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Abstract

Given an initial resource allocation, where some agents may
envy others or where a different distribution of resources
might lead to higher social welfare, our goal is to improve
the allocation without reassigning resources. We consider a
sharing concept allowing resources being shared with social
network neighbors of the resource owners. To this end, we
introduce a formal model that allows a central authority to
compute an optimal sharing between neighbors based on an
initial allocation. Advocating this point of view, we focus on
the most basic scenario where a resource may be shared by
two neighbors in a social network and each agent can partici-
pate in a bounded number of sharings. We present algorithms
for optimizing utilitarian and egalitarian social welfare of al-
locations and for reducing the number of envious agents. In
particular, we examine the computational complexity with re-
spect to several natural parameters. Furthermore, we study
cases with restricted social network structures and, among
others, devise polynomial-time algorithms in path- and tree-
like (hierarchical) social networks.

1 Introduction
The fair allocation of resources undoubtedly is a key chal-
lenge for modern societies and economies. Applications can
be found in such diverse fields as cloud computing, food
banks, or managing carbon loads in the context of global
warming. Naturally, this topic received high attention in the
scientific literature. This also holds true for the special case
of indivisible resources (Bouveret, Chevaleyre, and Maudet
2016), which we concentrate on here. Moreover, we take
into account the role of social networks built by agents,
a growing line of research (Abebe, Kleinberg, and Parkes
2017; Bei, Qiao, and Zhang 2017; Bouveret et al. 2017;
Bredereck, Kaczmarczyk, and Niedermeier 2022; Cheva-
leyre, Endriss, and Maudet 2017; Beynier et al. 2019; Lange
and Rothe 2019; Huang and Xiao 2019). We bring one fur-
ther new aspect into this scenario, reflecting the increas-
ing relevance of “sharing economies” (Belk, Eckhardt, and
Bardhi 2019; Schor and Cansoy 2019), where agents share
resources in a peer-to-peer fashion. Resources to share may
be almost everything, for instance, knowledge, machines,
time, or natural resources. More specifically, sharing in our
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scenario, which takes into account the relationships between
agents expressed by social networks, means that two adja-
cent agents in the social network may share the very same
resource, thus increasing the utility of the resource alloca-
tion for at least one of them (assuming positive utility for
each resource). We assume this to be organized and decided
by a central authority like, for example, the boss of a com-
pany. To get started with this new setting, we focus on a
very basic scenario. That is, in our model only two neigh-
bors may share and, reflecting the (very human) principle
of protection of acquired possession, no agent shall loose its
already allocated resources. This conservative principle nat-
urally makes sharing easier to implement, keeping “restruc-
turing costs” lower, and it may even help to “keep peace”
among agents. Moreover, it sometimes comes very natu-
rally as depicted in the subsequent knowledge sharing ex-
ample. Besides improving egalitarian or utilitarian welfare,
we focus on the perhaps most basic fairness criterion, envy-
freeness. Since it is not always possible that complete envy-
freeness is achieved (consider one indivisible resource and
two agents desiring it), we aim at, given an initial resource
allocation, improving it by decreasing the number of envi-
ous agents through resource sharing. Moreover, we allow for
modeling relationship aspects of sharing based on the social
network formed by the agents.

Before becoming more specific about our model, let us
first introduce the following example related to knowledge
sharing. Assume that agents are employees of a company,
each having a bundle of qualifications. An agent may “envy”
another agent because the other agent has some special qual-
ification. The central authority wants to improve the situa-
tion by building teams of two agents where, due to a daily
extensive cooperation, one teaches the other the missing
qualification (for instance, a realization of this is the con-
cept of pair programming that also has other benefits besides
knowledge sharing (Williams et al. 2000)).

Model of sharing allocation. Roughly speaking, our
model is as follows (see Section 2 for formal definitions).
The input is a set of agents and a set of indivisible resources
initially assigned to the agents. Typically, every agent may
be assigned several resources. Each agent has an individ-
ual utility value for each resource. The general goals are to
decrease the overall degree of envy, to increase the sum of
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“utility scores” of all agents, or to increase the minimal “util-
ity score” among all agents. Importantly, the only way an
agent can improve its individual “utility score” is by partici-
pating in a sharing with other agents.

We assume that if an owner shares, then this does not de-
crease its own overall utility value. This approach is justified
when the burden of sharing is neutralized by its advantages.
Indeed, in our knowledge sharing example a hassle of co-
operation is often compensated by a better working expe-
rience or higher quality outcomes (as shown by Williams
et al. (2000)). Note that such complicated mutual dependen-
cies that would be extremely hard to describe formally form
a natural field for our approach. Further application exam-
ples include irregularly used resources (like printers or com-
pute servers). Here, the coordination with another person is
uncritical and splitting the maintenance costs neutralizes the
inconvenience of cooperation.

