′φi,θ′(si)
. (1)

Thus, after receiving signal si ∈ Si, buyer i’s expected valu-
ation for the item is

∑
θ∈Θ vi(θ) ξi,si(θ), and the buyer buys

it only if such value is at least as large as the price fi(si). In
the following, given a signal profile s ∈ S , we denote by ξs a
tuple defining all buyers’ posteriors resulting from observing
signals in s; formally, ξs := (ξ1,s1 , . . . , ξn,sn).

Distributions on Posteriors. In single-receiver Bayesian
persuasion models, it is oftentimes useful to represent sig-
naling schemes as convex combinations of the posteriors
they can induce. In our setting, a marginal signaling scheme
φi : Θ → ∆Si of buyer i ∈ N induces a probability dis-
tribution γi over posteriors in ∆Θ, with γi(ξi) denoting the
probability of posterior ξi ∈ ∆Θ. Formally, it holds that

γi(ξi) :=
∑

si∈Si:ξi,si=ξi

∑
θ∈Θ

µθφi,θ(si).

Intuitively, γi(ξi) denotes the probability that buyer i has
posterior ξi. Indeed, it is possible to directly reason about
distributions γi rather than marginal signaling schemes, pro-
vided that such distributions are consistent with the prior.
Formally, by letting supp(γi) := {ξi ∈ ∆Θ | γi(ξi) > 0} be
the support of γi, it must be required that∑

ξi∈supp(γi)

γi(ξi) ξi(θ) = µθ ∀θ ∈ Θ. (2)

2.2 Computational Problems
We focus on the problem of computing a signaling scheme
φ : Θ → ∆S and a price function f : S → [0, 1]n that
maximize the seller’s expected revenue, considering both
public and private signaling settings.6

6Formally, a signaling scheme φ : Θ→ ∆S is public if: (i) Si =
Sj for all i, j ∈ N ; and (ii) for every θ ∈ Θ, φθ(s) > 0 only for

We denote by REV(V, p, ξ) the expected revenue of the
seller when the distributions of buyers’ valuations are given
by V = {Vi}i∈N , the proposed prices are defined by the vec-
tor p ∈ [0, 1]n, and the buyers’ posteriors are those specified
by the tuple ξ = (ξ1, . . . , ξn) containing a posterior ξi ∈ ∆Θ

for each buyer i ∈ N . Then, the seller’s expected revenue is:∑
θ∈Θ

µθ
∑
s∈S

φθ(s)REV (V, f(s), ξs) .

In the following, we denote by OPT the value of the seller’s
expected revenue for a revenue-maximizing (φ, f) pair.

In this work, we assume that algorithms have access to
a black-box oracle to sample buyers’ valuations according
to the probability distributions specified by V (rather than
actually knowing such distributions). Thus, we look for algo-
rithms that output pairs (φ, f) such that

E

[∑
θ∈Θ

µθ
∑
s∈S

φθ(s)REV(V, f(s), ξs)

]
≥ OPT − λ,

where λ ≥ 0 is an additive error. Notice that the expectation
above is with respect to the randomness of the algorithm,
which originates from using the black-box sampling oracle.

3 Hardness of Signaling with a Single Buyer
We start with a negative result: there is no FPTAS for the
problem of computing a revenue-maximizing (φ, f) pair un-
less P = NP, in both public and private signaling settings.
Our result holds even in the basic case with only one buyer,
where public and private signaling are equivalent. Notice
that, in the reduction that we use to prove our result, we as-
sume that the support of the distribution of valuations of the
(single) buyer is finite and that such distribution is perfectly
known to the seller. This represents an even simpler setting
than that in which the seller has only access to a black-box
oracle returning samples drawn from the buyer’s distribution
of valuations. The result formally reads as follows:7

Theorem 1. There is no additive FPTAS for the problem of
computing a revenue-maximizing (φ, f) pair unless P = NP,
even when there is a single buyer.

4 Unifying Public and Private Signaling
In this section, we introduce a general mathematical frame-
work related to buyers’ posteriors and distributions over them,
proving some results that will be crucial in the rest of this
work, both in public and private signaling scenarios.

