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Abstract

We consider a sequential blocked matching (SBM) model
where strategic agents repeatedly report ordinal preferences
over a set of services to a central planner. The planner’s goal
is to elicit agents’ true preferences and design a policy that
matches services to agents in order to maximize the expected
social welfare with the added constraint that each matched
service can be blocked or unavailable for a number of time
periods. Naturally, SBM models the repeated allocation of
reusable services to a set of agents where each allocated ser-
vice becomes unavailable for a fixed duration.
We first consider the offline SBM setting, where the strategic
agents are aware of their true preferences. We measure the
performance of any policy by distortion, the worst-case mul-
tiplicative approximation guaranteed by any policy. For the
setting with s services, we establish lower bounds of Ω(s)
and Ω(

√
s) on the distortions of any deterministic and ran-

domised mechanisms, respectively. We complement these re-
sults by providing approximately truthful, measured by in-
centive ratio, deterministic and randomised policies based on
random serial dictatorship which match our lower bounds.
Our results show that there is a significant improvement if
one considers the class of randomised policies. Finally, we
consider the online SBM setting with bandit feedback where
each agent is initially unaware of her true preferences, and
the planner must facilitate each agent in the learning of their
preferences through the matching of services over time. We
design an approximately truthful mechanism based on the
explore-then-commit paradigm, which achieves logarithmic
dynamic approximate regret.

1 Introduction
In recent years, machine learning algorithms have been ex-
tremely successful in various domains, from playing games
to screening cancer. However, despite such success, most
learning algorithms cannot be deployed directly in practice
to make decisions under uncertainty. The main reason is
that most real-world applications involve multiple agents,
and learning algorithms are often constrained due to the un-
availability of resources. Motivated by such constraints in
multi-agent systems, we consider the problem of repeated
matching with blocking constraints, a scenario where mul-
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tiple agents simultaneously learn their preferences with re-
peated blocking or unavailability of resources.

In particular, we are interested in the repeated one-sided
matching problem where strategic agents report their or-
dinal preferences based on their expected rewards over a
set of alternatives, or services. The agents are matched to
the services given their reported preferences each time pe-
riod or round. It is well-known that one-sided matching
can be used to model various real-world situations such
as matching patients to kidneys across health institutions
(Durlauf and Blume 2008; Roth, Sönmez, and Ünver 2004),
assigning students to rooms in residential halls (Durlauf and
Blume 2008), allocating workers to tasks in crowdsourc-
ing (Difallah, Demartini, and Cudré-Mauroux 2013; Ald-
hahri, Shandilya, and Shiva 2015), and recommending users
to activities in recommender systems (Satzger, Endres, and
Kießling 2006; Ansari, Essegaier, and Kohli 2000; Isinkaye,
Folajimi, and Ojokoh 2015).

In many of these situations, there are several obstacles.
First, for a setting with reusable services, a major caveat is
that an agent-alternative match within a round can result in
blocking of some services in which the services may not be
available until a later time. For example, a recommended
activity (e.g., a special promotion offer from a restaurant)
that is matched to (or used by) a user may not be available
to all users again until a later time. Or, in cloud computing,
where tasks are matched to resources (e.g. GPUs), once a
task is assigned to a resource, that resource is blocked for a
certain number of rounds.

Second, the agents are often unaware of their exact pref-
erences, and the planner must coordinate their explorations
without incurring a significant loss. This is often true for
recommending restaurants to customers, as the restaurants
have limited capacity and people are rarely informed of all
possible choices (Waldfogel 2008). Note that, even when the
agents are themselves using learning algorithms over time,
coordination by the planner becomes necessary to avoid dif-
ferent agents exploring the same service at a time – a prob-
lem which is exacerbated by blocking of the services.

Finally, in several settings, the agents are aware of their
preferences, but they might be strategic in reporting their
preferences for getting matched to better services. This
is particularly prominent in assigning rooms to students.
Rooms can be blocked due to occupancy and can be made
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available again once the students leave the rooms. As a re-
sult, there is a potential for the students to misreport their
private preferences to manipulate matching outcomes.

1.1 Main Contributions
In order to capture the notion of one-sided matching
with blocking, we introduce a sequential blocked match-
ing (SBM) model, in which a set of n strategic agents are
matched to a set of s services repeatedly over rounds and
where matched services are blocked for a deterministic num-
ber of time steps. Each agent reports her ordinal preferences
over the services every round, based on her current estimates
of the expected rewards of the services. As is standard in the
matching literature, we focus on the setting where agents
just report ordinal preferences over the services. The plan-
ner’s goal is to derive a matching policy that, at each round,
elicits true preferences from the agents and matches them to
services in order to maximize the expected social welfare,
which is the sum of the expected utilities of the agents from
the matchings over time, whilst accounting for the blocking
of services. To the best of our knowledge, SBM models have
not been studied before and can be applied to a wide range
of real-world matching scenarios.