We enrich our model by using two graphs, an undirected
sharing graph and a directed attention graph, to model so-
cial relations between agents and to govern the following
two constraints of our model. The sharing graph models
the possibility for two agents to share resources because,
e.g., they are close to each other or there is no conflict be-
tween the time they use resources. We focus on the case
when only neighbors in the sharing graph can share a re-
source (a missing qualification in our knowledge sharing ex-
ample). With respect to lowering the degree of envy, we
assume that agents may only envy their outneighbors in
the directed attention graph. This graph-based envy con-
cept has recently been studied by many works in fair alloca-
tion (Bredereck, Kaczmarczyk, and Niedermeier 2022; Aziz
et al. 2018; Beynier et al. 2019).

Agents may naturally be conservative in the sense of
keeping control and not sharing too much. Furthermore, as
in our initial example, it might simply be too ineffective to
share a qualification among more than two employees simul-
taneously (due to, e.g., increased communication overhead
or additional resources needed). We address this in the most
basic way and assume that each resource can be shared to at
most one neighbor of its owner and an agent can participate
in a bounded number of sharings. This strong restriction al-
ready leads to tricky algorithmic challenges and fundamen-
tal insights. In particular, the model also naturally extends
on well-known matching scenarios in a non-trivial way.

There are numerous options to further extend and gener-
alize our basic model, as discussed in Section 5 and in the
concluding Section 6. However, keeping our primary model
simple, we aim at spotting its fundamental properties influ-
encing the complexity of related computational problems.

Related work. To the best of our knowledge, so far the
model we consider has not been studied. Since obtaining
envy-free allocations is not always possible, there has been
work on relaxing the concept of envy. In particular, in the
literature bounded-maximum envy (Lipton et al. 2004), envy-
freeness up to one good (Budish 2011), envy-freeness up
to the least-valued good (Caragiannis et al. 2019), epis-
temic envy-freeness (Aziz et al. 2018), and maximin share
guarantee (Budish 2011) have been studied. However, these

concepts combat nonexistence of allocations that are envy-
free by considering approximate versions of it; they basi-
cally do not try to tackle the question of how to achieve
less “envy” in an allocation. By way of contrast, our ap-
proach tries to find a way to lessen envy not by relaxing
the concept of envy, but rather by enabling a small devia-
tion in the model of indivisible, non-shareable resources. To
this end, we make resources shareable (in our basic model
by two agents). This approach is in line with a series of
recent works which try to reduce envy (i) by introducing
small amounts of money (Brustle et al. 2020; Halpern and
Shah 2019; Caragiannis and Ioannidis 2022), (ii) by donat-
ing a small set of resources to charity (Caragiannis, Gravin,
and Huang 2019; Chaudhury et al. 2021), or (iii) by allow-
ing dividing a small number of indivisible resources (San-
domirskiy and Segal-Halevi 2019; Segal-Halevi 2019). In
particular, the papers mentioned in point (iii) consider a
model of indivisible resources that could be shared by an
arbitrary group of agents and where, unlike in our study,
each agent only gets a portion of the utility of the shared
resources. Contrary to our setting, this model assumes no
initial allocation. As a result, an envy-free allocation always
exists and the goal is to seek one with a minimum num-
ber of shared resources. In contrast, our goal is to improve
an initial allocation through sharing resources between pairs
of agents. Another line of research considers the improve-
ment of allocations by exchanging items (Chevaleyre, En-
driss, and Maudet 2007; Gourvès, Lesca, and Wilczynski
2017; Huang and Xiao 2019). There has been quite some
work on bringing together resource allocation and social
networks (Abebe, Kleinberg, and Parkes 2017; Bei, Qiao,
and Zhang 2017; Bouveret et al. 2017; Bredereck, Kacz-
marczyk, and Niedermeier 2022; Chevaleyre, Endriss, and
Maudet 2017; Beynier et al. 2019; Huang and Xiao 2019). In
particular, the concept of only local envy relations to neigh-
bors in a graph gained quite some attention (Aziz et al. 2018;
Beynier et al. 2019; Bredereck, Kaczmarczyk, and Nieder-
meier 2022; Eiben et al. 2020). Modifying existing alloca-
tions to maintain fairness over time has also been studied
in online settings with changing agents (Friedman, Psomas,
and Vardi 2015, 2017) or resources arriving over time (He
et al. 2019).

Our contributions. Introducing a new model for (indivis-
ible) resource allocation with agents linked by social net-
works, we provide a view on improving existing allocations
for several measures without, conceivably impossible, real-
locations.