One of the main difficulties in computing sender-optimal
signaling schemes is that they might need a (potentially) infi-
nite number of signals, resulting in infinitely-many receiver’s

signal profiles s ∈ S such that si = sj for i, j ∈ N . Since, given a
signal profile s ∈ S , under a public signaling scheme all the buyers
always share the same posterior (i.e., ξi,si = ξj,sj for all i, j ∈ N ),
we overload notation and sometimes use ξs ∈ ∆Θ to denote the
unique posterior appearing in ξs = (ξ1,s1,, . . . , ξn,sn). Similarly,
in the public setting, given a posterior ξ ∈ ∆Θ we sometimes write
ξ in place of a tuple of n copies of ξ.

7The proofs of all the results are in (Castiglioni et al. 2022).
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posteriors. The trick commonly used to circumvent this issue
in settings with a finite number of valuations is to use direct
signals, which explicitly specify action recommendations
for each receiver’s valuation (Castiglioni et al. 2020, 2021b).
However, in our auction setting, this solution is not viable,
since a direct signal for a buyer i ∈ N should represent a
recommendation for every possible vi ∈ [0, 1]d, and these
are infinitely many. An alternative technique, which can be
employed in our setting, is to restrict the number of possible
posteriors.

Our core idea is to focus on a small set of posteriors,
which are those encoded as particular q-uniform probability
distributions, as formally stated in the following definition.8

Definition 1 (q-uniform posterior). A posterior ξ ∈ ∆Θ is
q-uniform if it can be obtained by averaging the elements of
a multiset defined by q ∈ N>0 canonical basis vectors of Rd.

We denote the set of all q-uniform posteriors as Ξq ⊂ ∆Θ.
Notice that the set Ξq has size |Ξq| = O (dq).

The existence of an approximately-optimal signaling
scheme that only uses q-uniform posteriors is usually proved
by means of so-called decomposition lemmas (see (Cheng
et al. 2015; Xu 2020; Castiglioni and Gatti 2021)). The goal
of these lemmas is to show that, given some signaling scheme
encoded as a distribution over posteriors, it is possible to
obtain a new signaling scheme whose corresponding distri-
bution is supported only on q-uniform posteriors, and such
that the sender’s utility only decreases by a small amount. At
the same time, these lemmas must also ensure that the dis-
tribution over posteriors corresponding to the new signaling
scheme is still consistent (according to Equation (2)).

The main result of our framework (Theorem 2) is a decom-
position lemma that is suitable for our setting. Before stating
the result, we need to introduce some preliminary definitions.
Definition 2 ((α, ε)-decreasing distribution). Let α, ε > 0.
A probability distribution γ over ∆Θ is (α, ε)-decreasing
around a given posterior ξ ∈ ∆Θ if the following condition
holds for every matrix V ∈ [0, 1]n×d of buyers’ valuations:

Prξ̃∼γ
{
Viξ̃ ≥ Viξ − ε

}
≥ 1− α ∀i ∈ N .

Intuitively, a probability distribution γ as in Definition 2
can be interpreted as a perturbation of the given posterior ξ
such that, with high probability, buyers’ expected valuations
in γ are at most ε less than those in posterior ξ.9

The second definition we need is about functions mapping
vectors in [0, 1]n—defining a valuation for each buyer—to
seller’s revenues. For instance, one such function could be
the seller’s revenue given price vector p ∈ [0, 1]n. In par-
ticular, we define the stability of a function g compared to
another function h. Intuitively, g is stable compared to h if

8In all the definitions and results of this section (Section 4), we
denote by ξ ∈ ∆Θ a generic posterior common to all the buyers and
with γ a probability distribution over ∆Θ (i.e, over posteriors).