We investigate the offline and online variations of the
SBM model. For both variations, we are interested in deriv-
ing deterministic and randomized policies that are approxi-
mately truthful and efficient. We measure truthfulness by in-
centive ratio (Chen et al. 2012), which measures how much
a single agent can gain via misreporting preferences. We
measure efficiency through the notion of distortion from so-
cial choice theory (Procaccia and Rosenschein 2006), which
measures the loss in social welfare due to access to only
preferences, and not utility functions and rewards. We for-
mally define these concepts in Section 3.

Offline SBM Benchmarks. In the offline setting of SBM,
each agent knows their own preferences and rewards over
the services, but the planner does not. In addition, each agent
reports their preferences only once to the planner, before
matching begins. Essentially, the offline benchmarks estab-
lish what we can achieve in terms of distortion if the agents’
don’t have to learn. Table 1 summarizes our results. More
specifically, we derive lower bounds on the distortion of
any deterministic and randomised mechanism. The main in-
gredient of our proof is the careful construction of reward
profiles that are consistent with reported preferences that
guarantees poor social welfare for the planner. We then fo-
cus on the upper bound and provide approximately truth-
ful mechanisms with bounded incentive ratios that match
the distortion lower bounds. In short, both the determinis-
tic and randomised mechanisms we provide are based on
the repeated random serial dictatorship (RSD) mechanism
for one-shot one-sided matching problems. Our randomised
mechanism, repeated RSD (RRSD), iterates randomly over
all agents, greedily choosing the current agents’ preferred
service at each time step. Our deterministic mechanism, de-
randomised RRSD (DRRSD), is a derandomised version of
this algorithm and matches the corresponding lower bound.
Interestingly, we find that there is a strict separation of

√
s

between the achievable distortion by a deterministic and ran-

domized mechanism.
Online SBM Algorithms. For the online setting of

SBM, the agents do not know their preferences or re-
wards and must learn their preferences via repeated match-
ing to services. After each matching, the agents update
their preferences and strategically report them to the plan-
ner. We design an approximately truthful mechanism, bandit
RRSD (BRRSD), based on the Explore-then-Commit (ETC)
paradigm, which achieves sublinear dynamic approximate
regret. In particular, BRRSD has two phases. In the first
phase, it allows the participating agents to learn their pref-
erences via uniform allocation of services. Using the learnt
estimates from this phase, the mechanism then runs RRSD
in the second phase.

1.2 Related Work
We provide a brief discussion of the related work in the
matching and bandit literature and highlight major differ-
ences comparing to our SBM models, which have not been
considered previously.

Ordinal Matching and Distortion. We consider the ob-
jective of maximizing expected rewards as our offline bench-
mark. Since we do not observe the exact utilities of the
agents rather ordinal preferences over items, we use the no-
tion of distortion (Procaccia and Rosenschein 2006) from
voting to quantify such a benchmark. In the context of vot-
ing, distortion measures the loss of performance due to lim-
ited availability of reward profiles (Boutilier et al. 2015;
Mandal et al. 2019; Anshelevich et al. 2018; Kempe 2020;
Anshelevich and Postl 2017). Our offline benchmark is re-
lated to the literature on the distortion of matching (Ama-
natidis et al. 2021; Filos-Ratsikas, Frederiksen, and Zhang
2014; Anshelevich and Sekar 2016). However, our offline
benchmark needs to consider repeated matching over time,
and because of the blocking of services, has a very different
distortion than the distortion of a single-round matching.

Online Matching. There are existing online notions of
weighted bipartite matching (e.g., (Karp, Vazirani, and Vazi-
rani 1990; Kalyanasundaram and Pruhs 1993; Karande,
Mehta, and Tripathi 2011)) and stable matching (e.g.,
(Khuller, Mitchell, and Vazirani 1994)) where the matching
entities (i.e. agents or services) arrive dynamically over time
and the corresponding information in the notions is publicly
known (e.g., weights of the matched pairs or agents’ ordinal
preferences). These online settings are different from our re-
peated matching settings, where the entities do not arrive
dynamically and our objective is to maximize expected re-
wards of the repeated matching given agents’ ordinal pref-
erences. Other recent works explore dynamic agent prefer-
ences that can change over time (e.g., (Parkes and Procac-
cia 2013; Hosseini, Larson, and Cohen 2015a,b)). However,
they do not consider the problem of maximizing expected
rewards and blocking.