We analyze the (parameterized) computational complex-
ity of applying our model to improve utilitarian social wel-
fare or egalitarian social welfare (Definition 4), and to de-
crease the number of envious agents (Definition 5). We show
that a central authority can (mostly) find a sharing that im-
proves social welfare (measured in both the egalitarian and
utilitarian ways) in polynomial time, while decreasing the
number of envious agents is NP-hard even if the sharing
graph is a clique and the attention graph is a bidirectional
clique. To overcome NP-hardness, we also study the influ-
ence of different natural parameters (such as agent utility
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ENVY-REDUCING SHARING ALLOCATION (ERSA)
Gs = Gt same utility few (envious) agents few resources

clique tree- or
pathwidth Gt = clique Gs = clique n k = 0,∆k = 1 m, #shared

resources
bundle

size

NP-h XP, W[1]-h P NP-h FPT p-NP-h XP, W[1]-h p-NP-h
Thm. 3 Thm. 6 Thm. 7 Thm. 8 Thm. 4 Thm. 5 Obs. 3, Thm. 8 Thm. 8

Table 1: Results overview for ERSA, where Gs = Gt means that the sharing graph (Gs) is the same as the underlying graph of
the attention graph (Gt), n is the number of agents, k is the number of envious agents after sharing, ∆k is a drop in the number
of envious agents, and m is the number of resources.

function values, structural parameters concerning the agent
social networks, the number of agents, and the number of
resources); Table 1 surveys our results in more detail. We
show that the problem is polynomial-time solvable if the un-
derlying undirected graph of the attention graph is the same
as the sharing graph and has constant treewidth (close to a
tree). We also identify an interesting contrast between the
roles of the two graphs: When agents have the same util-
ity function, the problem is solvable in polynomial time if
the attention graph is a bidirectional clique, while the prob-
lem is NP-hard even if the sharing graph is a clique. Fi-
nally, we show that the problem is fixed-parameter tractable
(FPT) for the parameter number of agents (giving hope for
efficient solutions in case of a small number of agents) and
polynomial-time solvable (in XP) for a constant number of
resources. However, the problem is NP-hard even if the goal
is to reduce the number of envious agents from one to zero.

Altogether, our main technical contributions are about ex-
ploring the potential to “overcome” the NP-hardness of de-
creasing the number of envious agents by exploiting several
problem-specific parameters. Due to the lack of space, we
refer the reader to the long version of the paper (Bredereck
et al. 2021) for several proof details (marked with (?)).

2 Preliminaries
For a set A = {a1, a2, . . . , an} of agents and a set R =
{r1, r2, . . . , rm} of indivisible resources, a (simple) alloca-
tion π : A → 2R is a function assigning to each agent a
collection of resources—a bundle—such that the assigned
bundles are pairwise disjoint. An allocation is complete if
every resource belongs to some bundle.

A directed graph G consists of a set V of vertices and a
set E ⊆ V × V of arcs connecting the vertices; we do not
allow self-loops (i.e., there are no arcs of form (v, v) for any
vertex v ∈ V ). A (simple) undirected graph G = (V,E)
consists of a set V of vertices and a set E of distinct size-2
subsets of vertices called edges. An underlying undirected
graph of a directed graph G is the graph obtained by replac-
ing all (directed) arcs with (undirected) edges. We say an
undirected graph G = (V,E) is a clique if E =

(
V
2

)
and a

directed graph is a bidirectional clique if E = V × V . For
some vertex v ∈ V , the set I(v) of incident arcs (edges) is
the set of all arcs (edges) with an endpoint in v.

Sharing Model. We fix an initial allocation π of resources
in R to agents in A. A sharing graph is an undirected

graph Gs=(A,Es) with vertices being the agents; it models
possible sharings between the agents. The following defini-
tion of sharing says that two agents can only share resources
held by one of them.
Definition 1. Function δπ : Es → 2R is a sharing for π if
for every two agents ai and aj , with {ai, aj} ∈ Es, it holds
that δπ({ai, aj}) ⊆ π(ai) ∪ π(aj).

An initial allocation π and a corresponding sharing δπ
form a sharing allocation.
Definition 2. A sharing allocation induced by allocation π
and sharing δπ is a function Πδπ

π : A → 2R where
Πδπ
π (a) := π(a) ∪

⋃
e∈I(a) δπ(e).

Since the initial allocation π is fixed, for brevity, we use δ
and Πδ , omitting π whenever it is not ambiguous. For sim-
plicity, for every agent a ∈ A, we also refer to Πδ(a) as a
bundle of a.

Naturally, each allocation is also a sharing allocation with
a trivial “empty sharing.” Observe a subtle difference in the
intuitive meaning of a bundle of an agent between sharing
allocations and (simple) allocations. For sharing allocations,
a bundle of an agent represents the resources the agent has
access to and can utilize, not only those that the agent pos-
sesses (as for simple allocations).

