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Abstract

Motivated by fair division applications, we study a fair con-
nected graph partitioning problem, in which an undirected
graph with m nodes must be divided between n agents such
that each agent receives a connected subgraph and the par-
tition is fair. We study approximate versions of two fairness
criteria: α-proportionality requires that each agent receives a
subgraph with at least 1/α ·m/n nodes, and α-balancedness
requires that the ratio between the sizes of the largest and
smallest subgraphs be at most α. Unfortunately, there exist
simple examples in which no partition is reasonably propor-
tional or balanced. To circumvent this, we introduce the idea
of charity. We show that by “donating” just n− 1 nodes, we
can guarantee the existence of 2-proportional and almost 2-
balanced partitions (and find them in polynomial time), and
that this result is almost tight. More generally, we chart the
tradeoff between the size of charity and the approximation of
proportionality or balancedness we can guarantee.

1 Introduction
The problem of fair division concerns the allocation of a set
of goods (or chores) fairly between a set of agents. Per-
haps the most canonical model is cake-cutting, in which
a heterogeneous divisible good, called cake, is divided be-
tween n agents. Under minimal assumptions, this model al-
lows providing compelling fairness guarantees. For exam-
ple, one can ensure proportionality (Steinhaus 1948), which
demands that each agent’s value for her allocation be at least
1/n-th of her value for the entire cake, or the stronger no-
tion of envy-freeness (Gamow and Stern 1958; Dubins and
Spanier 1961), which demands that no agent strictly prefers
another agent’s allocation to her own.

However, many real-world applications pose additional
constraints, which often make such strong fairness notions
impossible to guarantee. A common constraint, which has
received increasing attention recently, is indivisibility. Here,
one assumes that the goods cannot be split, i.e., each good
must be allocated entirely to a single agent. For example,
when dividing an inheritance between heirs, goods such as a
house or a piece of jewelry are indivisible. In this case, one
can no longer guarantee proportionality or envy-freeness;
think of allocating a single indivisible good between two
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agents. Nonetheless, “up to one good”-style relaxations can
be guaranteed (Budish 2011; Conitzer, Freeman, and Shah
2017; Caragiannis et al. 2019), which converge to providing
exact proportionality or envy-freeness when each individual
good is negligible compared to the set of all goods.

The situation becomes more dire when we impose another
common constraint: connectedness. Bouveret et al. (2017)
introduced a model where the indivisible goods are nodes
of a graph and the goal is to allocate to each agent a sub-
set of goods that forms a connected subgraph. Examples of
real-world applications where connectedness is desirable in-
clude allocation of offices to research groups in an academic
building, land division (Devulapalli 2014), congressional re-
districting1, power grid islanding (Soltan, Yannakakis, and
Zussman 2020), and metadata partitioning in large-scale dis-
tributed storage systems (Wu, Liu, and Chung 2010).

While many of these applications have identical goods
(meaning that all agents have the same value for each good),
it is easy to see that even in this special case, no reasonable
relaxation of proportionality or envy-freeness can be guaran-
teed, even if each individual good is negligible compared to
the set of all goods. For example, consider m� n identical
goods connected via a star graph with a hub node connected
to m− 1 leaf nodes. Any way of partitioning the nodes into
n connected bundles will produce a highly imbalanced par-
tition in which one very large bundle has at least m− n+ 1
nodes while every other bundle has at most a single node.

This, in essence, is the fair graph partitioning problem that
we study in this work. Formally, we are given an undirected
graphG = (V,E), where V is a set ofm nodes and we want
to partition it into (V1, . . . , Vn) such that each Vi forms a
connected subgraph. Borrowing from the fair division liter-
ature, we call this partition α-proportional if mini α · |Vi| >
m/n, and α-balanced if maxi |Vi| 6 α ·mini |Vi|. It is easy
to see that α-balancedness implies α-proportionality.2 Bal-
ancedness and similar cardinality constraints have been in-
vestigated previously in various fair division contexts (Ler-
oux and Leroux 2004; Biswas and Barman 2018; Bei et al.
2021b; Halpern and Shah 2021); in our case, note that 1-

1This is the process of re-drawing electoral district boundaries.
Formally, a graph of electoral precincts is divided into a fixed num-
ber of connected subgraphs (districts) with approximately equal
populations (Williams Jr 1995).

2Actually, it implies (α− (α− 1)/n)-proportionality.
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balancedness is equivalent to envy-freeness.
While the aforementioned star graph example rules out

any reasonably fair partition, note that if we could keep just
the hub node unallocated, we could partition the leaf nodes
in a highly proportional and balanced manner. In the fair
division literature, the idea of keeping a few goods unal-
located, termed charity, has been used to achieve fairness
guarantees that are even stronger than envy-freeness up to
one good without the connectedness constraint (Chaudhury
et al. 2021b; Caragiannis, Gravin, and Huang 2019; Chaud-
hury et al. 2021a; Berger et al. 2021). We borrow this idea
and show that charity also helps improve fairness when con-
nectedness is desired. In our context, the unallocated nodes
can also be viewed as shared between agents; e.g., in land
division, these can be public land accessible by all agents.

