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Abstract

The classic cake cutting problem concerns the fair allocation
of a heterogeneous resource among interested agents. In this
paper, we study a public goods variant of the problem, where
instead of competing with one another for the cake, the agents
all share the same subset of the cake which must be chosen
subject to a length constraint. We focus on the design of truth-
ful and fair mechanisms in the presence of strategic agents
who have piecewise uniform utilities over the cake. On the
one hand, we show that the leximin solution is truthful and
moreover maximizes an egalitarian welfare measure among
all truthful and position oblivious mechanisms. On the other
hand, we demonstrate that the maximum Nash welfare solu-
tion is truthful for two agents but not in general. Our results
assume that mechanisms can block each agent from access-
ing parts that the agent does not claim to desire; we provide
an impossibility result when blocking is not allowed.

1 Introduction
A fundamental problem in social choice theory is the fair al-
location of scarce resources among multiple agents. When
the resource is heterogeneous and divisible, this problem is
commonly known as cake cutting, with the cake serving as a
metaphor for the heterogeneous resource. Cake cutting has
been extensively studied for over half a century in mathe-
matics and economics, and more recently in computer sci-
ence (Brams and Taylor 1996; Robertson and Webb 1998;
Procaccia 2016).

In this paper, we consider a variant of the classic cake
cutting problem where instead of competing with one an-
other for the cake, the agents all share the same subset of the
cake, which must be chosen subject to a length constraint.
We refer to this setting as cake sharing. The cake sharing
problem captures many real-world scenarios, such as when
a group of agents need to decide the time periods for which
they should reserve a sports facility or a conference room for
collective use given their limited budget, or when a group of
users seek to agree upon the files to store in a shared cache
memory. Our goal is to design cake sharing mechanisms that
are both truthful and fair. Truthfulness requires that it should
be in every agent’s best interest to report her true underlying
preferences to the mechanism. A truthful mechanism makes
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it easy for agents to participate in, as they do not have to
act strategically and reason about beneficial manipulations;
it also simplifies the job of the mechanism designer when
reasoning about the possible behavior of the agents. Note
that truthfulness by itself is easy to obtain, for example by
ignoring the agents’ reports completely and allocating a pre-
specified subset of the cake. However, this is a patently un-
fair mechanism, as it leaves any agent who has no value for
that subset empty-handed. Is there a mechanism that is truth-
ful and at the same time satisfies a certain degree of fairness
for all agents?

Two mechanisms that have been used in various resource
allocation settings and often shown to exhibit attractive fair-
ness properties are the maximum Nash welfare (MNW) so-
lution and the leximin solution. The MNW solution chooses
an allocation that maximizes the product of the agents’ utili-
ties among all feasible allocations. The leximin solution con-
siders all feasible allocations that maximize the minimum
among the agents’ utilities; among all such allocations, it
considers those maximizing the second smallest utility, and
so on. Due to their optimization nature, both solutions fulfill
an important economic efficiency criterion of Pareto opti-
mality: there is no other feasible outcome that makes some
agent better off and no agent worse off compared to the cho-
sen outcome. Indeed, any such improved outcome would
also be an improvement with respect to the corresponding
optimization objective. Given the broad appeal of the two
mechanisms, are they appropriate choices for our cake shar-
ing setting, especially from the truthfulness perspective?

1.1 Our Results
As is standard in the cake cutting literature, we model the
cake as an interval [0, 1]; for a given parameter α ∈ [0, 1], a
subset of length at most α of the cake can be collectively al-
located to the agents. We assume that the agents have piece-
wise uniform utilities, meaning that each agent has a desired
subset of the cake which she values uniformly. Except in
Section 6, we also assume that once a mechanism chooses a
subset of the cake, it can “block” each agent from accessing
certain parts of the cake, usually those that the agent does not
desire according to her report. We remark here that block-
ing can be easily implemented in the aforementioned appli-
cations of cake sharing, for example by disallowing agents
from accessing part of the cache memory that they do not de-
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mand or restricting their access to the sports facility during
the times that they claim to be unavailable.