2-sharing. Definition 1 is very general and only requires
that two agents share resources that one of them already has.
In particular, it allows one agent to share the same resource
with many other agents; and does not constrain the number
of sharings an agent could participate in. In this paper, we
assume that each resource can only be shared by two agents
and each agent can participate in at most a bounded number
of sharings. We express this requirement in Definition 3.
Definition 3. A 2-sharing δ is a sharing where, for any
three agents ai, aj , and ak, it holds that Πδ(ai) ∩Πδ(aj) ∩
Πδ(ak) = ∅. A b-bounded 2-sharing δ is a 2-sharing where,

for each agent a, it holds that
∣∣∣⋃e∈I(a) δ(e)∣∣∣ ≤ b. A simple

2-sharing δ is a 1-bounded 2-sharing, i.e., for each agent a,
it holds that

∣∣∣⋃e∈I(a) δ(e)∣∣∣ ≤ 1.

Herein, we count the number of sharings an agent par-
ticipate in by the number of resources shared with other
agents (either “shared to” other agents or received from
other agents). Notably, in simple 2-sharing, each agent can
either share or receive a single resource. Thus, every simple
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2-sharing can be interpreted as matching in which each edge
is labeled with a shared item.

Welfare and Fairness Measures. We assume agents hav-
ing additive utility functions. For an agent a with util-
ity function u : R → N0 and a bundle R ⊆ R, let
u(R) :=

∑
r∈R u(r) be the value of R as perceived

by a. Let us fix a sharing allocation Πδ of resources R
to agents A = {a1, a2, . . . , an} with corresponding util-
ity functions u1, u2, . . . , un. We define the following social
welfare measures:

utilitarian: usw(Πδ) :=
∑
i∈[n] ui(Π

δ(ai)) and
egalitarian: esw(π) := mini∈[n] ui(Π

δ(ai)).
Notice that we assume each agent ai gets the full utility for
all resources in Πδ(ai). We will discuss a generalization of
this assumption in Section 5.

A directed graph Gt=(A,Et) with vertices being the agents
is an attention graph; it models social relations between the
agents. We say that an agent ai looks at another agent aj
if (ai, aj) ∈ Et. An agent is envious on Gt under Πδ if it
prefers a bundle of another agent it looks at over its own
one; formally, ai envies aj if ui(Πδ(ai)) < ui(Π

δ(aj))
and (ai, aj) ∈ Et. We denote the set of envious agents in Πδ

as Env(Πδ). For a given (directed) attention graph Gt over
the agents, a sharing allocation is Gt-envy-free if no agent
envies its out-neighbors.

3 Improving Social Welfare by Sharing
In this section, we study the problem of improving utilitarian
(and egalitarian) welfare through sharing, defined as follows.
Definition 4. Given an initial complete allocation π of re-
sources R to agents A, a sharing graph Gs, and a non-
negative integer k, b-Bounded Utilitarian Welfare Shar-
ing Allocation (b-UWSA) asks if there is a b-bounded 2-
sharing δ such that usw(Πδ) ≥ k; b-Bounded Egalitarian
Welfare Sharing Allocation (b-EWSA) asks if there is a b-
bounded 2-sharing δ such that esw(Πδ) ≥ k.

We first consider b-UWSA. When b = 1, since every
simple 2-sharing corresponds to a matching, we can eas-
ily reduce 1-UWSA to MAXIMUM WEIGHTED MATCH-
ING. Thus, 1-UWSA is solvable in polynomial time. When
b > 1, however, the problem is not just finding b match-
ings such that the total weight is maximized, since in 2-
sharing each resource can only be shared once. Nevertheless,
we show that we can still reduce b-UWSA to MAXIMUM
WEIGHTED MATCHING via a more involved reduction.
Theorem 1. b-UWSA is solvable in polynomial time for
any b ≥ 1.

Proof. Given an instance of b-UWSA, we construct an
instance (G = (V,E), w) of MAXIMUM WEIGHTED
MATCHING as follows. For simplicity, assume each agent
ai ∈ A has at least b resources in the initial allocation π;
otherwise we can ensure this by adding enough resources
that are valued as 0 by all agents. For each agent ai ∈ A
and each resource rj ∈ R, we add a vertex vji into V . In ad-
dition, for each agent ai ∈ A, we add ni = |π(ai)| − b

dummy vertices {vki }k=1,2,...,ni into V . For each pair of
agents ai1 , ai2 , for each vertex vj1i1 corresponding to ai1 and
each vertex vj2i2 corresponding to ai2 , we add an edge be-
tween vj1i1 and vj2i2 with weight max{ui1(rj2), ui2(rj1)}. Fi-
nally, for each vji and each vki corresponding to the same
agent ai, we add a dummy edge between them with weight
W = maxai∈A,rj∈R ui(rj). This finishes the construc-
tion of the instance (G = (V,E), w). Notice that there al-
ways exists a maximum weighted matching that contains ni
dummy edges for each agent ai. Let P = W

∑
ai∈A ni be

the total weight of those edges. Next we show that there is a
b-bounded 2-sharing δ such that usw(Πδ) ≥ k if and only if
there is matching M in graph G with weight

∑
e∈M w(e) ≥

k − usw(π) + P , where usw(π) =
∑
ai∈A ui(π(ai)).