Blocking Bandits. Our work in the online SBM models
is closely related to the recent literature on blocking ban-
dit models (Basu et al. 2021, 2019; Bishop et al. 2020),
where each pulled arm (i.e., service) can be blocked for a
fixed number of rounds. Our work is also related to ban-
dits with different types of arm-availability constraints (Neu
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Distortion Incentive Ratio
Any Deterministic Mechanism (lower bound) Ω(s) (0, 1]

Derandomized Repeated Random Serial Dictatorship (upper bound) O(s) (1− 1/e)
Any Randomised Mechanisms (lower bound) Ω(

√
s) (0, 1]

Repeated Random Serial Dictatorship (upper bound) O(
√
s) (1− 1/e)

Table 1: Lower and Upper Bound Results for Offline SBM Models

and Valko 2014; Kleinberg and Immorlica 2018; Kleinberg,
Niculescu-Mizil, and Sharma 2010). However, these models
do not consider the sequential matching setting where multi-
ple strategic agents have (possibly unknown) ordinal prefer-
ences over arms and report ordinal preferences to a planner
in order to be matched to some arm at each round.

Multi-agent multi-armed bandits. The online setting
in our work is broadly related to the growing literature
on multi-agent multi-armed bandits (Liu, Mania, and Jor-
dan 2020; Sankararaman, Basu, and Sankararaman 2021;
Bistritz et al. 2020). Liu, Mania, and Jordan (2020) con-
sider a matching setting where strategic agents learn their
preferences over time, and the planner outputs a match-
ing every round based on their reported preferences. How-
ever, our setting is more challenging as we need to com-
pete against a dynamic offline benchmark because of the
blocking of services, whereas the existing works compete
against a fixed benchmark e.g. repeated applications of Gale-
Shapley matching in each round (Liu, Mania, and Jordan
2020).

2 Preliminaries
In this section, we introduce our model for sequential
blocked matching. We start by describing how the prefer-
ences of each agent are modeled and describe formally how
agents can be matched to services in a single time step. Af-
ter which, we introduce the first of two sequential settings
that we study in this paper, which features the blocking of
services when they are assigned to agents.

In our model, we have a set of agents, N = {1, . . . , n},
who hold cardinal preferences over a set of services, S =
{1, . . . , s}, where s � n 1. We use µi,j ∈ R+ to describe
the cardinal reward agent i receives for being assigned ser-
vice j. Similarly, we denote by µi = (µ)sj=1 the vector of
rewards associated with agent i. In what follows, we will
also refer to µi as the reward profile associated with agent i.
Moreover, we restrict ourselves to reward profiles which lie
in the probability simplex. That is, we assume µi ∈ ∆s−1

for all i ∈ N . In other words, we make a unit-sum assump-
tion about the reward profile of each agent. Bounding con-
straints on reward profiles are common in the ordinal one-
sided matching literature (Filos-Ratsikas, Frederiksen, and
Zhang 2014), and are typically required in order to prove
lower bounds for truthful algorithms such as RSD. More-
over, the unit-sum assumption is prevalent in social choice
theory (Boutilier et al. 2015). Lastly, we denote by µ the n
by s matrix of rewards.

1Note that this is without loss of generality, as we may always
add dummy services corresponding to a null assignment.

We say that agent i (weakly) prefers service a to service
b if agent i receives greater reward by being assigned ser-
vice a over service b. That is, agent i prefers service a over
service b if and only if µi,a ≥ µi,b. We use the standard
notation a �i b to say that agent i prefers service a to ser-
vice b. Additionally, we use the notation �i(j) to indicate
the service in the jth position of the preference ordering
�i. Note that every reward profile induces a linear prefer-
ence ordering of services 2. We use the notation µi B �i
to denote that �i is a preference ordering induced by agent
i’s reward profile. We let P(S), or P for short, denote the
class of all linear preferences over S. We write �i to denote
the preferences induced by agent i’s reward profile. Further-
more, we let �= (�)ni=1 ∈ Pn denote the preference pro-
file of the agents. As is standard, we write �−i to denote
(�1, . . . ,�i−1,�i+1, . . . ,�n). As a result, we may denote
� by (�i,�−i).

A matchingm : N → S∪{0} is a mapping from agents to
services. We let m(i) denote the service allocated to agent
i by the matching m. We use 0 to denote the null assign-
ment. That is, agent i is assigned no service in a matching
if m(i) = 0. We let ∅ denote the null matching, in which
no agent is assigned a service. We say matching is feasible
if no two agents are mapped to the same service. We letM
denote the set of all feasible matchings.

