
A Calculus for Computing Structured Justifications for Election Outcomes

Arthur Boixel, Ulle Endriss, Ronald de Haan
Institute for Logic, Language and Computation (ILLC), University of Amsterdam

{a.boixel, u.endriss, r.dehaan}@uva.nl

Abstract

In the context of social choice theory, we develop a tableau-
based calculus for reasoning about voting rules. This calculus
can be used to obtain structured explanations for why a given
set of axioms justifies a given election outcome for a given pro-
file of voter preferences. We then show how to operationalise
this calculus, using a combination of SAT solving and Answer
Set Programming, to arrive at a flexible framework for pre-
senting human-readable justifications to users.

1 Introduction
When a group needs to take a decision and its members have
diverging preferences about how to rank the available options,
we might use a voting rule to make that choice. But, as is
well known, there are many different voting rules one could
pick; and different rules will sometimes produce different
election outcomes (Brams and Fishburn 2002). Agreeing
on a specific rule can be difficult, and any one rule might
look arbitrary to nonexperts.1 A possible response to this
dilemma, recently advocated by several authors (Cailloux
and Endriss 2016; Procaccia 2019; Boixel and Endriss 2020;
Peters et al. 2020), would be to attempt to justify election
outcomes directly from first principles, which in the realm
of social choice theory means to justify them in terms of
axioms. Examples for axioms include anonymity and the
Pareto principle (Zwicker 2016). The basic idea is that if, for
a given profile of preferences, choosing a given outcome is
the only way in which to be consistent with a given set of
basic normative principles (i.e., axioms) that everyone can
agree with, then this is the outcome we should choose.

Such justifications amount to complex arguments, and
more research is required to make them understandable to
users. In this paper, we take steps in this direction by de-
veloping an approach to automatically generate structured
explanations for why a given set of axioms logically entails
the acceptance of a given outcome for a given profile. To
clarify what we mean by this, let’s look at an example.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For example, (a nonexpert might wonder) why should we assign
scores exactly as prescribed by the famous Borda rule? Or why
should we trust the majority rule to choose between two alternatives
when it is not even well-defined for three alternatives?

For the case where you all vote, suppose {E} is not the outcome.

By FAITHFULNESS, if only Abb votes, {E} should be the outcome.

If only Bah and Cus vote, we can distinguish two cases:

The outcome is {E}.

By REINFORCEMENT, {E}
should be the outcome when
you all vote. Contradiction!

The outcome is {K} or {E,K}.

If we swapp the planets’ names,
then by NEUTRALITY the
outcome is {E} or {E,K}.

We can undo this change by swapping the ballots. By ANONYMITY,
the set of possible outcomes doesn’t change.

So when only Bas and Cus vote, the outcome must in fact be {E,K}.

By REINFORCEMENT, {E} should be the outcome when you all
vote. Contradiction!

Figure 1: Informal argument for choosing E.

Example 1. Abb, Bah, and Cus, the members of the organ-
ising committee of the 42nd Galactic Singing Contest, need
to decide where to hold it. (E)arth and (K)epler-452b have
been shortlisted. Each member has their own preferences:

Abb : E �Abb K Bah : E �Bah K Cus : K �Cus E

Intuitively, it seems that picking Earth, supported by a simple
majority, would be a reasonable decision. But because they
will be held accountable for the decision, the committee
members instead want to justify their decision in terms of the
normative principles enshrined in the Voting Section of the
Galactic Constitution. There are four such principles:

• FAITHFULNESS: Should there be just a single voter, their
most preferred alternative shall win.

• ANONYMITY: All voters shall be treated equally.
• NEUTRALITY: All alternatives shall be treated equally.
• REINFORCEMENT: If the choices made by two disjoint

groups of voters overlap, then this overlap shall be the
outcome when the members of both groups vote together.

Equipped with the latest technology, the committee relies on
their supercomputer to find a justification. After setting up the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4859

machine, they obtain the tree-like output depicted in Figure 1.
Because it is easy to follow and relies on accepted normative
principles, the committee feels comfortable announcing the
decision: the Contest will take place on Earth. M
Figure 1 is an informal rendering of a formal proof showing
that assuming that E is not the unique winner of the election
would be in contradiction with our four axioms. So this proof
explains, in a structured manner, how those axioms justify
electing E.2 In this paper, we develop a tableau-style calculus
(D’Agostino 1999) to produce proofs of this kind—and, more
generally, proofs that show that accepting certain axioms
would be inconsistent with certain constraints on outcomes
(such as not electing E in the profile above). Our calculus
can be used with arbitrary axioms definable in the standard
model of irresolute social choice functions with variable elec-
torates (Arrow, Sen, and Suzumura 2002). We then show how
to operationalise this calculus, using a combination of SAT
solving (Biere, Heule, and van Maaren 2009) and Answer Set
Programming (ASP) (Brewka, Eiter, and Truszczyński 2011),
to generate justifications in practice. The use of ASP, in par-
ticular, allows for great flexibility in generating justifications
that are tailored to the needs of specific audiences.