⇒: Assume there is a b-bounded 2-sharing δ such that
usw(Πδ) ≥ k. Based on δ, we can find a matching M with
the claimed weight by including the corresponding edges
for each e ∈ Es with δ(e) 6= ∅ and edges between the re-
maining normal vertices and all dummy vertices. Formally,
for each edge (ai1 , ai2) ∈ Es such that δ(ai1 , ai2) = rj1
and rj1 ∈ π(ai1) we add the edge (vj1i1 , v

j2
i2

) into matching
M , where rj2 ∈ π(ai2) is an arbitrary resource except for
the resource that is shared by ai2 with some other agent un-
der δ. Notice that w(vj1i1 , v

j2
i2

) = max{ui1(rj2), ui2(rj1)} ≥
ui2(rj1). After this, for each agent ai there are at least ni
normal vertices not matched and exactly ni dummy ver-
tices not matched, so we can add ni dummy edges of the
same weight W into M , each containing one normal vertex
and one dummy vertex. Since usw(Πδ) ≥ k, we have that∑
e∈M w(e) = usw(Πδ)−usw(π)+P ≥ k−usw(π)+P .
⇐: Assume there is matching M in graph G with the

claimed weight. Without loss of generality, we can assume
M contains ni dummy edges for every agent ai since the
weight of dummy edges is no smaller than that of non-
dummy edges. Then for each agent ai, M contains at most b
non-dummy edges. Based on these non-dummy edges in M
we can find the corresponding b-bounded 2-sharing δ such
that usw(Πδ) ≥ k as follows. For each non-dummy edge
(vj1i1 , v

j2
i2

) ∈ M , we set δ(ai1 , ai2) = rj1 if ui2(rj1) ≥
ui1(rj2) and δ(ai1 , ai2) = rj2 otherwise. We have that

usw(Πδ) = usw(π) +
∑

e=(v
j1
i1
,v
j2
i2

):δ(ai1 ,ai2 )6=∅

w(e)

= usw(π) +
∑
e∈M

w(e)− P ≥ k.

Since M contains at most b non-dummy edges for each ai,
ai participates in at most b sharings in δ.

Next we consider b-EWSA. When b = 1, we show in
Lemma 1 that we can reduce the problem to MAXIMUM
MATCHING. The idea is to partition all agents into two sub-
groups according to the target k and build a bipartite graph
characterizing whether one agent from one group can im-
prove the utility of one agent from the other group to k by
sharing, then the problem is just to find a maximum match-
ing on the bipartite graph.
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Lemma 1 (?). 1-EWSA is solvable in polynomial time.
On the other hand, we show that b-EWSA is NP-hard

when b ≥ 2. Notice that there is a trivial reduction from
3-PARTITION to b-EWSA if b ≥ 3. To show the result for
any b ≥ 2, we reduce from the strongly NP-hard NUMER-
ICAL THREE-DIMENSIONAL MATCHING (N3DM) (Garey
and Johnson 1979).
Theorem 2. b-EWSA is NP-hard for any constant b ≥ 2.

Proof. We present a polynomial-time many-one reduction
from the NP-hard N3DM. Therein, given 3 multisets of pos-
itive integers X,Y, Z, each containing m elements, and a
bound T , the task is to decide whether there is a partition
S1, S2, . . . , Sm of X ∪Y ∪Z such that each Si contains ex-
actly one element from each ofX,Y, Z and the sum of num-
bers in each Si is equal to T . Given an instance (X,Y, Z)
of N3DM, we construct an instance of b-EWSA as fol-
lows. Without loss of generality, assume all elements from
X ∪ Y ∪ Z are smaller than T and the sum of them is equal
to B := mT . We set the goal k = (B2 + B + 1)T . We
create 3 groups of agents corresponding to the 3 multisets
X,Y, Z. For each xi ∈ X , we create an agent a1i in group 1
who holds a large resource that is valued as k by itself and
B2T + xi by all other agents. For each yi ∈ Y , we create
an agent a2i in group 2 who holds a middle resource that is
valued as k by itself and BT + yi by all other agents. For
each zi ∈ Z, we create an agent a3i in group 3 who holds a
small resource that is valued as zi by itself and 0 by all other
agents. In the initial allocation, all 2m agents in group 1 and
group 2 have utility exactly k and all m agents from group 3
have utility less than k. The proof of correctness is presented
in the long version of the paper (Bredereck et al. 2021).

4 Reducing Envy by Sharing
In this section, we study the problem of reducing envy
through sharing, defined as follows.
Definition 5. Given an initial complete allocation π of
resources R to agents A, a sharing graph Gs, an at-
tention graph Gt, and a non-negative integer k, Envy
Reducing Sharing Allocation (ERSA) asks if there is a
simple 2-sharing δ such that the number of envious
agents |Env(Πδ)| ≤ k.