In Section 3, we focus on the leximin solution. Our main
technical result establishes the truthfulness of the solution
for any number of agents with arbitrary piecewise uniform
utilities. At a high level, our proof proceeds by showing that
the leximin solution is immune to certain types of manip-
ulations, and then arguing that this immunity is sufficient
to protect the solution against all possible manipulations.
Along the way, we introduce the notion of an ε-change—
a tiny change from one utility vector or allocation towards
another—which may be useful in related settings. Addition-
ally, we show that each agent receives the same utility in all
leximin allocations (which means that tie-breaking is incon-
sequential) and that such an allocation can be computed in
polynomial time.

Since truthfulness by itself can be trivially obtained as we
explained earlier, we consider in Section 4 the fairness of
mechanisms. We adapt the well-known notion of propor-
tionality from cake cutting and measure fairness using the
egalitarian ratio, which is defined as the worst-case egalitar-
ian welfare that the mechanism provides over all instances,
where we normalize the agents’ utilities for the entire cake
when computing their egalitarian welfare. We show that for
any α and number of agents n, the leximin solution has egal-
itarian ratio exactly α/(n− (n− 1)α). Moreover, we prove
that this ratio is already optimal among all mechanisms that
are truthful and position oblivious (see Definition 4.5). Our
results in Sections 3 and 4 establish the leximin solution as
an attractive mechanism in the setting of cake sharing.

In Section 5, we turn our attention to the MNW solution.
We show that the solution is equivalent to the leximin solu-
tion in the case of two agents, and is therefore truthful in that
case. In general, however, a result of Aziz, Bogomolnaia,
and Moulin (2020, Theorem 3) implies the non-truthfulness
of the MNW solution in our setting. We strengthen their
result by showing that MNW is not truthful even when an
agent is only allowed to report a subset of her true desired
piece.1 Moreover, in contrast to Aziz et al.’s example, the
symmetry structure in our example allows us to provide a
relatively short proof of the non-truthfulness that can be eas-
ily verified by hand.

Finally, we demonstrate in Section 6 that the ability to
block is crucial for the truthfulness of mechanisms. In par-
ticular, we show that no truthful, Pareto optimal, and posi-
tion oblivious mechanism can achieve a positive egalitarian
ratio when blocking is not allowed.

1.2 Related Work
While the model of cake sharing is new to the best of our
knowledge, the selection of a collective subset from a given
set subject to a size or budget constraint has been studied in
several lines of work. In multiwinner voting, the goal is to
choose a certain number of candidates to form a committee,

1We remark that subset manipulation is a highly restricted form
of manipulation. Indeed, Peters (2018) noted that reporting a subset
is a “particularly simple fashion” of manipulating, and used subset
manipulation as the “official notion” of truthfulness.

where criteria can include excellence and diversity—see the
survey by Faliszewski et al. (2017). In that setting, Peters
(2018) proved that no rule can simultaneously satisfy a form
of fairness and a form of truthfulness when agents have ap-
proval preferences (analogous to piecewise uniform utilities
in our setting). A key difference between multiwinner vot-
ing and cake sharing is that the candidates in the former are
discrete and cannot be divided into arbitrarily small pieces.
Variants where discrete items instead of candidates are se-
lected have also been considered (Skowron, Faliszewski, and
Lang 2016; Manurangsi and Suksompong 2019).

A long list of recent papers have addressed the problem
of participatory budgeting, where the citizens decide how
a public budget should be spent on possible projects in their
community—see the survey by Aziz and Shah (2021). Some
models assume that projects are discrete (each project can
either be fully completed or not at all), while others assume
that they are divisible (partial completion of a project yields
some utility to the citizens). In either case, there is a prespec-
ified set of projects and the preference of an agent within a
project is uniform, so participatory budgeting cannot capture
our cake sharing model where there is no predetermined di-
vision of the cake into homogeneous units.