9Definition 2 is similar to analogous ones in the literature (Xu
2020; Castiglioni and Gatti 2021), where the distance is usually
measured in both directions, as |Viξ̃ − Viξ| ≤ ε. We look only at
the direction of decreasing values, since in a our setting, if a buyer’s
valuation increases, then the seller’s revenue also increases.

the value of g, in expectation over buyers’ valuations and
posteriors drawn from a probability distribution γ that is
(α, ε)-decreasing around ξ, is “close” to the the value of h
given ξ, in expectation over buyers’ valuations.10 Formally:
Definition 3 ((δ, α, ε)-stability). Let α, ε, δ > 0. Given a
posterior ξ ∈ ∆Θ, some distributions V = {Vi}i∈N , and
two functions g, h : [0, 1]n → [0, 1], g is (δ, α, ε)-stable
compared to h for (ξ,V) if, for every probability distribution
γ over ∆Θ that is (α, ε)-decreasing around ξ, it holds:

Eξ̃∼γ,V∼V
[
g(V ξ̃)

]
≥ (1− α)EV∼V

[
h(V ξ)

]
− δε.

Now, we are ready to state our main result. We show that,
for any buyer’s posterior ξ ∈ ∆Θ, if a function g is stable
compare to h, then there exists a suitable probability distribu-
tion over q-uniform posteriors such that the expected value
of g given such distribution is “close” to that of h given ξ.
Theorem 2. Let α, ε, δ > 0, and set q := 32

ε2 log 4
α . Given

a posterior ξ ∈ ∆Θ, some distributions V = {Vi}i∈N , and
two functions g, h : [0, 1]n → [0, 1], if g is (δ, α, ε)-stable
compared to h for (ξ,V), then there exists γ ∈ ∆Ξq such
that, for every θ ∈ Θ,

∑
ξ̃∈supp(γ) γ(ξ̃)ξ̃(θ) = ξ(θ) and

E ξ̃∼γ
V∼V

[
ξ̃(θ)g(V ξ̃)

]
≥ξ(θ)

[
(1−α)EV∼V

[
h(V ξ)

]
−δε

]
. (3)

The crucial feature of Theorem 2 is that Equation (3) holds
for every state. This is fundamental for proving our results
in the private signaling scenario. On the other hand, with
public signaling, we will make use of the following (weaker)
corollary, obtained by summing Equation (3) over all θ ∈ Θ.
Corollary 1. Let α, ε, δ > 0, and set q := 32

ε2 log 4
α . Given

a posterior ξ ∈ ∆Θ, some distributions V = {Vi}i∈N , and
two functions g, h : [0, 1]n → [0, 1], if g is (δ, α, ε)-stable
compared to h for (ξ,V), then there exists γ ∈ ∆Ξq such
that, for every θ ∈ Θ,

∑
ξ̃∈supp(γ) γ(ξ̃)ξ̃(θ) = ξ(θ) and

Eξ̃∼γ,V∼V
[
g(V ξ̃)

]
≥ (1− α)EV∼V

[
h(V ξ)

]
− δε. (4)

5 Warming Up: Non-Bayesian Auctions
In this section, we focus on non-Bayesian posted price auc-
tions, proving some results that will be useful in the rest of the
paper.11 In particular, we study what happens to the seller’s

10The notion of compared stability has been already used (Cheng
et al. 2015; Castiglioni and Gatti 2021). However, previous works
consider the case in which g is a relaxation of h. Instead, our defi-
nition is conceptually different, as g and h represent two different
functions corresponding to different price vectors of the seller.

11When we study non-Bayesian posted price auctions, we stick to
our notation, with the following differences: valuations are scalars
rather than vectors, namely vi ∈ [0, 1]; distributions Vi are sup-
ported on [0, 1] rather than [0, 1]d; the matrix V is indeed a column
vector whose components are buyers’ valuations; and the price
function f is replaced by a single price vector p ∈ [0, 1]n, with
its i-th component pi being the price for buyer i ∈ N . Moreover,
we continue to use the notation REV to denote seller’s revenues,
dropping the dependence on the tuple of posteriors. Thus, in a non-
Bayesian auction in which the distributions of buyers’ valuations are
V = {Vi}i∈N , the notation REV(V, p) simply denotes the seller’s
expected revenue by selecting a price vector p ∈ [0, 1]n.
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expected revenue when buyers’ valuations are “slightly de-
creased”, proving that the revenue also decreases, but only
by a small amount. This result will be crucial when dealing
with public signaling, and it also allows to design a poly-time
algorithm for finding approximately-optimal price vectors in
non-Bayesian auctions, as we show at the end of this section.