Notice that in the above definition we restrict that the shar-
ing is a simple 2-sharing, i.e., 1-bounded 2-sharing, because
the problem for reducing envy in this setting is already NP-
hard, even in a special case when the attention graph and the
sharing graph are (bidirectional) cliques and the goal is to
decrease the number of envious agents by one, as shown in
Theorem 3.
Theorem 3 (?). ERSA is NP-hard even if the attention
graph and the sharing graph are (bidirectional) cliques, and
the goal is to reduce the number of envious agents by at least
one.

Theorem 3 in fact constitutes a strong intractability result
and it calls for further studies on other specific features of
the input. We counteract the intractability result of ERSA
(Theorem 3) by considering cases with few agents, tree-like
graphs, identical utility functions, or few resources.

Reducing Envy for Few Agents
The simple fact that for n agents and m resources there
are at most mn possible 2-sharings leads to a straightfor-
ward brute-force algorithm that runs in polynomial time if
the number of agents is constant. However, due to the fac-
tor m in the base, the running time of such an algorithm
skyrockets with large number of resources (even for small,
fixed values of n). We improve this by showing that ERSA
is fixed-parameter tractable with respect to the number of
agents.

Theorem 4. ERSA with n agents and m resources is solv-
able in O((2n)nm2) time.

The high-level idea behind Theorem 4 is as follows. In
order to find a desired sharing, our algorithm guesses target
agents—a set of at least n− k agents that do not envy in the
desired sharing—and a sharing configuration—a set of or-
dered pairs of agents that share some resource in the desired
sharing. Then, for such a guessed pair, the algorithm tests
whether the desired sharing indeed exists. If it is true for at
least one guessed pair, then the algorithm returns “yes”; oth-
erwise, it returns “no.” The main difficulty in checking the
existence of the desired sharing is that we need to maintain
the envy-freeness within target agents while increasing their
utilities.

Before stating the algorithm more formally, we give some
notation and definitions. LetC be a fixed set of target agents.

Definition 6. A sharing configurationM for a setC of target
agents is a set of arcs such that

1. M is a set of vertex-disjoint arcs and
2. if (i, j) ∈M , then {i, j} ∈ Es and j ∈ C.

A simple 2-sharing δ is called a realization of M if δ only
specifies the shared resource for each arc inM ; formally, for
each (i, j) ∈M , we have that

(
δ({i, j}) 6= ∅

)
∧
(
δ({i, j}) ∈

π(i)
)
, and for each {i, j} with δ({i, j}) 6= ∅, we have that(

(i, j) ∈M ∧ δ({i, j}) ∈ π(i)
)
∨
(
(j, i) ∈M ∧ δ({i, j}) ∈

π(j)
)
. A realization δ is feasible if C ∩ Env(Πδ) = ∅. i.e.,

no agent in C will be envious under δ.

Note that a sharing configuration does not only describe
shares of a proper simple 2-sharing but also ensures that the
shared resources are indeed shared “to” the target agents; we
justify this restriction later in Lemma 3.

Let us fix a sharing configurationM forC. For each target
agent ai, we define a set P 0

i of initially possible resources
that ai might get in some realization ofM . For convenience,
we augment each P 0

i with a dummy resource di that has
utility zero for every agent. Formally, we have

P 0
i :=

{
π(j) ∪ {di} if ∃j such that (j, i) ∈M ,
{di} otherwise.

(1)

For each target agent ai ∈ C, we define a utility thresh-
old ti—the smallest utility agent ai must have such that ai
will not envy agents outside C. Formally, if there is at least
one agent aj 6∈ C such that (ai, aj) ∈ Gt, then

ti := max
aj 6∈C,(ai,aj)∈Gt

ui(π(j)), (2)
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DoesFeasibleRealizationExist(Gt, π, {ui}i∈C , C,M)
for each agent ai ∈ C do

Pi ← P 0
i \ {r ∈ Pi | ui(π(i) ∪ {r}) < ti};

repeat
B ←

⋃
ai∈C Fi({P1, P2, . . . , P|C|});

Pi ← Pi \B;
until B = ∅;
if ∃i with Pi = ∅ then return “no” else return
“yes”;

Algorithm 1: Testing existence of a feasible realization
of sharing configuration M for set C of target agents.

otherwise, ti := 0. If some target agent cannot achieve its
utility threshold by obtaining at most one of its initially pos-
sible resources, then there is no realization of M such that
the agent does not envy. We express it more formally in Ob-
servation 1.
Observation 1. There is no feasible realization of M in
which some agent ai ∈ C gets a resource r ∈ P 0

i such
that ui(π(i) ∪ {r}) < ti.