In this paper, we consider discrete-time sequential deci-
sion problems, in which a planner selects a sequence of (fea-
sible) matchings over T time steps. We let mt denote the
matching chosen by the planner at time step t, and denote
by M = (mt)

T
t=1 a sequence of T matchings. We denote by

M(t, i) = mt(i) the service matched to agent i at time t.
Furthermore, we assume that, when a service is assigned,

it may be blocked for a time period depending on the agent it
was assigned to. More specifically, when agent i is matched
with service j, we assume that service j cannot be matched
to any agent for the nextDi,j−1 time steps. We refer toDi,j

as the blocking delay associated with the agent-service pair
i and j. Additionally, we let D̃ denote the maximal block-
ing delay possible, and let D denote the n by s matrix of
blocking delays.

From now on, we assume that all blocking delays are
known a priori by both the planner and all agents. We say
that a matching sequence M is feasible with respect to the
delay matrixD if no service is matched to an agent on a time
step where it has been blocked by a previous matching.

Definition 1. For a given blocking delay matrix D, the set

2One reward profile may induce many linear orderings. How-
ever, the linear preference profile induced by a reward profile can
be made unique via tie-breaking rules.
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of feasible matching sequences of length T , MD
T ⊆ MT ,

is the set of all matching sequences M ∈ MT such that
for all t ∈ {1, . . . , T}, i ∈ N , and j ∈ S, if M(t, i) = j
then M(t′, i′) 6= j for all i′ ∈ N and for all t′ such that
t < t′ ≤ t+Di,j − 1.

In other words, we say that a matching sequence is fea-
sible if there is no matching in the sequence which assigns
an agent a service which has been blocked by a previous
matching. Note that blocking of services is a common phe-
nomenon in real-world scenarios. For example, consider a
setting in which each service corresponds to a freelance con-
tractor, and each agent corresponds to an employer. The
matching of services and agents then corresponds to em-
ployers contracting freelancers. For the duration of the con-
tract, which may differ from employer to employer, the
matched freelancer is unavailable before returning to the
pool of available services once their contract ends.

We define the utility, Wi(M,µi), agent i receives from
a matching sequence M as the sum of rewards it receives
from each matching in the sequence. That is, Wi(M,µi) =∑T
t=1 µi,M(t,i). Similarly, we define the social welfare,

SW(M,µ), of a matching sequence M as the summation of
the utilities for all agents. More specifically, SW(M,µ) =∑n
i=1Wi(M,µi).
Next, we will describe the first sequential matching set-

ting we consider in this paper, which we call the offline SBM
setting. In this setting, the planner must produce a feasible
matching sequence of length T . Prior to the selection of a
matching sequence, each agent submits a linear preference
ordering to the planner. We denote by �̃i the preference or-
dering, or report, submitted by agent i. Analogously, we de-
fine �̃ as the preference profile submitted cumulatively by
the agents, and call it the report profile. A matching policy
π(M | �̃, D) assigns a probability of returning a matching
sequenceM given a submitted report profile �̃ and blocking
delay matrixD. When it is clear from context, we will abuse
notation and use π(�̃, D) to refer to the (random) matching
sequence prescribed by a policy π given a report profile �̃
and blocking delay matrix D.

We say that a matching policy is admissible, if for all pos-
sible report profiles and blocking delay matrices, the match-
ing sequence returned by the policy is always feasible. The
goal of the planner is to adopt an admissible matching pol-
icy which achieves high social welfare in expectation rel-
ative to the best feasible matching sequence in hindsight,
M∗(µ,D) = argmaxM∈MD

T
SW(M,µ).

We assume that each agent, with full knowledge of the
matching policy employed the planner, submits a linear pref-
erence ordering with the intention of maximising their own
utility, and therefore may try to manipulate the planner by
submitting a preference ordering which is not induced by
their underlying cardinal preferences. We say that an agent
is truthful if they submit a preference ordering induced by
their underlying cardinal preferences. That is, an agent is
truthful if µi B �̃i. We denote by �∗i the report by agent i
which maximises agent i’s utility in expectation under the
assumption that all other agents are truthful. We say that a
policy is truthful if for all possible µ and D it is optimal for

each agent to be truthful if all other agents are truthful. In
other words, a policy is truthful if for all µ and D we have
that µi B�∗i for all i ∈ N .

To evaluate the efficiency of a given policy we use dis-
tortion, a standard notion of approximation for settings with
ordinal preferences.