Formally, we seek a partition (V1, . . . , Vn, R) of V , where
the set of unallocated (or excluded) nodes R is small and
each Vi is connected “via” R (i.e., there exists Ri ⊆ R
such that Vi ∪Ri is connected). While α-balancedness defi-
nition remains unchanged, α-proportionality is now defined
as α ·mini |Vi| > (m− |R|)/n, so that α-balancedness still
implies α-proportionality. Revisiting the star graph example,
we can see that if we divide a star graph with a hub node con-
nected to three leaf nodes between two agents, the best we
can hope for with a single node exclusion is 2-balancedness
and 1.5-proportionality. Generalizing this example, we later
show (Theorem 1) that when dividing a graph between n
agents, the best we can hope for with n− 1 node exclusions
is 2-balancedness and (2− 1/n)-proportionality. This leads
to our main research questions:

Is a 2-balanced or (2 − 1/n)-proportional partition
of a graph between n agents guaranteed to exist with
only n− 1 node exclusions? If so, can we find such a
partition in polynomial time? More generally, what is
the tradeoff between the approximation of proportion-
ality or balancedness we can achieve and the number
of nodes we need to exclude?

Since the number of nodes m can be much greater than
n, following the fair division literature (Chaudhury et al.
2021b), we view excluding O(n) nodes as “a little charity”.

1.1 Our Results
We begin by the case where at most n − 1 node exclu-
sions are allowed. We prove a lower bound which shows that
α-balancedness and α-proportionality cannot be guaranteed
for any α < 2 and α < 2− 1/n, respectively (Theorem 1).

Next, for n ∈ {2, 3}, we show that this bound is tight and
such partitions can be found in polynomial time (Theorems 2
and 3). For higher values of n, we provide three efficient al-
gorithms which obtain generally incomparable approxima-
tion guarantees: one ensures (3 + O(n/m))-balancedness
and 3-proportionality, another ensures 4-balancedness and
2-proportionality, and the final one ensures (2 +O(n2/m))-
balancedness and (2 − 1/n + O(n2/m))-proportionality.
In particular, for fixed n, when m → ∞, the final result
matches the lower bound from Theorem 1. We conjecture
that it should be possible to achieve 2-balancedness and
(2− 1/n)-proportionality for any n and m.

We also consider the tradeoff between the charity (num-
ber of node exclusions allowed) and approximations to
balancedness or proportionality which can be guaranteed.
While we provide almost tight bounds on this tradeoff when
more than n− 1 exclusions are allowed, we leave behind in-
teresting open questions when fewer than n − 1 exclusions
are allowed. We also show hardness of checking the exis-
tence of balanced partitions with at most n − 1 exclusions
or approximately balanced partitions with no exclusions. All
missing proofs can be found in the full version, along with
miscellaneous extensions to our framework.

1.2 Related Work
Our work is related to various models studied in mathemat-
ics, theoretical computer science, and multiagent systems.

In theoretical computer science, the problem of partition-
ing the nodes of a graph into connected subgraphs is well-
studied. It is known that checking whether a partition into
equal-sized connected subgraphs — hence, perfectly propor-
tional and balanced — exists is NP-hard (Dyer and Frieze
1985); hence, this literature focuses on designing approxi-
mation algorithms for computing partitions that are close to
optimal according to various criteria, such as maximizing
the minimum size (related to proportionality) (Chlebı́ková
1996; Chataigner, Salgado, and Wakabayashi 2007) and
minimizing the maximum size (Chen et al. 2020). However,
when even the optimal partitions are highly imbalanced, as
in the star graph example from the introduction, such ap-
proximations are also unsatisfactory. The focus of our work
is to provide worst-case bounds on balancedness and propor-
tionality by allowing the exclusion of a few nodes (charity).

In mathematics, the related problem of partitioning the
edges rather than nodes of a graph has received attention.
For the special case of trees, this problem was introduced
by Wu et al. (2007), who proved the existence of 3-balanced
and (2− 1/n)-proportional edge partitions; note that this is
without any edge exclusions. Later, Dye (2009) improved
the balancedness approximation to 2 for n ∈ {2, 3, 4}, Chu
et al. (2010) extended this result to all values of n, and Chu,
Wu, and Chao (2013) showed how to achieve this in lin-
ear time even when the edges are weighted. In Section 5, we
make an connection between edge partitions of trees with no
edge exclusions and node partitions of general graphs with
at most n − 1 node exclusions, allowing us to leverage the
above results to obtain upper bounds for our problem.

Our primary motivation stems from the fair division lit-
erature in multiagent systems, where the goal is to partition
the available goods between agents in a way that each agent
receives a connected subset. While envy-freeness and pro-
portionality can be achieved exactly when the goods are di-
visible, as in cake-cutting (Stromquist 1980; Su 1999), as
illustrated in the introduction, not even a reasonable approx-
imation of these guarantees can be provided when the goods
are indivisible, modeled as nodes of a graph. Hence, this lit-
erature focuses on special families of graphs, such as path
graphs, for which such guarantees can be provided (Bou-
veret et al. 2017; Bilò et al. 2019; Bei et al. 2021a), and on
the computational complexity of the existence of fair con-
nected allocations (Deligkas et al. 2021; Greco and Scarcello
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2020; Igarashi and Peters 2019). Our goal is to provide ap-
proximate fairness guarantees for general graphs, by using
the idea of charity, which has been explored recently for fair
division without the connectedness constraint (Chaudhury
et al. 2021b; Caragiannis, Gravin, and Huang 2019; Chaud-
hury et al. 2021a; Berger et al. 2021).