Related work. Cailloux and Endriss (2016) introduced the
notion of axiomatic justification for an election outcome and
designed an algorithm for generating justifications in terms
of the axioms used by Young (1974) to characterise the Borda
rule. Their explanations for how these axioms justify a given
outcome take the form of Hilbert-style proofs. Peters et al.
(2020) showed that this algorithm is optimal in the sense of
producing the shortest possible proofs (for these axioms).

Boixel and Endriss (2020) developed a more general model
of justifications that can be used with arbitrary sets of axioms,
where—however—explanations are simply minimally un-
satisfiable sets of constraints, i.e., unstructured objects that
pinpoint which parts of the axioms involved force the out-
come in question but that do not make explicit how they do
so. Boixel and De Haan (2021) studied the computational
complexity of this approach, and Nardi (2021) demonstrated
that, through the use of heuristics, it can be optimised to an
extent that allows for the efficient generation of (unstructured)
justifications for small elections of practical interest.

Paper outline. The remainder of this paper is organised as
follows. We start with some preliminaries in Section 2 and
define our tableau-based calculus in Section 3. Building on
the calculus, we present our notion of structured justification
in Section 4 and show, in Section 5, how to retrieve such
justifications in practice. We conclude in Section 6.

Code. The code used to operationalise the calculus is avail-
able online (Boixel, Endriss, and De Haan 2021).

2 Preliminaries
We start by recalling some basic notions from the theory of
voting (Zwicker 2016). We then proceed to introduce addi-

2Note that here we do not need to refer to any specific voting
rule. Indeed, settling on a voting rule would involve much greater a
commitment, as it would entail also taking a position on the outcome
to be selected for every other conceivable profile.

tional notions that will be necessary to define the calculus.

2.1 Voting Theory
Let X of size |X| = m be a finite set of alternatives, and
let L(X) denote the set of all strict linear orders on X . The
elements � of L(X), strict rankings of the alternatives in X ,
are used to encode the preferences of individual agents.

Let N∗ of size |N∗| = n be a finite set of agents. A profile
of preferences �N for an electorate N ⊆ N∗ is a mapping
associating each agent i ∈ N with a preference �i ∈ L(X).
The set

⋃
N∈2N∗\{∅} L(X)N of all possible profiles for all

possible electorates is denoted by L(X)+.
A voting rule is a function F : L(X)+ → 2X \ {∅} that

assigns to each profile �N ∈ L(X)+ a nonempty set of
alternatives F (�N), the election winners for that profile.
Note that this definition of F as an irresolute rule accounts
for the fact that there could be ties. Many different voting
rules have been proposed in the literature and are used in
practice. Well-known examples include the plurality rule and
the Borda rule (Brams and Fishburn 2002).

2.2 Constraining Voting Rules
Different voting rules satisfy different normative principles,
or axioms. In practice, we may think of an axiom as a col-
lection of local restrictions on the behaviour of a voting rule,
each focusing on concrete inputs for the rule. We call these
restrictions the instances of the axiom in question. For ex-
ample, the anonymity axiom enforces equal treatment of the
voters. An instance of this axiom would refer to two concrete
profiles (that are the same up to a permutation of the agents)
and then enforce the fact that they should be assigned the
same outcome. Note that an instance A′ of an axiom A can
itself be seen as a very simple axiom.

Given an axiom instance A′, we use P(A′) ⊆ L(X)+ to
denote the set of concrete profiles referred to in its definition.
When A′ is an instance of some axiom A with P(A′) =
{�1

N1
, . . . ,�k

Nk
}, i.e., when A′ refers to k profiles with

electorates N1, . . . , Nk, we sometimes use the expression
A(�1

N1
, . . . ,�k

Nk
) to refer to A′ (e.g., in Figure 2).

Given an axiom (or an axiom instance) A, we define its
interpretation I(A) as the set of voting rules that satisfy A.
This notion naturally extends to sets of axioms; for a set of
axioms A, the set I(A) =

⋂
A∈A I(A) contains the voting

rules that satisfy all the axioms in A.
Axioms and their instances encode normative restrictions.

We use outcome statements to encode more practical restric-
tions. An outcome statement s = 〈�N ,O〉 constrains a vot-
ing rule to assign one of the outcomes inO ⊆ 2X \{∅} to the
profile �N ∈ L(X)+.3 Note that we can technically think of
s as a very simple axiom. Thus, the notion of interpretation
can also be applied to (sets of) statements. A nonempty set S
of outcome statements is interpreted as follows:

I(S) =
⋂

〈�N ,O〉∈S

{F : L(X)+ → 2X \ {∅} | F (�N) ∈ O }

3Such outcome statements also feature in the work of Cailloux
and Endriss (2016), where they take on the role of atomic proposi-
tions in a logical language to speak about voting rules.

4860

We refer to statements of the form s = 〈�N , 2X \ {∅}〉 as
vacuous, given that they are satisfied by all voting rules. We
furthermore refer to statements of the form s = 〈�N , ∅〉 as
inconsistent, given that they are satisfied by none.

3 A Calculus to Reason about Voting Rules
In this section we define a calculus that can be used to auto-
mate basic reasoning tasks regarding voting rules. We start by
describing the problem such a calculus is supposed to solve
and give several examples of potential applications. We then
define the calculus and prove its correctness.