Aziz, Bogomolnaia, and Moulin (2020) studied a prob-
abilistic voting setting in which agents have dichotomous
preferences over m alternatives and the goal is to output a
probability distribution over the alternatives. Their model
corresponds to a special case of our model where for each
j = 1, . . . ,m, the interval [(j−1)/m, j/m] represents alter-
native j, and α = 1/m; in this special case, agents are not al-
lowed to have “breakpoints” that are not multiples of 1/m in
their utility functions (see the precise definition of a break-
point in Section 2). Like us, Aziz et al. showed that the lex-
imin solution is truthful.2 Our results on the leximin solution
generalize and strengthen theirs in three important ways.
First, we allow agents to report arbitrary breakpoints—this
considerably enlarges the strategy space of the agents and
introduces an aspect that cannot be captured by their model.
Second, our model allows an arbitrary value of α instead of
only α = 1/m. Third, we establish a tight bound on the egal-
itarian ratio and show that the leximin solution achieves this
bound. Therefore, we believe that overall, our results make
a significantly stronger case in favor of the leximin solution.

Friedman et al. (2019) investigated a model in which
agents share a cache memory unit, focusing on truthfulness
and fairness like we do. In their model, each agent has a pri-
vate file that no other agent is interested in, and there is a
large public file that may be of interest to multiple agents.
The challenge of the mechanism is to elicit the true ratio be-
tween each agent’s utility for the public file and that for her
private file. These authors demonstrated that the ability to
block can also help mechanisms achieve better guarantees
in their setting, in particular by preventing “free riding”.

Truthfulness in cake cutting has been considered in sev-
eral papers (Maya and Nisan 2012; Chen et al. 2013;
Kurokawa, Lai, and Procaccia 2013; Aziz and Ye 2014;

2They called the notion excludable strategyproofness, which is
equivalent to truthfulness with blocking in our setting.

4810



Brânzei and Miltersen 2015; Bei et al. 2017; Menon and Lar-
son 2017; Bei, Huzhang, and Suksompong 2020; Tao 2021).
Like our paper, a number of these papers also address the
case of piecewise uniform utilities. Two important fairness
properties in cake cutting are envy-freeness and proportion-
ality. Note that envy-freeness is always fulfilled in our set-
ting (as long as the mechanism does not block any agent’s
valued cake), since all agents share the same subset of the
cake. On the other hand, proportionality has a similar flavor
as our egalitarian ratio notion, where we want to guarantee
a certain level of utility for every agent.

Finally, both the leximin and MNW solutions have been
examined in a variety of settings and often shown to ex-
hibit desirable properties (Bogomolnaia and Moulin 2004;
Kurokawa, Procaccia, and Shah 2018; Caragiannis et al.
2019; Segal-Halevi and Sziklai 2019; Aziz, Bogomolnaia,
and Moulin 2020; Halpern et al. 2020; Plaut and Roughgar-
den 2020; Brandl et al. 2022).

2 Preliminaries
Our setting includes a set of agents denoted by N =
{1, 2, . . . , n} and a heterogeneous divisible good (or cake)
represented by the normalized interval [0, 1]. A piece of cake
is a union of finitely many disjoint (closed) intervals. Denote
by `(I) the length of an interval I , that is, `([a, b]) = b− a.
For a piece of cake S consisting of a set of intervals IS , we
denote `(S) =

∑
I∈IS `(I). Each agent i ∈ N is endowed

with a density function fi : [0, 1] → R≥0, which captures
how the agent values different parts of the cake. We assume
that the agents have piecewise uniform utilities: for each
agent i, each part of the cake is either desired or undesired,
and the density function fi takes on the value 1 for all de-
sired parts and 0 for all undesired parts. Let Wi ⊆ [0, 1] de-
note the (not necessarily contiguous) piece of cake on which
fi = 1. The utility of agent i for any piece of cake S is given
by ui(S) := `(S ∩Wi).3 We assume that `(Wi) > 0 for ev-
ery i, since we can simply ignore an agent i with `(Wi) = 0.

Let α ∈ [0, 1] be a given parameter. We refer to a setting
with agents, their density functions, and the parameter α as
an instance. A mechanism M(R) chooses from any given
instance R a piece of cake A with `(A) ≤ α. However, this
does not mean all agents have full access to A, because we
allow the mechanism to block each agent from accessing cer-
tain parts of the selected piece. Specifically, after choosing
A, the mechanism assigns piece Ai ⊆ A to agent i; we call
A = (A,A1, . . . , An) an allocation. The utility of agent i
from the allocation A is ui(Ai). Since the cases α = 0 and
α = 1 are trivial, we assume from now on that α ∈ (0, 1).
Given an instance, every point that is a left or right endpoint
of an interval in Wi for at least one i is called a breakpoint;
the points 0 and 1 are also considered to be breakpoints. Ob-
serve that for any instance, the agents’ utilities for a piece
of cake S depend only on the amounts of cake between con-
secutive pairs of breakpoints included in S.