In the following, we extensively use distributions of buyers’
valuations as specified in the definition below.
Definition 4. Given ε > 0, we denote by V = {Vi}i∈N and
Vε = {Vεi }i∈N two collections of distributions of buyers’
valuations such that, for every price vector p ∈ [0, 1]n,

Prvi∼Vεi {vi ≥ pi − ε} ≥ Prvi∼Vi {vi ≥ pi} ∀i ∈ N .
Intuitively, valuations drawn from Vε are “slightly de-

creased” with respect to those drawn from V , since the prob-
ability with which any buyer i ∈ N buys the item at the
(reduced) price [pi − ε]+ when their valuation is drawn from
Vεi is at least as large as the probability of buying at price pi
when their valuation is drawn from Vi.12

Our main contribution in this section (Lemma 2) is to show
that maxp∈[0,1]n REV(Vε, p) ≥ maxp∈[0,1]n REV(V, p) − ε.
By letting p∗ ∈ arg maxp∈[0,1]n REV(V, p) be any revenue-
maximizing price vector under distributions V , one may
naïvely think that, since under distributions Vε and price
vector [p∗ − ε]+ each buyer would buy the item at least
with the same probability as with distributions V and price
vector p∗, while paying a price that is only ε less, then
REV(Vε, [p∗ − ε]+) ≥ REV(V, p∗) − ε, proving the result.
However, this line of reasoning does not work, as shown by
Example ?? in the Extended Version. The crucial feature of
Example ?? is that there exists a p∗ in which one buyer is
offered a price that is too low, and, thus, the seller prefers
not to sell the item to them, but rather to a following buyer.
This prevents a direct application of the line of reasoning
outlined above, as it shows that incrementing the probability
with which a buyer buys is not always beneficial. One could
circumvent this issue by considering a p∗ such that the seller
is never upset if some buyer buys. In other words, it must
be such that each buyer is proposed a price that is at least
as large as the seller’s expected revenue in the posted price
auction restricted to the following buyers. Next, we show that
there always exists a p∗ with such desirable property.

Letting REV>i(V, p) be the seller’s revenue for price vec-
tor p ∈ [0, 1]n and distributions V = {Vi}i∈N in the auction
restricted to buyers j ∈ N : j > i, we prove the following:
Lemma 1. For any V = {Vi}i∈N , there exists a revenue-
maximizing price vector p∗ ∈ arg maxp∈[0,1]n REV(V, p)
such that p∗i ≥ REV>i(V, p∗) for every buyer i ∈ N .

The proof of Lemma 2 builds upon the existence of a
revenue-maximizing price vector p∗ ∈ [0, 1]n as in Lemma 1
and the fact that, under distributions Vε, the probability with
which each buyer buys the item given price vector [p∗−ε]+ is
greater than that with which they would buy given p∗. Since
the seller’s expected revenue is larger when a buyer buys
compared to when they do not buy (as p∗i ≥ REV>i(V, p∗)),
the seller’s expected revenue decreases by at most ε.

12In this work, given x ∈ R, we let [x]+ := max{x, 0}. We
extend the [·]+ operator to vectors by applying it component-wise.

Algorithm 1: FIND-APX-PRICES

Inputs: # of samples K ∈ N>0; # of discretization steps b ∈ N>0

1: for i ∈ N do
2: for k = 1, . . . ,K do
3: vki ← Sample buyer i’s valuation using oracle for Vi
4: VKi ← Empirical distribution of the K i.i.d. samples vKi
5: VK ← {VKi }i∈N ; p← 0n; r ← 0
6: for i = n, . . . , 1 (in reversed order) do
7: pi←arg max

p′i∈P
b

p′iPrvi∼VKi
{
vi ≥ p′i

}
+
(
1−Prvi∼VKi

{
vi ≥ p′i

})
r

8: r ← piPrvi∼VKi {vi ≥ pi}+
(

1− Prvi∼VKi {vi ≥ pi}
)
r

9: return (p, r)

Lemma 2. Given ε > 0, let V = {Vi}i∈N and Vε =
{Vεi }i∈N satisfying the conditions of Definition 4. Then,
maxp∈[0,1]n REV(Vε, p) ≥ maxp∈[0,1]n REV(V, p)− ε.