Definition 2. The distortion of a matching policy is the
worst-case ratio between the expected social welfare of the
matching sequence, π(�, D), returned by the policy under
the assumption that all agents are truthful, and the social
welfare of the optimal matching sequence, M∗(µ,D):

sup
µ,D

SW(M∗(µ,D), µ)

E [SW(π(�, D), µ)]

Note that distortion is the approximation ratio of the pol-
icy π with respect to best matching sequence. In addition,
note that the distortion is only a useful measure of a match-
ing policies efficiency if said policy encourages truthful re-
porting. For example, for truthful policies, distortion is com-
pletely characterising of a policy’s expected performance.
As a result, we not only seek policies which have low dis-
tortion, but also policies which incentivise agents to submit
their reports truthfully.

To this end, we introduce the notion of incentive ratio,
which measures the relative improvement in utility an agent
can achieve by lying about their preferences.

Definition 3. The incentive ratio ζ(π) ∈ R+ of a matching
policy π is given by:

ζ(π) = max
D,�−i, µiB�i

E[Wi(π((�i,�−i), D), µi)]

E[Wi(π((�∗i ,�−i), D), µi)]

If a policy has an incentive ratio of 1, then it is truthful.
There are many reasons that we may expect a policy with
bounded incentive ratio to do well. A bounded incentive ra-
tio implies truth telling is a good approximation to the opti-
mal report. If computing the optimal report is computation-
ally intractable for the agent, being truthful is therefore an
attractive alternative, especially if the approximation ratio
implied by the incentive ratio is tight. In summary, we seek
matching policies with good guarantees when it comes to
both incentive ratio and distortion. This topic is treated in
detail in the forthcoming sections.

3 The Offline SBM Setting
In this section, we present our analysis of the offline SBM
setting. We first provide a lower bound on the distortion
achievable by both randomised and deterministic policies.
Then, we discuss why trivial extensions of truthful one-shot
matching algorithms do not result in truthful policies. In-
stead, we focus on designing policies which use truthful
one-shot matching mechanisms as a basis, and have bounded
incentive ratio. More precisely, we present the RRSD algo-
rithm. We show that the incentive ratio of RRSD is bounded
below by 1−1/e, and provide upper bounds on the distortion
achieved by RRSD, which match our previously established
lower bounds on the best distortion achievable by any ran-
domised algorithm.
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3.1 Lower Bounds on the Distortion of
Deterministic and Randomised Policies

First, we prove that the distortion of any deterministic pol-
icy is Ω(s). That is, the distortion of any deterministic policy
scales linearly with the number of services in the best case.
In the proof, we first carefully construct a set of ordinal pref-
erences. Then, given any matching sequence M , we show
that there exists a set of reward profiles which induces the
aforementioned ordinal preferences and on which M incurs
distortion of order Ω(s).3

Theorem 1. The distortion of any deterministic policy is
Ω(s).

Next, we prove that the distortion incurred by any ran-
domised policy is Ω(

√
s). To prove this, we first show that

it is sufficient to consider only anonymous policies. That is,
policies that assign each service to each agent the same num-
ber of times in expectation for all possible preference pro-
files. Then, we construct a set of reward profiles which yields
the desired distortion for all anonymous truthful policies.
Theorem 2. The distortion of the best randomised policy is
Ω(
√
s).

3.2 Constructing Truthful Algorithms for the
Offline SBM Setting

As previously mentioned, we assume that agents submit re-
ports with the intention of maximising their own utility. As
a result, the distortion incurred by a policy may not reflect
its performance in practice, as agents may be incentivised
to misreport their preferences in order to increase their util-
ity. Note that in standard one-shot one-sided matching prob-
lems, this issue is sidestepped via the employment of truthful
policies, like RSD. In addition, the restriction to considering
truthful policies is well justified by the revelation principle.
In a similar way, we would like to develop truthful algo-
rithms for the offline SBM setting.

One may be tempted to apply such truthful one-shot poli-
cies to our setting directly. That is, to apply an algorithm
such as RSD repeatedly on every time step in sequence in
order to devise a matching sequence. This intuition is cor-
rect when there is no blocking, as the matching problems
for each time step are then independent of each other. How-
ever, with blocking, the matchings from previous time steps
will have a substantial effect on the set of matchings which
preserve the feasibility of the matching sequence in future
rounds. As a result, immediately obvious approaches, such
as matching according to RSD repeatedly, do not result in
truthful policies.

One simple way of generating truthful policies is to run
a truthful one-shot one-sided matching policy once every D̃
time steps and simply return the empty matching in the re-
maining time steps. Such an approach decouples each time
step from the next, resulting in truthfulness, but comes at the
cost of only matching in at most dT/D̃e rounds.

Instead, we construct an algorithm for the offline SBM
setting from truthful one-shot matching algorithms in a dif-
ferent manner. More specifically, we propose the repeated

3All missing proofs are deferred to the full version

random serial dictatorship (RRSD) algorithm, which uses
RSD as a basis. Whilst RRSD is not truthful, it does have
bounded incentive ratio.