3.1 Purpose
Given a finite set A of axiom instances and a finite set S of
outcome statements with I(A) ∩ I(S) = ∅, our calculus will
allow us to generate a proof for this fact. In other words, it
will allow us to demonstrate that—and why—there exists no
voting rule that satisfies all the axiom instances in A while
also agreeing with all the outcome statements in S. Why is
this useful? Let us review three possible applications:

• For S = ∅, a proof of I(A) ∩ I(S) = ∅ would be a proof
of I(A) = ∅, i.e., the fact that no voting rule can satisfy all
the axiom instances in A. So this would show that, taken
together, the axioms giving rise to A constitute an unsat-
isfiable set of requirements, i.e., this would amount to a
proof of an impossibility theorem. Such impossibility the-
orems are central to social choice theory and have greatly
contributed to our understanding of collective decision
making (Arrow, Sen, and Suzumura 2002).4

• If S consists of statements of the form 〈�N , F (�N)〉 for
some specific voting rule F andA only includes instances
of one specific axiom A, then a proof of I(A) ∩ I(S) = ∅
would demonstrate that F violates A. This can be useful,
for instance, when trying to construct an argument against
using F (Cailloux and Endriss 2016).

• If there is just a single outcome statement in S and that
statement is of the form 〈�N∗ , 2X\{∅, X∗}〉 for some set
X∗ ⊆ X , then that would show that accepting the axioms
the elements of A are instances of forces us to accept X∗
as the election outcome under profile �N∗ . Thus, these
axioms would justify electing X∗. This application will
be the main focus of the second part of this paper.

Importantly, in case I(A) ∩ I(S) is not actually empty, any
attempt of a proof using our calculus will (correctly) fail in
finite time. While such a failed proof is a less natural object

4Note that a proof of I(A) = ∅ only excludes the existence
of a voting rule satisfying the axioms on the specific profile sizes
occurring in A. This is all we need if we are interested in voting
rules defined for variable electorates (so including the electorates
occurring in A). But in case we would be satisfied with finding a
rule that works only for specific electorates (say, an electorate that is
larger than any of those occurring in A), additional work is required
to obtain a full impossibility result. We can still use our calculus
to prove the impossibility of satisfying the axioms on profiles of a
fixed size. Such results have been used as “base cases” for inductive
proofs in the literature on computer-aided proofs for impossibility
theorems (Tang and Lin 2009; Geist and Peters 2017).

to interact with than a successful proof, it still technically
provides a certificate for the fact that I(A) ∩ I(S) 6= ∅.

3.2 The Calculus
To prove the unsatisfiability of several properties of voting
rules, we require some kind of refutation procedure. The
tableau methodology (D’Agostino 1999) seems particularly
suited to the task of developing such a procedure.

When using a tableau method as a calculus for a given
logic, a tableau is a tree, the nodes of which are sets of
formulas in that logic. To show that a given set Φ of such
formulas is unsatisfiable, we construct a tree with S0 := Φ at
the root. We use so-called expansion rules to repeatedly add
new nodes below the current leaf nodes. There are two kinds
of rules. First, we can add a single new node below a leaf
node S by copying S and adding an additional formula that
is logically entailed by the formulas in S (e.g., if (p∧ q) ∈ S,
we might add S ∪ {p} as the child). Second, we can branch
and add two sibling nodes below a leaf node to make a case
distinction (e.g., if (p∨ q) ∈ S, we might add S ∪ {p} as the
left child and S ∪ {q} as the right child). We close a branch
whenever its leaf node is obviously unsatisfiable (e.g., when
it includes both p and ¬p). We have found a proof for the
unsatisfiability of Φ if we can close all branches.

We are now going to adapt this approach to our problem
and formally define our calculus by describing what a tableau
is, how to expand it, and how to close it. Broadly speaking,
the outcome statements take on the role of formulas and the
axiom instances license tailor-made expansion rules.

Recall that a rooted tree is a directed acyclic graph with
a single source (the root) and a maximum in-degree of 1.
Formally, for our purposes, a tableau is a rooted tree with
nodes that are sets of outcome statements.

To show that I(A)∩ I(S) = ∅, we construct such a tableau
as follows. We start with a very simple tableau consisting
of just a single node S0 := S containing all the outcome
statements in S . We then expand our tableau by successively
applying expansion rules. New nodes are added, making
some of the logical consequences of (complying with) the
statements in S and the axiom instances in A explicit. We
continue to expand until we obtain a tableau that makes the
contradictory requirement of satisfying all properties in S
and A self-evident (if possible). Every expansion rule ap-
pends one or two new nodes immediately below one of the
leaf nodes of the current tableau. There are three such rules:

• Axiom-driven expansion rule. For any axiom instance
A ∈ A and any profile �N ∈ P(A), a branch ending in a
leaf node S can be expanded by appending a node S′ =
S ∪ {〈�N ,O〉}, where O = {F (�N) | F ∈ I(S) ∩
I(A) }, provided that I(S′) (I(S).

• Branching rule. A branch ending in a leaf node S that
includes a statement of the form s = 〈�N ,O1 ∪ O2〉,
where O1 and O2 are nonempty sets with O1 ∩ O2 = ∅,
can be split by appending two nodes to S, namely S1 =
{〈�N ,O1〉} ∪S \ {s} and S2 = {〈�N ,O2〉} ∪S \ {s}.
If a profile �N ∈ P(A) does not currently appear in any
of the outcome statements in S, it is still possible to use

4861

the branching rule with respect to �N by assuming that
S contains the vacuous statement 〈�N , 2X \ {∅}〉.