We remark that connected fair division has also been
studied for chores rather than goods, with both divisi-
ble chores (Heydrich and van Stee 2015; Dehghani et al.
2018) and indivisible ones (Bouveret, Cechlárová, and Lesca
2019).

2 Preliminaries
For q ∈ N, define [q] = {1, . . . , q}. Let G = (V,E) be a
graph with |V | = m. We denote with G[X] the subgraph
induced byX ⊆ V . We say that (V1, . . . , Vn, R) is a pseudo
n-partition of G if

1. V = (∪i∈[n]Vi) ∪R;
2. Vi ∩ Vj = ∅ for distinct i, j ∈ [n], and Vi ∩R = ∅ for all
i ∈ [n]; and

3. |R| 6 n− 1.

When |R| = 0, we simply refer to it as an n-partition of G.
A pseudo n-partition (V1, . . . , Vn, R) is called connected if,
for every i ∈ [n], there existsRi ⊆ R such that the subgraph
G[Vi ∪ Ri] is connected. Throughout the paper, we assume
that G is connected and m > n, otherwise there may not
exist any connected pseudo n-partition of G.

In our motivating fair division applications, the nodes of
G are the goods, Vi is the set of goods allocated to agent i,
and R is the set of goods left unallocated (charity). We are
typically interested in the case where n � m, so a charity
of n− 1 out of m nodes is very little.

With such little charity, our goal is to find a connected
pseudo n-partition (V1 . . . , Vn, R) of G that is reasonably
fair. We consider the following fairness desiderata.

Definition 1 (Balancedness). For α > 1, we say that a con-
nected pseudo n-partition (V1, . . . , Vn, R) is α-balanced if
maxi∈[n] |Vi| 6 α·mini∈[n] |Vi|. We refer to 1-balancedness
simply as balancedness.

Definition 2 (Proportionality). Forα > 1, we say that a con-
nected pseudo n-partition (V1, . . . , Vn, R) is α-proportional
if α · mini∈[n] |Vi| > (m − |R|)/n. We refer to 1-
proportionality simply as proportionality.

Note that if a connected pseudo n-partition
(V1, . . . , Vn, R) is α-balanced, then we have
m = |R|+

∑
i∈[n] |Vi| 6 |R|+ |Vi|+(n−1) ·α · |Vi| for any

i ∈ [n], which, after some simplification, implies that the
partition is also (α− (α− 1)/n)-proportional. In particular,
2-balancedness implies (2− 1/n)-proportionality.

We remark that the most difficult case of our problem is
when G is a tree. Trivially, any lower bounds derived for
trees apply to the general case as well. But note that any
upper bounds derived for trees can also be translated to the
general case. This is because, given any algorithm for trees
and an input graph G, we can apply the algorithm to any
spanning tree ofG (which can be computed efficiently). Any

pseudo n-partition produced by the algorithm that is con-
nected under the spanning tree must also be connected under
G. Hence, throughout the paper, we assume G to be a tree
without loss of generality.

We will often work with rooted trees. Given a tree G =
(V,E) and a node v ∈ V , let T = (G, v) denote the tree G
rooted at v. Given a node u ∈ V , let ST (u, T ), c(u, T ), and
p(u, T ) denote the subtree, the set of children nodes, and
the parent node of u, respectively (p(v, T ) is undefined); let
level(u, T ) denote the length of the (unique) path from u
to the root v in T , with level(v, T ) = 1. Define the height
of tree T as height(T ) = maxu∈V level(u, T ). We drop T
from the notation when it is clear from the context.

3 A Lower Bound
We begin by showing that we cannot hope to provide
any guarantee better than 2-balancedness or (2 − 1/n)-
proportionality. This uses a generalization of the example
used in the introduction to establish these lower bounds for
n = 2. In later sections, we design algorithms that (almost)
achieve these bounds.
Theorem 1. There exists an instance in which no connected
pseudo n-partition is α-balanced for any α < 2 or α-
proportional for any α < 2− 1/n.

Proof. Let ` > n be an integer. Consider the graph G =
(V,E) that consists of 2n−1 paths of length ` each, denoted
P1, . . . , P2n−1, and n − 1 additional “hub” nodes, denoted
h1, . . . , hn−1. Hence, |V | = `·(2n−1)+n−1. For j ∈ [n−
2], hj is connected to hj+1 as well as to one of the endpoints
of paths P2j−1 and P2j . Finally, hn−1 is connected to one
of the endpoints of paths P2n−3, P2n−2, and P2n−1.