We now define the central property of our paper.

3Some cake cutting papers normalize the utility functions so
that ui([0, 1]) = 1 for all i ∈ N ; we do not follow this convention.
See also the end of Section 3 for a discussion of normalization.

Definition 2.1 (Truthfulness). A mechanism is truthful if
for any instance R withM(R) = (A,A1, . . . , An) and any
agent i ∈ N , if the agent reports W ′i 6= Wi and the mech-
anism returns the allocation A′ = (A′, A′1, . . . , A

′
n) on the

modified instance, then ui(Ai) ≥ ui(A′i).
Next, we define the two main mechanisms in this paper.

Definition 2.2 (Leximin). Given an instance, the leximin so-
lution considers pieces of cake A with `(A) ≤ α such that
the minimum among the utilities u1(A), . . . , un(A) is maxi-
mized; among all such piecesA, it considers those for which
the second smallest utility is maximized, and so on, until af-
ter considering the largest utility, it chooses one of the pieces
A that remain. It then assigns Ai = A ∩Wi for all i ∈ N .

Definition 2.3 (MNW). Given an instance, the maximum
Nash welfare (MNW) solution chooses a piece of cake A
with `(A) ≤ α such that the product

∏
i∈N ui(A) is maxi-

mized. It then assigns Ai = A ∩Wi for all i ∈ N .

The following example illustrates some of our definitions.

Example 2.4. Let α = 1/2. Consider an instance with two
agents whose utility functions are given as follows:

W1 = [0, 1/2], W2 = [1/4, 7/8].

A possible piece A selected by both leximin and MNW is
A = [1/8, 5/8].4 Then, agent 1 has access to the pieceA1 =
A ∩W1 = [1/8, 1/2] while agent 2 has access to the piece
A2 = A∩W2 = [1/4, 5/8]. Both agents receive utility 3/8.

Cake
0 1/8 1/4 1/2 5/8 7/8 1

W1

W2

Since both leximin and MNW always choose Ai = A ∩
Wi for all i ∈ N , we can represent an allocation A simply
by the set A when we discuss these mechanisms. Note that
ui(Ai) = `(Ai ∩Wi) = `(A∩Wi) = ui(A), so it also suf-
fices to consider the agents’ utilities with respect to A. By a
standard compactness argument and our observation above
that the agents’ utilities depend only on the amounts of cake
between breakpoints, both solutions are well-defined (i.e.,
the desired maxima are attained). There may be several max-
imizing allocationsA to choose from, in which case we gen-
erally allow arbitrary tie-breaking—as we will see later, this
tie-breaking does not influence the utility that each agent re-
ceives and therefore does not play a significant role. We call
an allocation that is returned by the MNW solution (resp.,
leximin solution) under some tie-breaking an MNW allo-
cation (resp., leximin allocation). By our assumptions that
α > 0 and `(Wi) > 0 for every i, all MNW allocations and
leximin allocations give every agent a strictly positive utility.

All omitted proofs can be found in the full version of our
paper (Bei, Lu, and Suksompong 2021).

4We show in Theorem 5.2 that leximin and MNW are equiva-
lent in the case of two agents.
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3 Leximin Solution
In this section, we consider the leximin solution. We begin
by establishing basic properties of the solution.

Our first result is that the utility of each agent is the same
in all leximin allocations, which means that tie-breaking is
not an important issue. The proof proceeds by assuming for
contradiction that two leximin allocations give some agent
different utilities, and arguing that the “average” of these two
allocations would have been a better choice with respect to
the leximin ordering.
Proposition 3.1. Given any instance, for each agent i, the
utility that i receives is the same in all leximin allocations.

Next, we show that a leximin allocation can be computed
efficiently via a linear programming-based approach similar
to the one used by Airiau et al. (2019) in the context of por-
tioning. Recall that in our setting, the utility functions of the
agents can be described explicitly by the sets Wi.
Proposition 3.2. There exists an algorithm that computes a
leximin allocation in time polynomial in the input size.