• Simplification rule. A branch ending in a leaf node S
that includes two distinct statements s1 = 〈�N ,O1〉 and
s2 = 〈�N ,O2〉 can be expanded by appending to S the
node S′ = {〈�N ,O1 ∩ O2〉} ∪ S \ {s1, s2}.

For a given branch, the axiom-driven expansion rule makes
explicit, in terms of outcome statements, the consequences
of an axiom instance A as far as profile �N is concerned.
Take for example a set S including a statement s1 saying that
for profile �N = (a �1 b �1 c, b �2 a �2 c) we must
select an outcome from {{a}, {b}}. Then we may want to
use the axiom-driven rule associated with an instance of the
anonymity axiom to enforce that �N and �′N = (b �1 a �1

c, a �2 b �2 c) take the same outcome. Applying this rule
allows us to expand the tree with a new node S′ containing
the additional statement s2 = 〈�′N , {{a}, {b}}〉.5

The branching rule allows us to make a case distinction
regarding the outcomes still available for a profile �N . If
the outcome for �N must be in O = O1 ∪ O2, then it must
either be in O1 or in O2. The branching rule lets us treat
these cases separately on two distinct branches.

The simplification rule only makes cosmetic changes and
will be useful in practice to (i) clean up a set of statements
and (ii) make explicit the inconsistency of such a set.

Let us call a tableau constructed in the manner described
rooted in S if its root node consists of the set S, and let us
call it licensed by A if all applications of the axiom-driven
expansion rule rely on axiom instances in A. A tableau is
called saturated (relative to A and S) if no further rules can
be applied to it. Furthermore, a tableau is called closed if
every branch ends in a leaf node that includes at least one
inconsistent outcome statement. Otherwise it is open.

Note that we have not said anything about the order in
which to apply expansion rules. Different strategies will lead
to different trees, and not all closed trees will have the same
explanatory power. For now, we only focus on the correctness
of the calculus, but we will return to this issue in Section 5.

Example 2. Recall the informal proof of Example 1. We now
present its formal counterpart, the closed tableau of Figure 2.
It is rooted in S = {〈�{A,B,C}, {{K}, {E,K}}〉}, containing
a single statement that amounts to ruling out outcome {E} in
case all three agents vote. It is licensed by a set A containing
one axiom instance for each of our four axioms (FAI, ANO,
NEU, REI) and imposing restrictions on four concrete profiles:

• Profile �{A,B,C} containing all the ballots.
• Profile �{A} containing only Abb’s ballot.
• Profile �{B,C} containing the ballots of Bah and Cus.
• Profile �′{B,C} containing the ballots of Bah and Cus with

the alternatives (or equivalently: the voters) switched.

To save space, most applications (except for two) of the sim-
plification rule are left implicit. Whenever an axiom-driven

5We stress that, in principle, it is possible to think of axioms
that would have consequences for more than one profile at a time.
In such a case, we would apply the axiom-driven expansion rule
multiple times for the same axiom but different profiles.

s0 : 〈�{A,B,C}, {{K}, {E,K}}〉

s0, s1 : 〈�{A}, {{E}}〉

FAI(�{A})

s0, s1,
s5 : 〈�{B,C}, {{E}}〉

s0, s1, s5,
s6 : 〈�{A,B,C}, {{E}}〉

REI(�{A},�{B,C},�{A,B,C})

s1, s5,
s′0 : 〈�{A,B,C}, ∅〉

SIMPLIFICATION(�{A,B,C})

s0, s1,
s2 : 〈�{B,C}, {{K}, {E,K}}〉

s0, s1, s2,
s3:〈�′{B,C}, {{E}, {E,K}}〉

NEU(�{B,C},�′{B,C})

s0, s1, s2, s3,
s′2:〈�{B,C}, {{E}, {E,K}}〉

ANO(�{B,C},�′{B,C})

s0, s1, s3,
s4 : 〈�{B,C}, {{E,K}}〉

SIMPLIFICATION(�{B,C})

s1, s3, s4,
s′0 : 〈�{A,B,C}, ∅〉

REI(�{A},�{B,C},�{A,B,C})

BRANCHING(�{B,C})

Figure 2: The closed tableau of Example 2.

expansion rule has been used, the corresponding edge is anno-
tated with the associated axiom instance. The branching rule
is used once to make a case distinction between outcomes
for profile �{B,C}. Because the two leaves of the tree both
contain an inconsistent statement, stating that no outcome
can be assigned to the full profile, the tableau is closed. M

3.3 Correctness of the Calculus
To prove that there exists no voting rule that satisfies all the
outcome statements in a given finite set S and all the axiom
instances in a given finite setA, we construct a tableau rooted
in S and licensed by A. We are now going to show that—
whatever the order in which we apply our expansion rules—
this process will always terminate eventually,6 culminating
in either a closed tableau (in case of success) or a saturated
but open tableau (in case of failure), and that the final tableau
is closed if and only if there exists no such voting rule.