Lemma 2 will be useful to prove Lemma 3 and to show
the compared stability of a suitably-defined function that is
used to design a PTAS in the public signaling scenario.

Finding Approximately-Optimal Prices. Algorithm 1
computes (in polynomial time) an approximately-optimal
price vector for any non-Bayesian posted price auction. It
samples K ∈ N>0 matrices of buyers’ valuations, each one
drawn according to the distributions V . Then, it finds an op-
timal price vector p in the discretized set Pb, assuming that
buyers’ valuations are drawn according to the empirical dis-
tribution resulting from the sampled matrices.13 This last step
can be done by backward induction, as it is well known in the
literature (see, e.g., (Xiao, Liu, and Huang 2020)). The fol-
lowing Lemma 3 establishes the correctness of Algorithm 1,
also providing a bound on its running time. The key ideas of
its proof are: (i) the sampling procedure constructs a good es-
timation of the actual distributions of buyers’ valuations; and
(ii) even if the algorithm only considers discretized prices,
the components of the computed price vector are at most 1/b
less than those of an optimal (unconstrained) price vector. As
shown in the proof, this is strictly related to reducing buyer’s
valuations by 1

b . Thus, it follows by Lemma 2 that the seller’s
expected revenue is at most 1/b less than the optimal one.

Lemma 3. For any V = {Vi}i∈N and ε, τ > 0, there exist
K ∈ poly

(
n, 1

ε , log 1
τ

)
and b ∈ poly

(
1
ε

)
such that, with

probability at least 1 − τ , Algorithm 1 returns (p, r) satis-
fying REV(V, p) ≥ maxp′∈[0,1]n REV(V, p′) − ε and r ∈
[REV(V, p)− ε,REV(V, p) + ε] in time poly

(
n, 1

ε , log 1
τ

)
.

6 Public Signaling
In the following, we design a PTAS for computing a revenue-
maximizing (φ, f) pair in the public signaling setting. Notice
that this positive result is tight by Theorem 1.

As a first intermediate result, we prove the compared stabil-
ity of suitably-defined functions, which are intimately related
to the seller’s revenue. In particular, for every price vector

13In this work, for a discretization step b ∈ N>0, we let P b ⊂
[0, 1] be the set of prices multiples of 1/b, while Pb :=×i∈N P b.
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p ∈ [0, 1]n, we conveniently let gp : [0, 1]n → [0, 1] be a
function that takes a vector of buyers’ valuations and outputs
the seller’s expected revenue achieved by selecting p when
the buyers’ valuations are those specified as input. The follow-
ing Lemma 4 shows that, given some distributions of buyers’
valuations V and a posterior ξ ∈ ∆Θ, there always exists
a price vector p ∈ [0, 1]n such that gp is stable compared
with gp′ for every other p′ ∈ [0, 1]n. This result crucially
allows us to decompose any posterior ξ ∈ ∆Θ by means of
the decomposition lemma in Corollary 1, while guaranteeing
a small loss in terms of seller’s expected revenue.

Lemma 4. Given α, ε > 0, a posterior ξ ∈ ∆Θ, and some
distributions of buyers’ valuations V = {Vi}i∈N , there exists
p ∈ [0, 1]n such that, for every other p′ ∈ [0, 1]n, the function
gp is (1, α, ε)-stable compared with gp′ for (ξ,V).