We now come to our main result of this section, which
establishes the truthfulness of the leximin solution.
Theorem 3.3. For arbitrary tie-breaking, the leximin solu-
tion is truthful.

At a high level, the proof of Theorem 3.3 proceeds by
identifying specific types of manipulations, arguing that
such manipulations cannot be beneficial when the leximin
solution is used, and then showing that being immune to
these manipulations implies being immune to all manipu-
lations. We start by defining an ε-change, a useful concept
in our proof.
Definition 3.4 (ε-change). Given two vectors of real num-
bers x = (x1, x2, . . . , xn) and x′ = (x′1, x

′
2, . . . , x

′
n), an ε-

change from x towards x′ refers to the following continuous
operation: for each i ∈ {1, 2, . . . , n}, xi changes linearly to
x′′i := xi + ε(x′i − xi), where ε is sufficiently small so that
if xi < xj , then x′′i < x′′j .

For ease of expression, we will also use an ε-change to
refer to the outcome of such an operation, i.e., the vector x′′.
When we discuss ε-changes, we will not specify the exact
value of ε: any ε satisfying the above condition works. The
following lemma establishes a useful property of ε-changes.
Lemma 3.5. Given two vectors x and y, if y is a better
vector with respect to the leximin ordering than x, then an
ε-change from x to y is also a leximin improvement.

We now extend the definition of an ε-change to alloca-
tions. Recall that for the leximin solution, it suffices to con-
sider the set A instead of the entire allocation A. Given two
allocations A and A′, an ε-change from A towards A′ can
be captured by dividing the cake into intervals according
to the breakpoints and changing A towards A′ so that the
length of cake included in the allocation in each interval
changes linearly. Note that when we perform an ε-change
from A towards A′, by linearity, we also obtain a corre-
sponding ε-change from the vector (u1(A), . . . , un(A)) to-
wards (u1(A

′), . . . , un(A
′)), and any allocation obtained

during the process is feasible.

Next, we present auxiliary lemmas used for proving the
truthfulness of leximin solution. These lemmas discuss how
the leximin allocation can change when an agent modi-
fies her density function in various ways. For notational
convenience, in these lemmas we assume that instance R
(resp., R′) contains the density functions corresponding to
W1, . . . ,Wn (resp., W ′1, . . . ,W

′
n). Our first lemma says that

whenever an agent shrinks her desired piece in such a way
that it contains the entire portion she receives, then she
should still receive the same portion in the new instance.

Lemma 3.6. Given a leximin allocation A for instance R,
let R′ be an instance such that A ∩Wi ⊆ W ′i ⊆ Wi for an
agent i ∈ N and W ′j = Wj for all j ∈ N \ {i}. Then, A is
also a leximin allocation for R′.

Our second lemma says that when an agent shrinks her
desired piece, she should not get a higher utility than before.

Lemma 3.7. Given a leximin allocation A for instance R,
letR′ be an instance such thatW ′i ⊆Wi for an agent i ∈ N
and W ′j = Wj for all j ∈ N \ {i}. Let A′ be a leximin
allocation for R′. Then, `(A′ ∩W ′i ) ≤ `(A ∩Wi).

Our third lemma says that if an agent is already getting her
entire desired piece, then whenever she shrinks her desired
piece, she should still be at maximum utility.

Lemma 3.8. Given a leximin allocation A for instance R
with Wi ⊆ A for an agent i ∈ N , let R′ be an instance such
that W ′i ⊆Wi and W ′j =Wj for all j ∈ N \ {i}. Let A′ be
a leximin allocation for R′. Then, W ′i ⊆ A′.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Suppose for contradiction that the
leximin solution is not truthful. This means that there exists
an instance R with leximin allocation A such that if agent i
reports Ŵi instead of Wi, a leximin allocation Â in the new
instance R̂ satisfies `(Â ∩ Ŵi ∩Wi) > `(A ∩Wi). We will
keep the desired piecesWj of agents j ∈ N \{i} unchanged
throughout this proof.