3.3 A Greedy Algorithm for the Offline SBM
Setting

The RRSD algorithm slowly builds up a matching sequence
M over time by iterating through agents and services. In
other words, RRSD begins with the empty matching se-
quence, where M(t, i) = 0 for all t and i ∈ N . To begin,
RRSD samples a permutation of agents σ uniformly at ran-
dom. Next, RRSD iterates through the agents in the order
given by the permutation sampled. For each agent i, RRSD
iterates through services in the order specified by the pref-
erence ordering �̃i reported by agent i. For a given service
j, RRSD repeatedly assigns service j to agent i at the ear-
liest time step which does not cause the matching sequence
to become infeasible. When no such time step exists, RRSD
moves onto the next service in agent i’s preference order-
ing. Once RRSD has iterated through the entire preference
ordering of agent i, RRSD moves onto the next agent in the
permutation σ and repeats this process until the end of the
permutation is reached. The pseudocode for RRSD is given
in the full version.

We will now briefly give the intuition behind RRSD. In
essence, RRSD attempts to mimic the RSD algorithm for
one-shot matching problems by allowing each agent to se-
quentially choose a feasible assignment of services over the
entire time horizon (whilst respecting the assignments cho-
sen by previous agents) via its reported ordering. In the case
of RSD, given an agent’s preference ordering, the same as-
signment is always optimal no matter the underlying the re-
ward profile of the agent. That is, it is optimal for the agent
to be assigned its most preferred available service, no matter
its cardinal preferences. As a result, RSD is trivially truthful
in the one-shot matching setting. In contrast, in the offline
SBM setting, the optimal assignment of services can be dif-
ferent for two reward profiles which induce the same prefer-
ence ordering. Hence, there is no trivial assignment, based
on the preference ordering submitted by the agent which
guarantees that agents are truthful.

Instead, given an agent’s preference ordering, we attempt
to find an assignment which performs reasonably well, no
matter the underlying reward profile of the agent. RRSD uses
a greedy algorithm to compute the assignment given to an
agent. As long as this greedy algorithm is a good approxi-
mation of the optimal assignment, no matter the agent’s un-
derlying reward profile, then RRSD will have a bounded in-
centive ratio. The next theorem formalises this argument.

Theorem 3. The incentive ratio of RRSD is asymptotically
bounded below by 1− 1/e.

Remark. It is an open question as to whether we can achieve
incentive ratios better than 1 − 1/e when RRSD is used.
In particular, one can show that many scheduling problems
such as generic job interval scheduling and (dense) pin-
wheel scheduling can be reduced to the optimal manipula-
tion problem each agent faces in RRSD. Whilst it is known
that generic job interval scheduling problems are MAXSNP-
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hard (Chuzhoy, Ostrovsky, and Rabani 2006), it is still not
known whether there exists a scheduling algorithm with ap-
proximation ratio better than 1− 1/e.

We now provide an upper bound on the distortion
achieved by RRSD, which matches our previously estab-
lished lower bound for randomised policies described in
Theorem 2.
Theorem 4. The distortion of RRSD is at most O(

√
s).

Finally, we show that it is possible to match the previously
established lower bound for the distortion of deterministic
algorithms. More specifically, we show that a derandomised
version of RRSD incurs a distortion of at most O(s). The
main idea is that we can select O(n2 log n) permutations of
agents so that the number of times an agent i is selected in
the jth position is Θ(n log n). We can then run through these
permutations one by one instead of selecting one permuta-
tion uniformly at random as in the RRSD algorithm.
Theorem 5. There is an admissible deterministic policy
with distortion at most O(s) for any T ≥ O(n2 log(n))

4 SBM with Bandit Feedback
Note that, in order for the guarantees above to hold in prac-
tice, we must assume that agents are fully aware of their
ordinal preferences before matching begins. However, in
many real-world scenarios, agents may be initially unaware
of their preferences and learn them over time by matching
with services. In addition, the reward an agent receives for
being matched with a service may be inherently stochastic,
depending on unobservable aspects of the underlying envi-
ronment. With these concerns in mind we present a new se-
quential blocked matching setting, which we call the online
SBM setting with bandit feedback, or online SBM for short.

In the online SBM setting, matching occurs time step by
time step. At the beginning of each time step, every agent
must submit a report, �̃ti, to the planner. The planner is then
tasked with returning a matching of agents to services which
obeys the blocking constraints imposed by the matchings
from previous time steps. At the end of each time step, agent
i receives a reward, ri,t ∈ [0, 1], sampled from a distribution
with mean µi,j , where j is the service agent i was assigned
in the matching returned by the planner. Additionally, we
assume that each agent maintains an internal estimation,�ti,
of its own preference ordering at every time step, based on
the rewards received thus far.