First, we show that there is no connected pseudo n-
partition (V1, ..., Vn, R) such that |Vi| > `+1 for all i ∈ [n].
For the sake of contradiction, assume that such a partition
exists. We show that each path intersects at most one of
the parts. Indeed, if there exist j ∈ [2n − 1] and distinct
i, i′ ∈ [n] such that Pj ∩ Vi 6= ∅ and Pj ∩ Vi′ 6= ∅, then the
part that contains the node in Pj ∩ (Vi ∪ Vi′) farthest from
the hub that Pj is attached to would have size at most `− 1,
which is a contradiction. Since there are 2n − 1 paths and
each intersects at most one part, by the pigeonhole principle,
there must exist i∗ ∈ [n] such that Vi∗ intersects with at most
one path Pj∗ . Since |Vi∗ | > `+1, it must contain at least one
hub node v. Since each hub node is attached to at least two
paths, v must be attached to a path Pj′ different from Pj∗ .
Since |R| 6 n − 1 < ` = |Pj′ |, we have Pj′ 6⊆ R; hence,
there must exist i′ ∈ [n] \ {i} such that Vi′ ∩Pj′ 6= ∅. How-
ever, since the hub node v that Pj′ is attached to is allocated
to Vi, by the connectedness constraint we have Vi′ ⊆ Pj′ ,
implying |Vi′ | 6 `, which is a contradiction.

We have established that in any connected pseudo n-
partition, there exists i ∈ [n] such that |Vi| 6 `. If it is
α-proportional, then we need

α · ` > m− |R|
n

>
(2n− 1) · `

n
,

which implies α > 2 − 1/n. Since α-balancedness implies
(α− (α−1)/n)-proportionality for any α > 1, the impossi-
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Algorithm 1: 2-balancedness and 1.5-proportionality for
n = 2

Input: Tree G = (V,E) with |V | = m nodes.
Output: A connected pseudo 2-partition.

1: r ← arbitrary node in V
2: T ← tree (G, r) rooted at r
3: Find a node u∗ such that |ST (u∗, T )| > dm/3e >
ST (v, T ) for every child v of u∗

4: if |ST (u∗, T )| = dm/3e then
5: (V1, V2, R)← (ST (u∗, T ), V \ ST (u∗, T ), ∅)
6: else
7: R← {u∗}, V1 ← ∅
8: for v ∈ c(u∗, T ) do
9: V1 ← V1 ∪ ST (v, T )

10: if |V1| > dm/3e then
11: break
12: end if
13: end for
14: V2 ← V \ (V1 ∪ {u∗})
15: end if
16: return (V1, V2, R)

bility of achieving α-proportionality for α < (2− 1/n) im-
plies the impossibility of getting α-balancedness for α < 2.

4 Optimal 2-Partitions and 3-Partitions
In this section, we show that the lower bound from The-

orem 1 is tight when n ∈ {2, 3}. For these cases, we
design efficient algorithms for finding connected pseudo
n-partitions that are 2-balanced (and thus, (2 − 1/n)-
proportional). The algorithm for n = 2, Algorithm 1, is of
particular interest, as we will use it as a subroutine in the
next section to derive bounds for higher values of n.

Algorithm 1 returns a connected 2-balanced pseudo 2-
partition with |R| 6 1 as follows. It roots the given tree
arbitrarily, and then finds a node u∗ at maximal depth whose
subtree has at least dm/3e nodes. If the subtree has exactly
dm/3e nodes, it assigns the subtree as one part and the rest
of the tree as the other part (not excluding any node). Oth-
erwise, it excludes u∗, and adds subtrees of its children it-
eratively to a part until the part has at least dm/3e nodes.
The remaining nodes form the other part. A similar trick has
been used previously in the literature; see, e.g., (Micha and
Shah 2020) and (Li et al. 2021).

Theorem 2. When n = 2, Algorithm 1 runs in polynomial
time and returns a connected pseudo 2-partition that is 2-
balanced and, hence, 1.5-proportional.

Proof. We have already argued that Algorithm 1 can be
implemented efficiently. It is also easy to check that it re-
turns a connected pseudo 2-partition. Now, we show that it
achieves 2-balancedness, which implies 1.5-proportionality,
as argued in Section 2.

First, consider the case where |ST (u∗, T )| = dm/3e.
In this case, since |R| = 0, we need to show that

min(|V1|, |V2|) > dm/3e. This is already satisfied for V1 =
ST (u∗, T ), and we have |V2| = m− dm/3e > dm/3e.

Next, consider the case where |ST (u∗)| > dm/3e. In this
case, since |R| = 1, we need to show that min(|V1|, |V2|) >
d(m − 1)/3e. For V1, this follows by its construction.
Also, consider the last subtree ST (v, T ) added to V1 in
Line 9. Before adding this subtree, V1 must have had at
most dm/3e − 1 nodes. Further, since u∗ is a node of max-
imal height with |ST (u∗, T )| > dm/3e, we must have
|ST (v, T )| 6 dm/3e − 1 for the child v of u∗. Hence, we
have |V1| 6 2(dm/3e − 1), implying that |V2| > m − 1 −
2(dm/3e − 1) > d(m− 1)/3e. The theorem follows.