For each target agent ai ∈ C, we define a set of forbidden
resources.
Definition 7. Let C = {a1, a2, . . . , aq} and let P =
{P1, P2, . . . , Pq} be a family of sets of possible resources
for the target agents. Then resource r ∈ Pi is a forbid-
den resource for some target agent ai if there is some target
agent aj with (aj , ai) ∈ Gt such that

max{uj(π(j) ∪ {r′}) | r′ ∈ Pj} < uj(π(i) ∪ {r}),
that is, if agent ai gets resource r, then agent aj will envy ai
even if aj gets its most valuable resource from Pj . We denote
the set of all forbidden resources for ai as Fi(P).

Observe that in every feasible realization no target agent
gets one of its forbidden resources since otherwise there is
another target agent that envies.
Observation 2. Let P be a family of possible resources
for the target agents. In every feasible realization no target
agent ai gets a resource from Fi(P).

Based on the above observations, Algorithm 1 tests
whether for a pair of a set C of target agents and a shar-
ing configurationM there is a feasible realization. The algo-
rithm keeps track of the possible resources Pi for each target
agent ai. Starting with each Pi equal to the corresponding
set of initially possible resources, it utilizes Observation 1
and removes the “low-utility” resources. Then, utilizing Ob-
servation 2, the algorithm finds all forbidden resources for a
particular collection of the possible resources for the target
agents and eliminates the forbidden resources. This proce-
dure is repeated exhaustively. Finally, if at least one of the
possible resource sets is empty, the algorithm outputs “no.”
Otherwise, the algorithm returns “yes” since at least one re-
source remained in the set of possible resources for every
target agent.

After applying Observation 1 and 2 to Algorithm 1 and
proving its correctness (Lemma 2 and Lemma 3), we finish
the proof of Theorem 4.

Lemma 2 (?). In Algorithm 1, if some Pi is empty after
the repeat-loop, then there is no feasible realization for M
for C.

Lemma 3 (?). If there is a simple 2-sharing σ such that
C ∩ Env(Πσ) = ∅, then there is a sharing configuration M
for C that has a feasible realization and Algorithm 1 out-
puts “yes”; otherwise, the algorithm outputs “no”.

Proof of Theorem 4. According to Lemma 3, to solve an in-
stance of ERSA, it is enough to test whether there is a pair
of a target subset and a sharing configuration that has a fea-
sible realization. Since, checking a feasible realization, due
to Lemma 3, can be done by Algorithm 1, we check all such
possible pairs and return “yes” if there is (at least) one that
has a feasible realization.

There are O(2n) possible target sets and at most nn
possible sharing configurations per target set, which
gives O((2n)n) cases. For each case, we apply Algorithm 1.
Therein, the for-loop takes O(nm) time. Concerning the
repeat-loop that runs at most m times, computing the set B
takesO(nm) time; thus, the repeat-loop takesO(nm2) time.
Finally, Algorithm 1 runs in O(nm2) time and ERSA can
be solved in O((2n)nm2) time.

Next, we show that restricting the parameter k “number
of envious agents” does not help to make ERSA solvable in
polynomial time.

Theorem 5 (?). ERSA is NP-hard even if the goal is to
reduce the number of envious agents from one to zero.

Reducing Envy for Tree-like Graphs
We study how the tree-like structure of the sharing graph and
the attention graph influences the computational complexity
of ERSA. Studying tree-likeness, we hope for tractability
for quasi-hierarchical social networks, where agents at the
same level of the hierarchy influence each other but they
rather do not do so in a cross-hierarchical manner.

Theorem 3 shows that when both graphs are (bidirec-
tional) cliques ERSA is NP-hard. We continue to focus on
the case when the underlying graph of the attention graph is
the same as the sharing graph. Note that this restriction ap-
pears naturally when assuming that one may envy everybody
one knows and one may share only with known people. The-
orem 6 shows that in this case, if the sharing graph is a path,
a tree or being very close to a tree (corresponding to a “hier-
archical network”), then we can solve ERSA in polynomial
time, while, intuitively, for sharing graphs being “far from a
path,” presumably there is no algorithm whose exponential
growth in the running time depends only on the “distance
from path”.

Theorem 6 (?). When the underlying graph of the atten-
tion graph is the same as the sharing graph, ERSA can be
solved in polynomial time if the sharing graph has a con-
stant treewidth (assuming the tree decomposition is given),
and ERSA is W[1]-hard with respect to the pathwidth of the
sharing graph.

4880



Reducing Envy for Identical Utility Functions
We proceed by studying the natural special case where all
agents have the same utility function. Already in this con-
strained setting of homogeneous agents allocation problems
frequently become hard (Bouveret and Lang 2008). This is
why this scenario also attracts quite some attention in the fair
allocation literature (Nguyen, Roos, and Rothe 2013; Biswas
and Barman 2018; Barman, Krishnamurthy, and Vaish 2018;
Bouveret and Lang 2008). Here, we focus on cliques that
naturally model small, dense communities and allow for
convenient comparison with the classical setting of indivis-
ible, non-shareable resources (where the attention graph is
implicitly assumed to be a bidirectional clique).