Lemma 1 (Termination). Any application of expansion rules
leads, within a finite number of steps, to a tableau that is
either closed or saturated.

Proof. The expansion rules ensure that for any two nodes S
and S′, with S being the parent of S′, we have either I(S′) (
I(S) or both I(S) = I(S′) and |S′| < |S|. Thus, as the
root S0 = S describes a finite set I(S) of voting rules, all
branches must be of finite length.

Lemma 2 (Soundness). If we can construct a closed tableau
that is rooted in S and licensed by A, then there exists no
voting rule that satisfies both the outcome statements in S
and the axiom instances in A.

6Yet, in line with the complexity results of Boixel and De Haan
(2021), the size of the tableau can be exponential in n and m.

4862

Proof. We will prove the contrapositive: if we are in a node
S such that I(S) ∩ I(A) 6= ∅, then applying any expansion
rule will lead to the creation of at least one new node S′ such
that I(S′) ∩ I(A) 6= ∅. Consider such a node S and let us
review all possible ways of expanding the tableau from S.

An application of the simplification rule is only cosmetic
and does not affect the soundness of the approach.

An application of the branching rule creates a case distinc-
tion regarding the possible outcomes a profile can be assigned
to. At least one of the new branches will remain open.

Finally, consider an application of the axiom-driven ex-
pansion rule with respect to an instance A and a profile
�N . When applying the rule we only make changes to the
outcomes available for �N . Moreover, we make sure that
all of the outcomes F (�N) such that F ∈ I(S) ∩ I(A)
remain available for �N . We know by assumption that
I(S) ∩ I(A) 6= ∅. Thus, there is still some rule satisfying
both the new set of statements and the instance A.

Lemma 3 (Completeness). If there exists no voting rule that
satisfies both the outcome statements in S and the axiom
instances inA, then we will always be able to obtain a closed
tree rooted in S and licensed by A.

Proof. We shall prove the contrapositive. Take any open
saturated tree rooted in S and licensed by A. We need to
show that there is at least one rule in I(S) ∩ I(A). By virtue
of being open, our tree has a branch ending in a leaf node S∗
that is not inconsistent. As it is saturated, we know that:

1. There must be at least one statement for each profile in
P(A), as otherwise the axiom-driven expansion rule or
the branching rule would still be applicable.

2. All the sets of outcomes referred to in the statements in S∗

must be singletons, as otherwise the branching rule would
still be applicable.

3. There must be at most one statement for each profile
occurring at all, as otherwise the simplification rule would
still be applicable.

As S∗ is not inconsistent, there exists a rule F ∗ ∈ I(S∗).
This rule returns the outcomes prescribed by the singleton
outcome statements in S∗ on all profiles mentioned in S∗,
and makes some arbitrary choices for all other profiles. Given
that we have I(S′) ⊆ I(S) for any two nodes with S being
the parent of S′, we immediately obtain that F ∗ ∈ I(S). So
it remains for us to show that F ∗ ∈ I(A).

For the sake of contradiction, suppose F ∗ violates some
A ∈ A. Recall that the tree is saturated, so we should not be
able to apply the expansion rule associated with A on S∗.

Note that, if F ∗ violates A, then so does any other rule in
I(S∗). Indeed, all rules in I(S∗) agree on the outcomes to
select for profiles in P(S∗), in particular, they all select the
same outcomes for profiles in P(A). So I(S∗) ∩ I(A) = ∅.

Consider any profile �∗N ∈ P(A). From the previous
observation it follows that the set O = {F (�∗N) | F ∈
I(S∗)∩ I(A)} is empty. Hence, we can use the axiom-driven
expansion rule associated with A on S∗ and �∗N and reach a
new node S′ that contains a statement s′ = 〈�∗N , ∅〉. Note
that, as I(S′) = ∅, we have I(S′) (I(S∗) and this is a valid

rule application. So we were able to apply an expansion rule
on a supposedly saturated tree, which is a contradiction.

Lemma 3 says that, if there exists no voting rule satisfying
S and A, then every way of applying expansion rules to the
initial tableau must lead to a closed tableau. Thus, if S andA
are indeed incompatible, then our calculus will always find
a proof eventually. Note that soundness and completeness
together entail that, if some sequence of rule applications
leads to a closed tableau, then all sequences do. So we are
free to apply expansion rules in any order we wish and will
always obtain the same result. This opens up the way for
devising heuristics for using our calculus in practice (see
Section 5). We summarise our findings as follows.
Theorem 4 (Correctness). Our tableau-based calculus is
a sound and complete decision procedure to check whether
there exists a voting rule that satisfies certain axiom instances
and complies with certain outcome statements.
If we fail to find a closed tableau T rooted in a set S and li-
censed by a setA, Theorem 4 implies that there exists at least
one voting rule satisfying both the axiom instances in A and
the statements in S . A (partial) description of such a rule can
be found in the leaf of any open branch. Hence, the tableau
methodology can also be seen as a search procedure. When
constructing a tableau we are in fact searching for models
making some claim false. Each branch of the tableau con-
stitutes a partial description of such models that are refined
during the expansion stage. Being able to close the tableau
means that no such model exists, thereby proving the validity
of the claim. This view is perfectly in line with what we are
trying to do here: to prove that a set of axiom instances A
and a set of outcome statements S are inconsistent, we try
and fail to find a voting rule satisfying both.