We make a note of the following fact established in the
proof of Theorem 2, which we will use in the next section
when using Algorithm 1 as a subroutine and deriving bounds
for higher values of n.
Corollary 1. Algorithm 1 returns a connected 2-partition
(V1, V2, R) such that min(|V1|, |V2|) > d(m− |R|)/3e.

Next, we establish a similar result for n = 3.
Theorem 3. When n = 3, there exists a connected pseudo
3-partition that is 2-balanced and, thus, 5/3-proportional,
and it can be computed in polynomial time.

The tightness of the lower bound from Theorem 1 for n ∈
{2, 3} leads us to make the following conjecture:
Conjecture 1. For any n > 2, every graph admits a con-
nected pseudo n-partition that is 2-balanced (and hence,
(2− 1/n)-proportional), and it can be computed efficiently.

In the next section, we present a series of results which
almost resolve this conjecture.

5 Upper Bounds for Higher n
We present three key upper bounds that hold for all n > 2.
The first is via a fairly straightforward algorithm that uses
Algorithm 1 for n = 2 recursively to obtain (3 +O(n/m))-
balancedness and 3-proportionality. The second algorithm
uses the key idea from Algorithm 1 of finding a subtree of
some desired size, and iteratively applies it to achieve 4-
balancedness and 2-proportionality; while the balancedness
approximation gets worse when n � m, the proportional-
ity approximation improves and matches the lower bound of
2 − 1/n from Theorem 1 in the limit when n → ∞. Fi-
nally, by making an interesting connection to the literature
on edge partitions of a tree, we show that (2 + O(n2/m))-
balancedness and (2−1/n+O(n2/m))-proportionality can
be achieved, which matches the respective lower bounds
from Theorem 1 for each n in the limit when m→∞.

Let us begin with our first result of this section. At a high
level, Algorithm 2 works simply as follows: it starts with the
entire input tree as a single part, and repeatedly divides the
largest existing part into two using Algorithm 1 until there
are n parts. One issue is that when Algorithm 1 excludes
a node, the two parts it returns may become disconnected,
preventing us from applying Algorithm 1 to them in future
iterations; this is because Algorithm 1 assumes its input to
be a tree. This is easily fixed by adding artificial edges be-
tween the neighbors of the excluded node to ensure that the
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Algorithm 2: (3 + O(n/m))-balancedness and 3-
proportionality for n > 2

Input: Tree G = (V,E) and integer n > 2.
Output: A connected pseudo n-partition.

1: C0 ← {G}; R0 ← ∅
2: for i = 1 to n− 1 do
3: T i ← largest tree in Ci−1 (break ties arbitrarily)
4: (V i1 , V

i
2 , R̂

i)← Call Algorithm 1 on T i
5: Hi

1 ← T i[V i1 ], Hi
2 ← T i[V i2 ]

6: if R̂i 6= ∅ then
7: Let ui ∈ R̂i {This is unique}
8: For j ∈ {1, 2}, if Hi

j has at least two neighbors of
ui, connect an arbitrarily chosen neighbor to every
other neighbor {This ensures thatHi

j is now a tree}
9: end if

10: Ci ← Ci−1 ∪ {Hi
1, H

i
2} \ T i

11: Ri ← Ri−1 ∪ R̂i
12: end for
13: return (V1, . . . , Vn, R), where V1, . . . , Vn are the sets

of nodes of the trees in Cn−1 and R = Rn−1.

parts returned by Algorithm 1 become trees. This is not a
problem because if a part returned at the end of Algorithm 2
is connected due to the artificially added edges, it would also
be connected via the excluded nodes.

Theorem 4. When n > 2 and m > n · (n− 1), Algorithm 2
runs in polynomial time and returns a connected pseudo n-
partition that is (3 + 6n/m)-balanced and 3-proportional.

Next, we show how to achieve 4-balancedness and 2-
proportionality. We use the key idea from Algorithm 1 of
finding a subtree of some desired size and iteratively apply
it to separate out one part at a time from the tree. An inter-
esting detail, and the driving force behind the balancedness
guarantee, is that because we cannot exactly control the size
of the parts being separated out, we keep adjusting the de-
sired size of the next part based on the actual size of the
previous part created. This ensures that when ` parts are cre-
ated, their total size stays close to ` ·m/n, leaving the size of
the remaining tree close to (n− `) ·m/n. In particular, after
n − 1 parts are created, the remaining tree, much of which
forms the last part, is not too large.

To make our analysis work, we need to ensure that |R| =
n−1. Hence, we needm > 2n−1, so that even after remov-
ing n − 1 nodes, we can always create an n-partition with
non-empty parts. We remark that Line 6 can be implemented
efficiently similarly to Line 3 of Algorithm 1.

When Line 20 of Algorithm 3 excludes node ui in itera-
tion i, Ti may become disconnected as the subtrees rooted
at children of ui become disconnected from each other and
from the rest of the tree. This is fixed by adding artificial
edges connecting every child of ui that remains in Ti to the
parent of ui. As mentioned above, if a part is connected us-
ing these artificial edges, it is also connected using excluded
nodes instead. If ui is the root of the tree, we can imag-
ine creating an artificial new root node, connecting it to all

Algorithm 3: 4-balancedness and 2-proportionality for n >
2

Input: Tree G = (V,E) and integer n > 2.
Output: A connected pseudo n-partition.