Our PTAS leverages the fact that public signaling schemes
can be represented as probability distributions over buy-
ers’ posteriors (recall that, in the public signaling setting,
all the buyers share the same posterior, as they all observe
the same signal). In particular, the algorithm returns a pair
(γ, f◦), where γ is a probability distribution over ∆Θ sat-
isfying consistency constraints (see Equation (2)), while
f◦ : ∆Θ → [0, 1]n is a function mapping each posterior
to a price vector. In single-receiver settings, it is well known
(see Subsection 2.1) that using distributions over posteriors
rather than signaling schemes φ is without loss of generality.
The following lemma shows that the same holds in our case,
i.e., given a pair (γ, f◦), it is always possible to obtain a pair
(φ, f) providing the seller with the same expected revenue.

Lemma 5. Given a pair (γ, f◦), where γ is a probability
distribution over ∆Θ with

∑
ξ∈supp(γ) γ(ξ)ξ(θ) = µθ for all

θ ∈ Θ and f◦ : ∆Θ → [0, 1]n, there is a pair (φ, f) s.t.∑
θ∈Θ

µθ
∑
s∈S

φθ(s)REV(V, f(s), ξs)=
∑

ξ∈supp(γ)

γ(ξ)REV(V, f◦(ξ), ξ).

Next, we show that, in order to find an approximately-
optimal pair (γ, f◦), we can restrict the attention to q-uniform
posteriors (with q suitably defined). First, we introduce the
following LP that computes an optimal probability distribu-
tion restricted over q-uniform posteriors.

max
γ∈∆Ξq

∑
ξ∈Ξq

γ(ξ) max
p∈[0,1]n

REV(V, p, ξ) s.t. (5a)

∑
ξ∈Ξq

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ. (5b)

The following Lemma 6 shows the optimal value of LP 5
is “close” to OPT . Its proof is based on the following core
idea. Given the signaling scheme φ in a revenue-maximizing
pair (φ, f), letting γ be the distribution over ∆Θ induced
by φ, we can decompose each posterior in the support of γ
according to Corollary 1. Then, the obtained distributions
over q-uniform posteriors are consistent according to Equa-
tion (2), and, thus, they satisfy Constraints (5b). Moreover,
since such distributions are also decreasing around the de-
composed posteriors, by Lemma 4 each time a posterior is
decomposed there exists a price vector resulting in a small

revenue loss. These observations allow us to conclude that
the seller’s expected revenue provided by an optimal solution
to LP 5 is within some small additive loss of OPT .
Lemma 6. Given η > 0 and letting q = 1

η2 128 log 6
η , an

optimal solution to LP 5 has value at least OPT − η.
Finally, we are ready to provide our PTAS. Its main idea

is to solve LP 5 (of polynomial size) for the value of q in
Lemma 6. This results in a small revenue loss. The last part
missing for the algorithm is computing the terms appearing in
the objective of LP 5, i.e., a revenue-maximizing price vector
(together with its revenue) for every q-uniform posterior. In
order to do so, we can use Algorithm 1 (see also Lemma 3),
which allows us to obtain in polynomial time good approxi-
mations of such price vectors, with high probability.
Theorem 3. There exists an additive PTAS for computing a
revenue-maximizing (φ, f) pair with public signaling.

7 Private Signaling
With private signaling, computing a (φ, f) pair amounts to
specifying a pair (φi, fi) for each buyer i ∈ N—composed
by a marginal signaling scheme φi : Θ → ∆Si and a price
function fi : Si → [0, 1] for buyer i—, and, then, correlating
the φi so as to obtain a (non-marginal) signaling scheme
φ : Θ→ ∆S . We leverage this fact to design our PTAS.

In Subsection 7.1, we first show that it is possible to restrict
the set of marginal signaling schemes of a given buyer i ∈ N
to those encoded as distributions over q-uniform posteriors,
as we did with public signaling. Then, we provide an LP
formulation for computing an approximately-optimal (φ, f)
pair, dealing with the challenge of correlating marginal signal-
ing schemes in a non-trivial way. Finally, in Subsection 7.2,
we show how to compute a solution to the LP in polynomial
time, which requires the application of the ellipsoid method
in a non-trivial way, due to the features of the formulation.

7.1 LP for Approximate Signaling Schemes
Before providing the LP, we show that restricting marginal
signaling schemes to q-uniform posteriors results in a buyer’s
behavior which is similar to the one with arbitrary posteri-
ors. This amounts to showing that suitably-defined functions
related to the probability of buying are comparatively stable.