4 Using the Calculus to Obtain Justifications
In this section we take advantage of the calculus previously
described to define a notion of structured justification for col-
lective decisions. We start by defining this notion and explain
the differences with the notion of unstructured justification
introduced by Boixel and Endriss (2020). Finally, we show
how the calculus can be used to compute such justifications.

4.1 Structured Justification
Consider a voting scenario involving some agents with pref-
erences stored in a profile �N∗ . Assuming the agents (or
others we wish to convince) care about the axioms in some
corpus A, how can we justify that some target outcome X∗

is the right one to select? Intuitively, we are looking for a
step-by-step proof showing why satisfying certain axioms in
A enforces the selection of X∗. In other words, we need to
prove that there exists no voting rule satisfying these axioms
that selects an outcome different from X∗.

We now define a notion of structured justification. Our
definition is directly inspired by the original definition of
Boixel and Endriss (2020) for an (unstructured) justification.
Definition 1 (Structured justification). Let A be a corpus of
axioms for voting rules F : L(X)+ → 2X \{∅}, let �N∗ be
a profile, and let X∗ ⊆ X be a target outcome for that profile.

4863

We say that a triple 〈AN,AE, T 〉 of a set of axioms, a set of
axiom instances, and a tableau is a structured justification
for the set X∗ winning the election under profile �N∗ if and
only if the following four conditions are satisfied:
1. Explanatoriness. T is a closed tableau that is rooted in
S = {〈�N∗ , 2X \ {X∗, ∅}〉} and licensed by AE.

2. Relevance. Every axiom instance in AE instantiates some
axiom in AN.

3. Adequacy. All axioms in AN belong to A: AN ⊆ A.
4. Nontriviality. There exists at least one voting rule that

satisfies all of the axioms in AN: I(AN) 6= ∅.
We call AN the normative basis, T the explanation tableau,
and AE the explanation basis.
The explanatoriness requirement ensures that the tableau T
is a proper proof for the fact that it is impossible to satisfy
the axiom instances in AE if we select an outcome different
from X∗ for �N∗ , i.e., if we comply with the special state-
ment in S . Relevance and adequacy ensure that any argument
featured in the proof, i.e., any axiom-driven expansion rule
used to construct T , derives from a normative principle in A.
Finally, the normative basis should be such that there exists a
least one voting rule satisfying all the axioms in it. Together
with the explanatoriness requirement this entails that these
axioms enforce the selection of the target outcome.

The explanation basis AE consists of axiom instances that
together enforce the selection of X∗. So if we were to provide
our audience only with 〈AN,AE〉, this would still constitute
some kind of justification. This is essentially the notion of
justification proposed by Boixel and Endriss (2020). But such
justifications have limited explanatory power. While satisfy-
ing the instances in AE does enforce the selection of X∗, it
may be unclear why that is so. The burden of understanding
how to use (the restrictions imposed by) the instances to ob-
tain an insightful explanation is left to the user. Trading this
unstructured set of axiom instancesAE for a closed tableau T
presenting a step-by-step proof is a way to address this issue.7

Example 3. Recall the informal proof presented in Exam-
ple 1 and its formal counterpart, the closed tableau T of
Example 2. Consider the corpus A = {FAI, NEU, ANO, REI}.
The tableau T is closed, rooted in a set S containing a state-
ment preventing E from winning in profile �{A,B,C}, and
licensed by a set of axiom instances AE derived from the
normative basis AN = A. So 〈AN,AE, T 〉 is a structured jus-
tification showing why making E the unique winner in profile
�{A,B,C} is the only way to satisfy the axioms in AN.8 M

4.2 Obtaining Justifications
We now show how to use our calculus to obtain a structured
justification. We then discuss the limitations of this approach

7Boixel and Endriss (2020) also require AE to be minimal, in
the sense of no strict subset still being able to enforce the choice
of X∗. Because the smallest tableau might not always provide the
best explanation, we do not impose a corresponding minimality
requirement on T (see Section 5 for a discussion of this point).

8Requirements 1, 2, and 3 from Definition 1 are trivially satisfied.
The non-triviality requirement is also satisfied: the plurality rule
(Zwicker 2016), defined for two alternatives and (up to) three agents,
satisfies all the axioms in AN.

and give some pointers on how to make it more efficient.
Suppose there exists a structured justification, grounded in

a normative basis AN, for selecting X∗ under profile �N∗ .
Let A be the set containing all the axiom instances for the
axioms in AN. By assumption, for any voting rule F satis-
fying the instances in A it is the case that F fails to comply
with S = {〈�N∗ , 2X \ {X∗, ∅})}. Theorem 4 now tells us
that any tree rooted in S and licensed by A can be closed.
So we can use the calculus to compute such a closed tree T
and thus obtain a justification 〈AN,A, T 〉. Recall the require-
ments of Definition 1. As the tree is closed, explanatoriness
is satisfied. Adequacy and relevance trivially hold as well.
Only the nontriviality of AN still remains to checked, which
can be done using a SAT solver (Geist and Peters 2017).