1: r ← arbitrary node in V
2: T ← tree (G, r) rooted at r
3: R← ∅ ;∀i ∈ [n], Vi ← ∅
4: s← m−(n−1)

n , x0 ← 0, T1 ← T
5: for i = 1 to n− 1 do
6: Find a node ui such that |ST (ui, Ti)| > ds(1 +

xi−1)/2e > |ST (v, Ti)| for all v ∈ c(ui, Ti)
7: if |ST (ui, Ti)| = ds(1 + xi−1)/2e then
8: Vi ← ST (ui, Ti)
9: Ti+1 ← Ti \ ST (ui, Ti)

10: else
11: R = R ∪ {ui}
12: for u′ ∈ c(ui, Ti) do
13: Vi ← Vi ∪ ST (u′, Ti)
14: if |Vi| > ds(1 + xi−1)/2e then
15: break
16: end if
17: end for
18: Ti ← Ti \ Vi
19: Connect each v ∈ c(ui, Ti) to p(ui, Ti)
20: Ti+1 ← Ti \ {ui}
21: end if
22: xi ← 1 + xi−1 − |Vi|/s
23: end for
24: S ← set of n− 1− |R| arbitrary nodes from Tn
25: Vn ← Tn \ S, R← R ∪ S
26: return (V1, . . . , Vn, R)

children of ui, but not counting this artificial root node in
future computations of subtree sizes. Note that, unlike in Al-
gorithm 2, we do not just connect an arbitrary neighbor of
ui in Ti to its remaining neighbors because this can alter the
rooted tree structure, which we use in this algorithm.

Theorem 5. When n > 2 and m > 2n − 1, Algorithm 3
runs in polynomial time and returns a connected pseudo n-
partition that is 4-balanced and 2-proportional.

Proof. As explained above, the addition of artificial edges
in Line 19 ensure that the remaining graphs (Ti-s) are trees
and the parts being created (Vi-s) are connected via the ex-
cluded nodes. Later, in Lemma 2, we will establish that for
i ∈ [n − 1], xi−1 6 1 and |Ti| > d(n − i) · se > dse >
ds(1 + xi−1)/2e. Hence, the algorithm will be able to suc-
cessfully find node ui in every iteration i and proceed with-
out any issues. Since at most a single node is added to R in
each of n − 1 iterations, we clearly have |R| 6 n − 1. This
establishes that the algorithm is valid (i.e., it produces a con-
nected pseudo n-partition at the end. It is also easy to see that
the algorithm runs in polynomial time). Hence, it remains to
establish its balancedness and proportionality guarantees.

As m > 2n− 1, we have that s = m−(n−1)
n > 1. Before

proceeding further, we need the following observation.
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Lemma 1. For any y > 0, s(1 + y) > ds(1 + y)/2e.

Proof. As s > 1 and y > 0, we have s(1 + y) > 1. Now, if
s(1 + y) > 2, then we have

ds(1 + y)/2e 6 s(1 + y)/2 + 1 6 s(1 + y).

Otherwise, we have 2 > s(1 + y) > 1, so s(1 + y) > 1 =
ds(1 + y)/2e.

Next, we prove the following lemma inductively, and es-
tablish several structural properties that hold during the exe-
cution of the algorithm.

Lemma 2. For each i ∈ {0} ∪ [n− 1], the following hold:

• 0 6 xi 6 1,
• ds(1 + xi−1)/2e 6 |Vi| 6 s(1 + xi−1) if i > 1,
• | ∪j∈[i] Vj | = (i− xi) · s, and
• |Ti+1| > d(n− i) · se.

Proof. We prove the lemma using induction on i. The base
case of i = 0 trivially holds because x0 = 0 and T1 =
T . Fix i > 1. Suppose the induction hypothesis holds for
0, 1, . . . , i− 1.

Note that |Vi| > ds(1 + xi−1)/2e holds by construction
(Lines 7 and 14). If the condition in Line 7 works, then we
have |Vi| = ds(1 + xi−1)/2e 6 s(1 + xi−1) by Lemma 1.
Otherwise, since we keep adding subtrees of size at most
ds(1+xi−1)/2e−1 until |Vi| > ds(1+xi−1)/2e (Line 14),
we have |Vi| 6 2 · (ds(1 + xi−1)/2e − 1) 6 s(1 + xi−1).
Hence, the second claim holds.

For the third claim, we use the fact that | ∪j∈[i] Vj | =
|∪j∈[i−1]Vj |+|Vi| = (i−1−xi−1)·s+|Vi|. To establish that
this is equal to (i−xi) ·s, we need |Vi| = (1+xi−1−xi) ·s,
which holds by the definition of xi in Line 22.

For the fourth claim, since at most n − 1 nodes are ex-
cluded at any point during the execution of the algorithm,
we have

|Ti+1| > m− (n− 1)− | ∪j∈[i] Vj |
= n · s− (i− xi) · s > (n− i) · s.