For i ∈ N and pi ∈ [0, 1], let gi,pi : [0, 1]n → {0, 1} be
a function that takes as input a vector of buyers’ valuations
and outputs 1 if and only if vi ≥ pi (otherwise it outputs 0).
Lemma 7. Given α, ε > 0 and some distributions V =
{Vi}i∈N , for every buyer i ∈ N , posterior ξi ∈ ∆Θ, and
price pi ∈ [0, 1], the function gi,[pi−ε]+ is (0, α, ε)-stable
compared with gi,pi for (ξi,V).

The following remark will be crucial for proving Lemma 9.
It shows that, if for every i ∈ N we decompose buyer i’s
posterior ξi ∈ ∆Θ by means of a distribution over q-uniform
posteriors (α, ε)-decreasing around ξi, then the probability
with which buyer i buys only decreases by a small amount.14

14In this section, for the ease of presentation, we abuse notation
and use Ξqi to denote the (all equal) sets of q-uniform posteriors
(Definition 1), one per buyer i ∈ N , while Ξq :=×i∈N Ξqi is the
set of tuples ξ = (ξ1, . . . , ξn) specifying a ξi ∈ Ξqi for each i ∈ N .
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Remark 1. Lemma 7 and Theorem 2 imply that, given a
tuple of posteriors ξ = (ξ1, . . . , ξn) ∈×i∈N ∆θ and some
distributions V = {Vi}i∈N , for every buyer i ∈ N and price
pi ∈ [0, 1], there exists γi ∈ ∆Ξqi

with q = 32
ε2 log 4

α s.t.

E
ξ̃i∼γi

[
ξ̃i(θ) Pr

V∼V

{
Viξ̃i≥ [pi−ε]+

}]
≥ ξi(θ)(1−α) Pr

V∼V
{Viξi≥pi}

and
∑
ξ̃i∈Ξqi

γi(ξ̃i) ξ̃i(θ) = ξi(θ) for all θ ∈ Θ.

Next, we show that an approximately-optimal pair (φ, f)
can be found by solving LP 6 instantiated with suitably-
defined q ∈ N>0 and b ∈ N>0. LP 6 employs:
• Variables γi,ξi (for i ∈ N and ξi ∈ Ξqi ), which encode

the distributions over posteriors representing the marginal
signaling schemes φi : Θ→ ∆Si of the buyers.
• Variables ti,ξi,pi (for i ∈ N , ξi ∈ Ξqi , and pi ∈ P b), with
ti,ξi,pi encoding the probability that the seller offers price
pi to buyer i and buyer i’s posterior is ξi.
• Variables yθ,ξ,p (for θ ∈ Θ, ξ ∈ Ξq, and p ∈ Pb), with
yθ,ξ,p encoding the probability that the state is θ, the buy-
ers’ posteriors are those specified by ξ, and the prices that
the seller offers to the buyers are those given by p.

max
γ,t,y≥0

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,p REV(V, p, ξ) s.t. (6a)

ξi(θ)ti,ξi,pi =
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′

∀θ ∈ Θ, ∀i ∈ N , ∀ξi ∈ Ξqi , ∀pi ∈ P
b (6b)∑

pi∈P b
ti,ξi,pi = γi,ξi ∀i ∈ N , ∀ξi ∈ Ξqi (6c)

∑
ξi∈Ξqi

γi,ξi ξi(θ) = µθ ∀i ∈ N , ∀θ ∈ Θ. (6d)

Variables ti,ξi,pi represent marginal signaling schemes, al-
lowing for multiple signals inducing the same posterior.
This is needed since signals may correspond to different
price proposals.15 One may think of marginal signaling
schemes in LP 6 as if they were using signals defined as
pairs si = (ξi, pi), with the convention that fi(si) = pi.
Variables yθ,ξ,p and Constraints (6b) ensure that marginal sig-
naling schemes are correctly correlated together, by directly
working in the domain of the distributions over posteriors.