Although technically correct, this direct approach may not
be the most efficient one in practice. Indeed, a single axiom
can give rise to many instances, most of which are likely use-
less. Moreover, working with the entire set of axiom instances
offers little to no control regarding the arguments used to con-
struct the tableau. By following this approach we rely on
the calculus to both (i) identify this set of arguments and
(ii) transform it into a comprehensible step-by-step proof.

An alternative approach is to first compute a minimal ex-
planation basis AE (e.g., by encoding the problem in propo-
sitional logic and using a SAT-based approach), and to then
construct a tableau T licensed by this small set AE rather
than the much larger set A of all axiom instances of the nor-
mative basis selected for exploration. In other words, we can
use the approach of Boixel and Endriss (2020), refined by
Nardi (2021), as a black-box algorithm to first compute an
unstructured justification 〈AN,AE〉 and then use our calculus
to find a tableau T licensed by the set AE thus obtained.

5 Structured Justifications in Practice
Earlier, we explained how to use our calculus to structure
a previously computed unstructured justification. The pur-
pose of this section is twofold. We start by showing how to
operationalise this approach using ASP (Brewka, Eiter, and
Truszczyński 2011; Gebser et al. 2012; Gelfond 2008).9 We
then argue that the ASP approach is very flexible and gives
us a lot of control regarding the justifications we want to find.

5.1 Simulating the Calculus in ASP
ASP offers a declarative problem-solving paradigm that is
based on logic programming. One can express a search prob-
lem using facts, rules, and constraints, and a solver then
provides solutions (in the form of answer sets).

The search problem. We face the following search prob-
lem. Given a set AE of axiom instances, minimally enforcing
the selection of some outcome X∗ under profile �N∗ ,10 we
need to find a closed tableau showing why this is the case.
ASP allows us to model the specification of a given search
problem independently of the concrete instance we wish to

9For our implementation (Boixel, Endriss, and De Haan 2021)
we used clingo as ASP grounder/solver (Gebser et al. 2008).

10We can use SAT solving techniques to obtain such a set (Boixel
and Endriss 2020; Nardi 2021).

4864

solve. By using a fixed ASP program, we can thus virtually
structure any set of axiom instances AE; we simply need to
complete the program with facts encoding those instances.

The generate-and-test approach. Classically, an ASP
program is designed following a two-step process (see,
e.g., Gebser et al. 2012). First, we describe what potential
solutions look like (the generate-step). Then, we encode the
requirement that only correct solutions—the ones satisfying
our requirements—should be kept (the test-step).

In our case, potential solutions are rooted trees containing
some extra information. We encode these as a finite set of
nodes (with a single root) linked via edges forming a tree.
Each node is associated with some outcome statements and
each edge is linked to a concrete application of an expansion
rule. This encodes solutions that have the appropriate general
structure but that are not guaranteed to be correct. For exam-
ple, trees may be open, rooted in the wrong set of statements,
or using an incorrect expansion rule between two nodes.

To finish the test-part, we encode various additional re-
quirements. We ensure that trees are rooted in the correct set
of statements. We ensure that each leaf of the tree contains at
least one inconsistent statement. The most demanding part
is to ensure that any edge linking a node N1 with another
node N2 is associated with an expansion rule and that the
statements associated with both nodes correspond to a correct
application of the rule. We do this by checking that N1 is
associated with statements on which the expansion rule can
be applied, and that the set of statements associated with N2

correctly reflects the consequences of the rule application.
This makes it straightforward to add support for new axioms.

5.2 Finding Optimal Proof Trees
As we saw, a single ASP program can be used to structure
any set of axiom instances into a proof tree. The approach is
flexible, and adding or removing support for a given axiom
can be done easily. This approach does not only allow us
to find correct proof trees, but—as we will argue—it also
enables finding optimal proof trees, according to whichever
criteria a specific audience might be interested in.

Selecting optimal proof trees. To structure a given set of
axiom instances AE into some tableau T is straightforward:
start from the root, apply expansion rules (pseudo-)randomly,
and stop once all branches are closed. While this naı̈ve ap-
proach works, it gives us little to no control regarding the
characteristics of the tree found, and refining the order in
which to apply rules (e.g., delaying branching as much as
possible) does not significantly improve on this base line.

One could devise a tailor-made algorithm for finding op-
timal tableaux with respect to a given criterion. However,
such an approach is likely not productive for practical use—
especially not when the optimality criteria are changing or not
fully known in advance. Any tailor-made algorithm would
have to be adapted for any (small) change in the criteria, and
any such adaptation likely takes significant effort. In particu-
lar, this would make experimenting with different optimality
criteria tedious and time-consuming.

Instead, the declarative approach of ASP provides a
much more flexible solution. One can straightforwardly (and

quickly) add optimisation statements that express given opti-
mality criteria—and update these when needed. For example,
finding tableaux with a minimum number of nodes can be
done by simply adding #minimize {N : node(N)}.

Moreover, the declarative approach of ASP allows us to
combine different optimisation criteria, with different pri-
orities. For example, the tree in Figure 2 has a minimum
number of nodes, and—amongst all such trees—introduces
new profiles to the proof as late as possible.