Since |Ti+1| is an integer, we also have |Ti+1| > d(n−i)·se.
For the first claim, recall that xi = 1 +xi−1−|Vi|/s. But

(1 + xi−1)/2 6 |Vi|/s 6 1 + xi−1 from the second claim.
Hence, 0 6 xi 6 (1 + xi−1)/2. Using xi−1 6 1 from the
induction hypothesis, we get 0 6 xi 6 1 as desired.

Combining the first two claims from Lemma 2, we have
that ds/2e 6 |Vi| 6 2s for i ∈ [n− 1]. Let us now estimate
|Vn|. From the third claim of Lemma 2 applied at i = n− 1,
we have

|Tn| = |T \ (∪i∈[n−1]Vi ∪R)|
= m− (n− 1− xn−1) · s− |R|

Note that Vn = Tn \ S, where S is a set of n − 1 − |R|
arbitrary nodes from Tn. Hence,

|Vn| = m− (n− 1− xn−1) · s− (n− 1) = (1 + xn−1) · s,

where the second transition follows sincem−(n−1) = n·s.
Using 0 6 xn−1 6 1 from Lemma 2, we have s 6 |Vn| 6

2s. Hence, in conclusion, we have ds/2e 6 |Vi| 6 2s for
all i ∈ [n], which clearly implies 4-balancedness. Since we
force |R| = n− 1, we have s = (m− (n− 1))/n = (m−
|R|)/n, so this also implies 2-proportionality.

Next, we show that (2 + O(n2/m))-balancedness and
(2 − 1/n + O(n2/m))-proportionality can be obtained by
making a connection to the literature on edge partitions of
trees. We say that (E1, . . . , En) is an n-edge-partition of a
tree G = (V,E) if Ei ∩ Ej = ∅ for all distinct i, j ∈ [n]
and ∪i∈[n]Ei = E. We say that it is connected if, for each
i ∈ [n], the subgraph formed by the edges in Ei is con-
nected (hence, also a tree). For α > 1, we say that it is
α-balanced if maxi∈[n] |Ei| 6 α · mini∈[n] |Ei| and α-
proportional if α·mini∈[n] |Ei| > |E|/n, where |Ei| and |E|
refer to the number of edges in those sets. Observe that α-
balancedness also implies (α−(α−1)/n)-proportionality in
this context. In particular, 2-balancedness implies (2−1/n)-
proportionality.

Note that edge partitions are similar to node partitions,
except we seek to partition the edges without excluding any
edges. For connected node partitions, we argued in Sec-
tion 1, using the star graph as an example, that no reasonable
approximation of balancedness or proportionality can be ob-
tained without excluding any nodes. However, it turns out
that there exist reasonably balanced and proportional edge
partitions of a tree that do not require any edge exclusions.
Theorem 6 (Chu et al. 2010). For any n > 2, every tree
admits a connected n-edge-partition that is 2-balanced and,
hence, (2 − 1/n)-proportional, and such a partition can be
computed in polynomial time.

In the following lemma, we show that a connected n-
edge-partition of a tree (with no edge exclusions) can be
used to obtain a connected pseudo n-partition of the nodes
(with at most n−1 node exclusions) while almost preserving
the balancedness and proportionality guarantees.

Before we proceed further, recall that for node partitions,
our assumption of the input graph being a tree was without
loss of generality because a connected pseudo n-partition of
a spanning tree of the graph is also a connected pseudo n-
partition of the graph itself; both the graph and its spanning
tree have the same set of nodes. This does not hold for edge
partitions. In particular, an n-edge-partition of a spanning
tree of a graph is not even an n-edge-partition of the graph,
since the additional edges in the graph not included in the
spanning tree also need to be partitioned. In that sense, we
are using the aforementioned result on edge partitions for
the special case of trees to derive a result on pseudo node
partitions for general graphs.
Lemma 3. For any n > 2, given a connected n-edge-
partition (E1, . . . , En) of a tree G = (V,E), we can com-
pute, in polynomial time, a connected pseudo n-partition
(V1, . . . , Vk, R) of V (i.e., with |R| 6 n − 1) such that
|Ei|+ 1− |R| 6 |Vi| 6 |Ei|+ 1 for each i ∈ [n].

We now use Lemma 3 to translate the guarantee in Theo-
rem 6 to our setting.
Theorem 7. When n > 2 and m > 4n2, every graph
admits a connected pseudo n-partition of its nodes that is
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(2+8n2/m)-balanced and (2−1/n+8n2/m)-proportional,
and one such solution can be computed in polynomial time.

For fixed n, in the limit when m → ∞, Theorem 7 pro-
vides 2-balancedness and (2− 1/n)-proportionality, match-
ing the lower bound from Theorem 1 and settling Conjec-
ture 1. However, when m is not too large, the guarantee pro-
vided by Theorem 4 or Theorem 5 can be better.