Theorem 3 already shows that restricting the attention
graph and the sharing graph to be cliques is not enough
to make ERSA solvable in polynomial time. However, if
all agents have the same utility function, Theorem 7 shows
that restricting the attention graph to be a clique alone can
achieve polynomial-time solvability. The idea behind the
proof of Theorem 7 is that unenvious agents are exactly
those with the highest utility, so we can reduce the problem
to a bounded number of MAXIMUM MATCHING.
Theorem 7 (?). ERSA is solvable in polynomial time if the
attention graph is a bidirectional clique and all agents have
the same utility function.

We complement Theorem 7 by showing in Theorem 8 that
identical utility functions together with the sharing graph be-
ing a clique are not sufficient to make ERSA solvable in
polynomial time. Note that Theorem 7 and Theorem 8 show
an interesting contrast between the influence of the com-
pleteness of the attention graph and the sharing graph on
the problem’s computational complexity.
Theorem 8 (?). ERSA is NP-hard even if the sharing
graph is a clique, all agents have the same utility function,
and the maximum initial bundle size is one. For the same
constraints, ERSA is W[1]-hard with respect to the param-
eter “number of resources.”

Finally, we observe that for the scenario with a constant
number of shared resources, there is a naı̈ve brute-force al-
gorithm running in polynomial time.
Observation 3 (?). ERSA is solvable in polynomial time if
the number of (shared) resources is a constant.

5 Extensions
So far, we have assumed that agents get the full utility of the
shared resources and there is no cost of sharing, which may
not hold for some situations. Nonetheless, many of our al-
gorithms can be easily adapted to deal with (computational)
issues that arise. Consider the case when agents get only a
fraction of the full utility from shared resources. Then our
algorithms for improving utilitarian welfare (Theorem 1)
and egalitarian welfare (Lemma 1) still work with minor
changes. For reducing envy it might be that after sharing
agents lose some utility and thus become envious. Again,
our algorithms for few agents (Theorem 4) or identical util-
ity functions (Theorem 7) still work with minor changes. It
is also natural to assume that the central authority has to pay

some cost for each sharing to incentivize agents to share re-
sources and there is a budget on the total cost, then the goal
of the central authority is to improve the allocation through
sharing with the total budget constraint. For this general-
ized setting, our algorithms for improving egalitarian wel-
fare (Lemma 1), reducing envy for few agents (Theorem 4)
or identical utility functions (Theorem 7) still work with mi-
nor changes. We refer to the long version (Bredereck et al.
2021) for details and proofs of the above claims.

6 Conclusion
We brought together two important topics—fair allocation
of resources and resource sharing. Already our very basic
and simple model where each resource can be shared by
neighbors in a social network and each agent can partic-
ipate in a bounded number of sharings led to challenging
computational problems. We shed light at their fundamental
computational complexity limitations (in the form of com-
putational hardness) and provided generalizable algorithmic
techniques (as mentioned in Section 5). Our results are of
broader interest in at least two respects. First, we gained in-
sight into a recent line of research aiming at achieving fair-
ness without relaxing its requirements too much. Second,
there is rich potential for future research exploring our gen-
eral model of sharing allocations (in its full power described
by Definition 1).

Beyond 2-sharing. We focused on sharing resources be-
tween neighbors in a social network. Yet, there are many
scenarios where sharing resources among a large group of
agents can be very natural and wanted. If every resource can
be shared with everyone, then there is a trivial envy-free al-
location. Hence, it is interesting to further study the limits of
existence of envy-free allocations under various sharing re-
laxations (concerning parameters such as number of shared
resources, number of agents sharing a resource, etc.).

No initial allocation. In our model, the sharing builds
up on an initial allocation. It is interesting to study the
case without initial allocation, i.e., allocating indivisible but
shareable resources to achieve welfare and/or fairness goal.

Combinations of graph classes. We showed that ERSA
is NP-hard even if both input graphs are (bidirectional)
cliques, but it is polynomial-time solvable if two graphs are
the same and have constant treewidth. Based on this, analyz-
ing various combinations of graph classes of the two social
networks might be valuable.

Strategic concerns and robustness. We have assumed
that all utility values are truthfully reported and correct, and
that the agents need not to be incentivized to share resources.
Neither of these assumptions might be justified in some
cases—the agents might misreport their utility, the utility
values might be slightly incorrect, or a sharing can come
at a cost for agents (splitting utility from shared resources,
as described in Section 5, is an example of the latter). Tack-
ling this kind of issues opens a variety of directions, which
includes studying strategic misreporting of utilities, robust-
ness of computed solutions against small utility values per-
turbations, and finding allocations that incentivize sharing.
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