One argument in favour of tailor-made algorithms is that
one might be able to offer better worst-case running-time
guarantees than for the ASP approach. However, ASP solvers
are incredibly efficient in many cases, and worst-case running-
time guarantees might not be crucial for use in practice. For
example, using the ASP approach, we were able to find proof
trees such as the one of Figure 2 in a few of minutes—even
without significant use of advanced performance-improving
ASP encoding techniques such as symmetry breaking.

Identifying optimality criteria. An interesting topic for
future research is to establish which optimisation criteria lead
to an optimal (human) understanding of explanations. One
might expect that short trees that use as little branching as
possible fit the bill—and this is indeed our first impression,
after running our proof-of-concept implementation on various
examples. There might, however, be different or additional
criteria that lead to better-understandable explanations, and
these criteria may differ from one application to another.

As already suggested by Boixel and Endriss (2020), finding
out what makes an explanation understandable is an empirical
question that could be investigated by means of crowdsourc-
ing experiments. The flexibility of our ASP approach can
provide a basis for such a research agenda. Following a data-
driven axiomatic approach (d’Eon and Larson 2020), one
might also get try to get insights into the type of arguments
(or axioms) that are most convincing for a given audience.

6 Conclusion
We defined a tableau-based calculus to reason about voting
rules. With modest adaptations, such a calculus could also be
used to reason about mechanisms studied in other domains;
examples include matching and participatory budgeting. We
highlighted several applications for which such a calculus
can prove useful. In particular, we used it to provide a notion
of structured justification for election outcomes.

Using a combination of SAT solving techniques and ASP
we showcased what such justifications could look like. The
ASP approach is quite flexible and enables the setting up of
real-life experiments that could improve our understanding
of what makes for a good justification in practice.

Another important direction of future research will be to
investigate how to automatically transform a formal justifica-
tion obtained through the calculus, i.e, a closed tableau, into
an easy-to-follow argument expressed in natural language.

References
Arrow, K. J.; Sen, A. K.; and Suzumura, K., eds. 2002. Hand-
book of Social Choice and Welfare, volume 1. Elsevier.

4865

Biere, A.; Heule, M.; and van Maaren, H., eds. 2009. Hand-
book of Satisfiability. IOS Press.

Boixel, A.; and Endriss, U. 2020. Automated Justification of
Collective Decisions via Constraint Solving. In Proceedings
of the 19th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2020). IFAAMAS.

Boixel, A.; Endriss, U.; and De Haan, R. 2021. Supple-
mentary Material for “A Calculus for Computing Structured
Justifications for Election Outcomes”. Zenodo. Available at
https://doi.org/10.5281/zenodo.5767215.

Boixel, A.; and De Haan, R. 2021. On the Complexity of
Finding Justifications for Collective Decisions. In Proceed-
ings of the 35th AAAI Conference on Artificial Intelligence
(AAAI-2021).

Brams, S. J.; and Fishburn, P. C. 2002. Voting Procedures. In
Arrow, K. J.; Sen, A. K.; and Suzumura, K., eds., Handbook
of Social Choice and Welfare, volume 1, chapter 4, 173–236.
Elsevier.

Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM,
54(12): 92–103.

Cailloux, O.; and Endriss, U. 2016. Arguing about Voting
Rules. In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
2016). IFAAMAS.

D’Agostino, M. 1999. Tableau Methods for Classical Propo-
sitional Logic. In D’Agostino, M.; Gabbay, D. M.; Hähnle,
R.; and Posegga, J., eds., Handbook of Tableau Methods,
chapter 2, 45–123. Elsevier.

d’Eon, G.; and Larson, K. 2020. Testing axioms against hu-
man reward divisions in cooperative games. In Proceedings
of the 19th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2020). IFAAMAS.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. A User’s Guide to gringo,
clasp, clingo, and iclingo. Technical report, University of
Potsdam.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.

Geist, C.; and Peters, D. 2017. Computer-Aided Methods for
Social Choice Theory. In Endriss, U., ed., Trends in Compu-
tational Social Choice, chapter 13, 249–267. AI Access.

Gelfond, M. 2008. Answer Sets. In van Harmelen, F.; Lifs-
chitz, V.; and Porter, B., eds., Handbook of Knowledge Rep-
resentation, chapter 7, 285–316. Elsevier.

Nardi, O. 2021. A Graph-Based Algorithm for the Automated
Justification of Collective Decisions. Master’s thesis, ILLC,
University of Amsterdam.

Peters, D.; Procaccia, A. D.; Psomas, A.; and Zhou, Z. 2020.
Explainable Voting. In Proceedings of the 33rd Annual Con-
ference on Neural Information Processing Systems (NeurIPS-
2020).

Procaccia, A. D. 2019. Axioms Should Explain Solutions. In
Laslier, J.-F.; Moulin, H.; Sanver, M. R.; and Zwicker, W. S.,
eds., The Future of Economic Design, 195–199. Springer.
Tang, P.; and Lin, F. 2009. Computer-aided Proofs of Arrow’s
and other Impossibility Theorems. Artificial Intelligence,
173(11): 1041–1053.
Young, H. P. 1974. An Axiomatization of Borda’s Rule.
Journal of Economic Theory, 9(1): 43–52.
Zwicker, W. S. 2016. Introduction to the Theory of Voting.
In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds., Handbook of Computational Social Choice,
chapter 2, 23–56. Cambridge University Press.

4866