6 The Fairness-Charity Tradeoff
In this section, we consider the tradeoff between the limit on
charity (the maximum number of nodes we are allowed to
exclude) and the approximations to balancedness and pro-
portionality we can guarantee. Given a graph G = (V,E)
and d ∈ {0} ∪ N, (V1, . . . , Vn, R) is called a d-pseudo n-
partition ofG if it is a partition of V and |R| 6 d. As before,
we say that it is connected if, for each i ∈ [n], there exists
Ri ⊆ R such that G[Vi ∪Ri] is a connected subgraph of G.

The next two results focus on d > n − 1 and provide an
almost tight tradeoff. Let us introduce the lower bound first.

Theorem 8. Fix any m,n > 2 and c > 0 such that ` =
m−n+1
2n−1 ∈ N and ` > (c + 1) · (n − 1). Then, there exists

an instance with m nodes in which no connected d-pseudo
n-partition is (2−c/`)-balanced when d < (c+1) ·(n−1),
and no connected d-pseudo n-partition is α-balanced for
any α < 2− c/` when d = (c+ 1) · (n− 1).

One implication of this lower bound is that if we hope to
achieve α-balancedness for any constant α < 2, then we
must have c = Ω(`), i.e., d = Ω(m). Hence, a little charity
(o(m) exclusions) would not suffice for this purpose. This
shows that 2 is the best constant approximation to balanced-
ness we can hope for with just a little charity. Next, we pro-
vide an upper bound via a simple algorithm which starts with
any α-balanced connected pseudo n-partition (i.e., with at
most n− 1 exclusions) and repeatedly excludes a node from
the largest part until either perfect balancedness is achieved
or a total of d nodes are excluded.

Theorem 9. Fix any m,n > 2, c > 0, d = (c+ 1) · (n− 1),
α > 1, and ˆ̀ = m−n+1

αn−(α−1) . Given any graph of m nodes
and any connected (n−1)-pseudo n-partition of it that is α-
balanced, we can efficiently compute a d-pseudo n-partition
that is (α− c/ˆ̀)-balanced.

In Section 5, we established that α-balanced connected
pseudo n-partitions exist for α ≈ 2 (in particular, with
α → 2 when m → ∞). Note that with α = 2, the up-
per bound from Theorem 9 would precisely match the lower
bound from Theorem 8. Thus, assuming that 2-balanced
connected pseudo n-partitions exist, taking such a partition
and repeatedly excluding a node from the largest part pro-
vides optimal balancedness for any d > n− 1.

With d < n − 1, the situation becomes more complex
as it does not seem easy to start from a connected pseudo
n-partition with (at most) n − 1 exclusions and re-include
some nodes while maintaining n connected parts. First, we
show that decreasing the charity limit by just one increases
the balancedness lower bound from 2 to 3.

Theorem 10. For any n > 2, d < n − 1, and ε > 0,
there exists an instance in which no connected d-pseudo n-
partition is α-balanced for any α < 3− ε.

Next, we establish a different lower bound that is better
when d < n/3.
Theorem 11. For any n > 2 and d < n, there exists an
instance in which no connected d-pseudo n-partition is α-
balanced for any α < n/d.

We believe that this bound is tight up to a constant
factor; that is, it should be possible to achieve O(n/d)-
balancedness with d exclusions for any d < n. In particu-
lar, with a single exclusion, we believe it should be possible
to achieve O(n)-balancedness. Below, we prove a weaker
result: O(n)-proportionality can be achieved with a single
exclusion. Note that this implies that the smallest part has
size Ω(m/n2). Since the largest part can have size at most
m, this also implies O(n2)-balancedness.
Theorem 12. For any n > 2, every graph admits a con-
nected 1-pseudo n-partition that is O(n)-proportional, and
it can be computed in polynomial time.

7 Complexity
In this section, we contemplate the complexity of checking
whether an (approximately) balanced connected pseudo par-
tition exists. To that end, we present two hardness results.
The first one considers exact balancedness when n − 1 ex-
clusions are allowed.
Theorem 13. Checking whether a balanced connected
pseudo n-partition (with at most n − 1 exclusions) exists
is NP-complete.

The second result considers exact as well as approximate
balancedness when no exclusions are allowed.
Theorem 14. For any α < 2, checking whether an α-
balanced connected n-partition (with no exclusions) exists
is NP-complete.

8 Discussion
Our work leaves open a number of directions for the fu-
ture. For example, does there always exist a 2-balanced
and (2 − 1/n)-proportional connected pseudo n-partition
with at most n − 1 node exclusions? While we chart out
a tight fairness-charity tradeoff when more than n − 1 ex-
clusions are allowed, what happens when fewer exclusions
are allowed? In particular, does there always exist an O(n)-
balanced connected pseudo n-partition with at most a single
exclusion? Do restricted families of graphs (especially those
with higher connectivity) admit better fairness guarantees?

It would also be interesting to consider natural extensions
and modifications of our model. What if, instead of exclud-
ing nodes, we are allowed to assign a few nodes to multiple
parts? What if we allow nodes to have weights, and redefine
proportionality and balancedness in terms of the total node
weights of the different parts? In the full version, we pro-
vide some guarantees in both these cases when n = 2. More
broadly, it would be exciting to investigate the effective-
ness of charity in the general fair division framework, where
agents can have heterogeneous valuations for the nodes.
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