We use H�t = (�̃1
, . . . , �̃t) to denote the report history

up to time step t. Furthermore, we use Hm
t = (m1, . . . ,mt)

to describe the matching history at the end of time step t.
We say that a matching history is feasible if its matchings
form a feasible matching sequence. Similarly, we use Hr

t =
(r1, . . . , rt) to denote the reward history. That, is the tuple of
reward vectors, rt, observed by the agents at every time step.
An (online) matching policy π = (π1, . . . , πT ) is a tuple
of functions πt(m|H̃�t , Hm

t , D) which assigns a probability
of returning the matching m given a report history H�t , a
feasible matching history Hm

t and a blocking delay matrix
D. Similarly to the offline setting, we say that a matching
policy is admissible if it always returns a feasible matching
sequence.

Likewise, an (online) report policy for agent i, ψ̃i =

(ψ̃1, . . . ψ̃t), is a tuple of functions ψ̃t(�̃ti|Hr
t , H

m
t , D)

which assign a probability of agent i reporting �̃ti at time
step t given a reward history Hr

t , a matching history
Hm
t , and blocking delay matrix D. We denote by ψ̃ =

(ψ̃1, . . . , . . . ψ̃n) the tuple of report policies used by the
agents. As before we use the notation ψ̃−i to denote the re-
port policies of all agents bar agent i and use ψ to denote
the tuple of report policies where each agent reports its in-
ternal estimation �ti at every time step. We say that an agent
is truthful if it employs the report policy ψi.

The goal of each agent is to employ a report policy that
maximises the sum of their own rewards across the time
horizon. In contrast, goal of the planner is to employ a
matching policy which maximises the sum of rewards across
all agents and across all time steps.

In the bandit literature, a performance metric that is typ-
ically used to measure the efficiency of a policy is regret,
which is defined as the expected difference between the re-
wards accumulated by a matching policy, and the expected
reward accumulated by the best fixed matching policy in
hindsight. That is, the best policy which repeatedly selects
the same matching in as many time steps as possible. Such
a benchmark policy may have very poor performance rela-
tive to the optimal matching sequence in expectation, and as
such, the classical notion of regret is an unsuitable perfor-
mance measure in the online SBM setting. To resolve this
issue, we propose the following regret definition:

Definition 4. The dynamic α-regret of a policy π is:

Rαπ(D,µ, T ) = αSW(M∗, µ)− Eψ,π

[
n∑
i=1

T∑
t=1

ri,t

]

In other words, we compare the expected performance of
a matching policy against a dynamic oracle which returns
an 1/α-optimal solution to the corresponding offline SBM
problem, under the assumption that agents truthfully report
their internal estimation of their preferences at each time
step. Recall that, in the offline SBM setting, the distortion
incurred by any policy is at least Ω(s). As a result, we can-
not expect to construct algorithms with vanishing 1/α-regret
for α <

√
s. In addition, one would not expect any match-

ing policy to have low dynamic regret if the internal estima-
tions computed by each agent are inaccurate. For example, if
any agent’s internal estimator consists of returning a random
preference ordering, then we cannot hope to learn about said
agent’s preferences. As a result, we need to make reasonable
assumptions regarding the internal estimator of each agent.

Similar to distortion for the offline SBM setting, dynamic
α-regret is only a meaningful performance measure for poli-
cies which motivate agents to adopt truthful reporting poli-
cies. Inspired by the concept of incentive ratio for the offline
SBM setting, we define a new notion of regret which, given a
matching policy π captures the expected gain in cumulative
reward an agent can achieve by misreporting.

Definition 5. For a given matching policy π, we define agent
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i’s α–IC regret (or α incentive compatible regret) as follows:

Iαπ(D,µ, T ) =

αmax
ψ̃

E(ψ−i,ψ̃i),π

[
T∑
t=1

ri,t

]
− Eψ,π

[
T∑
t=1

ri,t

]
Note that for some matching policies, computing the op-

timal reporting policy may be computational intractable. If
agents have vanishing α-IC regret for a such policy, then
adopting a truthtelling forms a good approximation of each
agent’s optimal reporting policy. If this approximation is bet-
ter than what can be computed by the agent, then we can
expect each agent to adopt their truthful reporting policy.
Thus, we seek matching policies with good guarantees with
respect to both dynamic α-regret and α-IC regret.