To show that an optimal solution to LP 6 provides an
approximately-optimal (φ, f) pair, we need the following
two lemmas. Lemma 8 proves that, given a feasible solution
to LP 6, we can recover a pair (φ, f) providing the seller with
an expected revenue equal to the value of the LP solution.
Lemma 9 shows that the optimal value of LP 6 is “close”
to OPT . These two lemmas imply that an approximately-
optimal (φ, f) pair can be computed by solving LP 6.

15Notice that, in a classical setting in which the sender does not
have to propose a price (or, in general, select some action after
sending signals), there always exists a signaling scheme with no
pair of signals inducing the same posterior. Indeed, two signals that
induce the same posterior can always be joined into a single signal.
This is not the case in our setting, where we can only join signals
that induce the same posterior and correspond to the same price.

Lemma 8. Given a feasible solution to LP 6, it is possible to
recover a pair (φ, f) that provides the seller with an expected
revenue equal to the value of the solution.

Lemma 9. For every η > 0, there exist b(η), q(η) ∈ N>0

such that LP 6 has optimal value at least OPT − η.

7.2 PTAS
We provide an algorithm that approximately solves LP 6 in
polynomial time, which completes our PTAS for computing
a revenue-maximizing pair (φ, f) in the private setting. The
core idea of our algorithm is to apply the ellipsoid method
on the dual of LP 6.16 In particular, our implementation of
the ellipsoid algorithm uses an approximate separation oracle
that needs to solve the following optimization problem.
Definition 5 (MAX-LINREV). Given some distributions of
buyers’ valuations V = {Vi}i∈N such that each Vi has finite
support and a vector w ∈ [0, 1]n×|Ξ

q
i |×|P b|, solve

max
ξ∈Ξq,p∈Pb

REV(V, p, ξ) +
∑
i∈N

wi,ξi,pi .

As a first step, we provide an FPTAS for MAX-LINREV
using a dynamic programming approach. This will be the
main building block of our approximate separation oracle.17

The FPTAS works as follows. Given an error tolerance δ >
0, it first defines a step size 1

c , with c = dnδ e, and builds a set
A = {0, 1

c ,
2
c , . . . , n} of possible discretized values for the

linear term appearing in the MAX-LINREV objective. Then,
for every buyer i ∈ N (in reversed order) and value a ∈ A,
the algorithm computes M(i, a), which is an approximation
of the largest seller’s revenue provided by a pair (ξ, p) when
considering buyers i, . . . , n only, and restricted to pairs (ξ, p)
such that the inequality

∑
j∈N :j≥i wj,ξj ,pj ≥ a is satisfied.

By letting zi := Prvi∼Vi
{
v>i ξi ≥ pi

}
, the value M(i, a)

can be defined by the following recursive formula:18

M(i, a) := max
ξi∈Ξqi ,pi∈P b

a′∈A:wi,ξi,pi+a
′≥a

zipi + (1− zi)M(i+ 1, a′).

Finally, the algorithm returns maxa∈A {M(1, a) + a}. Thus:
Lemma 10. For any δ > 0, there exists a dynamic pro-
gramming algorithm that provides a δ-approximation (in the
additive sense) to MAX-LINREV. Moreover, the algorithm
runs in time polynomial in the size of the input and 1

δ .
Now, we are ready to prove the main result of this section.

Theorem 4. There exists an additive PTAS for computing a
revenue-maximizing (φ, f) pair with private signaling.

16To be precise, we apply the ellipsoid method to the dual of a
relaxed version of LP 6, since we need an over-constrained dual.
More details on these technicalities are in the Extended Version.

17Notice that, since MAX-LINREV takes as input distributions
with a finite support, we can safely assume that such distributions
can be explicitly represented in memory. In our PTAS, the inputs
to the dynamic programming algorithm are obtained by building
empirical distributions through samples from the actual distributions
of buyers’ valuations, thus ensuring finiteness of the supports.

18Notice that, given a pair (ξ, p) with ξ ∈ Ξq and p ∈ Pb, it is
possible to compute in polynomial time the probability with which
a buyer i ∈ N buys the item.
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