4.1 Algorithms for Online SBM
Next, we present a matching policy which achieves mean-
ingful guarantees with respect to both dynamic α-regret and
α-IC regret. More precisely, we present the bandit repeated
random serial dictatorship (BRRSD) algorithm. Before we
describe BRRSD formally, we first state our assumptions re-
garding the internal estimator used by each agent.

Let µ̂i,j denote the empirical mean of the reward samples
agent i receives from being assigned service j. We say that
an agent i is mean-based if service a is preferred to service b
in �ti if and only if µ̂i,a ≥ µ̂i,b. That is, a mean-based agent
prefers services with higher empirical mean reward. From
hereon, we assume that all agents are mean-based.

Additionally, we use ∆min to denote the smallest gap in
mean rewards between two services for the same agent. That
is, ∆min = mini,a 6=b |µi,a − µi,b|. Note that ∆min is analo-
gous to common complexity measures used in bandit ex-
ploration problems. Intuitively, if the mean rewards received
from being assigned two services are similar, it will take
more samples for a mean-based agent to decide which ser-
vice they prefer.

We are now ready to describe BRRSD. BRRSD is split into
two phases. In the first phase, BRRSD assigns each agent
each service exactly

⌈
2 log(2Tsn)/∆2

min

⌉
times. BRRSD

performs these assignments in a greedy manner. At each
time step, BRRSD iterates through the agent-service pairs
that still need to be assigned in an arbitrary order. If an agent-
service pair does not violate blocking constraints, then it is
added to the current matching. Once this iteration is com-
pleted, or all agents have been assigned services, the match-
ing is returned and BRRSD moves onto the next time step.
Once all required assignments have been completed, BRRSD
waits until all services are available, matching no agents to
services in the meantime. Note that this takes a maximum
of D̃ rounds. Then, BRRSD begins its second phase. At the
beginning of the next time step, BRRSD observes the report
profile �̃ti and selects matchings according to RRSD using
this report profile for the remainder of the time horizon. The
full pseudocode for BRRSD is deferred to the full version.
BRRSD falls in the class of explore-then-commit (ETC)

algorithms common in the bandit literature. The first phase
of BRRSD serves as an exploration phase in which agent’s

learn their preference ordering. Meanwhile, the second
phase of BRRSD serves as exploitation phase in which
agents have the opportunity to disclose their accumulated
knowledge to the planner in the form of ordinal preferences.
Observe that this decoupling of exploration and exploitation
avoids complicated incentive issues that may arise for se-
quential algorithms, which make no such clear separation.

The exploration phase of BRRSD is simple relative to
typical approaches in the bandit exploration literature. One
may hope to apply a more complicated scheme for explo-
ration, however approaches with better performance guar-
antees typically depend directly on the reward samples ob-
served, which the planner does not access to. The next theo-
rem describes the guarantees of BRRSD.

Theorem 6. Under the assumption that agents are mean-
based, the following is true for all µ and D:
(i) The dynamic (1/

√
s)-regret of BRRSD is

O
(
D̃
√
s log (Tsn) /∆2

min

)
.

(ii) The (1 − 1/e)-IC regret for all agents under BRRSD is

O
(
D̃s log (Tsn) /∆2

min

)
.

(iii) The greedy algorithm used by BRRSD in the exploration
phase uses at most twice as many time steps as the shortest
feasible matching sequence which completes the required
assignments.

5 Conclusions and Future Work
In this paper, we introduced the sequential blocking match-
ing (SBM) model to capture repeated one-sided matching
with blocking constraints. For the offline setting, we lower
bounded the performance of both deterministic and ran-
domised policies, presented algorithms with matching per-
formance guarantees and bounded incentive ratio. Then, we
analysed an online SBM setting, in which agents are initially
unaware of their preferences and must learn them. For this
setting, we presented an algorithm with sublinear regret with
respect to an offline approximation oracle.

There are many interesting directions for future work.
A natural generalisation would be to consider a two-sided
matching setting (Roth and Sotomayor 1992) where services
also hold preferences over agents. Additionally, our algo-
rithms for both the offline and online settings are centralised.
It is worth investigating whether similar performance guar-
antees can be achieved by a decentralised approach. Further-
more, we assumed that the preferences are static over time.
It remains to be seen whether our approach generalises to
settings where agents’ preferences are dynamic and change
over time (Bergemann and Välimäki 2019).
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imer, A.; d’Alché Buc, F.; Fox, E.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 32.
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Pröll, B.; and Werthner, H., eds., E-Commerce and Web
Technologies, 31–40.
Waldfogel, J. 2008. The median voter and the median con-
sumer: Local private goods and population composition.
Journal of urban Economics, 63(2): 567–582.

4842