First, consider an instance R̂′ where Ŵ ′i = Ŵi ∩ Â.
By Lemma 3.6 applied to R̂ and R̂′, Â is also a leximin
allocation for R̂′. Next, consider an instance R̂′′ in which
Ŵ ′′i = Ŵi∩ Â∩Wi. Since Ŵ ′i ⊆ Â, by Lemma 3.8 applied
to R̂′ and R̂′′, any leximin allocation for R̂′′ must contain
the entire Ŵ ′′i . Recall that `(Ŵ ′′i ) > `(A ∩Wi).

Finally, consider the instances R and R̂′′. From the for-
mer to the latter, agent i’s desired piece shrinks from Wi to
Ŵ ′′i ⊆Wi. By Lemma 3.7, the agent should not get a higher
utility through this shrinking. However, the agent’s utility is
`(A∩Wi) before the shrinking, and `(Ŵ ′′i ) afterwards. This
is a contradiction.

Observe that unlike MNW, the leximin solution depends
on the normalization of the agents’ utilities. Besides our nor-
malization, another common choice in cake cutting is to nor-
malize the utility of every agent for the whole cake to 1—this
leads to an alternative definition of the leximin solution. We
remark here that this variant of leximin is not truthful. To
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see this, consider two agents with W1 = [0, 1/3] and W2 =
[1/3, 2/3], and let α = 1/3. In this instance, the (alternative)
leximin solution gives each agent length 1/6 of the cake.
However, if agent 2 misreports that W2 = [1/3, 1], then it
is possible that the agent receives the interval [1/3, 5/9] and
therefore length 2/9 > 1/6 of her valued cake. Let us em-
phasize that once we fix a mechanism, whether the mecha-
nism is truthful or not is independent of the normalization,
because truthfulness does not depend on the normalization.
Hence, our normalization for leximin is the ‘correct’ one to
use if we desire truthfulness. In the next section, we pro-
vide further evidence that this normalization is appropriate
by showing that our version of the leximin solution achieves
a strong fairness guarantee in terms of egalitarian welfare.

4 Egalitarian Ratio
As we mentioned in the introduction, truthfulness by itself
is easy to achieve, for example by always allocating a fixed
piece of cake of length α. However, this may leave certain
agents with zero utility, a patently unfair outcome. To mea-
sure fairness, we adapt the standard notion of proportional-
ity from cake cutting5 and consider the minimum among the
utilities of all agents. In order to perform meaningful inter-
personal comparisons of utilities, we compare the utilities
that the agents receive to their utilities for the entire cake in
the following definition.

Definition 4.1 (Egalitarian ratio). Given an instance R and
an allocation A, the egalitarian ratio of A is defined as

Egal-ratio-allocR(A) = min
i∈N

ui(Ai)

ui([0, 1])
.

For a mechanismM and parameters n and α, the egalitarian
ratio ofM with respect to n and α is defined as

Egal-ration,α(M) = inf
R

Egal-ratio-allocR(M(R)),

where the infimum is taken over all instances with n agents
and parameter α.

In other words, the egalitarian ratio of M with respect
to n and α is the smallest ratio between an agent’s utility
for her piece allocated by M and her utility for the entire
cake, taken over all instances with parameters n and α. For
example, if a mechanism always allocates a fixed piece of
length α regardless of the agents’ utility functions, then its
egalitarian ratio with respect to any n and α ∈ (0, 1) is 0.
We first present a tight upper bound on the egalitarian ratio.

Proposition 4.2. For all n ≥ 1 and α ∈ (0, 1),

0 ≤ Egal-ration,α(M) ≤ α

for any mechanismM. Moreover, for each inequality, there
exists a mechanismM such that the inequality is tight.

Our next result gives the precise egalitarian ratio of the
leximin solution.

5Recall that in cake cutting, proportionality stipulates that every
agent receives at least 1/n of her value for the entire cake.

Theorem 4.3. For all n ≥ 1 and α ∈ (0, 1),

Egal-ration,α(leximin) =
α

n− (n− 1)α
.

Theorem 4.3 shows that the leximin solution achieves a
non-trivial egalitarian ratio. However, it is unclear how good
this ratio is compared to that of other truthful mechanisms.
We will therefore show that the solution attains the high-
est possible ratio among all truthful mechanisms satisfying a
natural condition. Given a vector of piecewise uniform den-
sity functions f = (f1, . . . , fn), let Lf be a vector with 2n

components such that each component represents a distinct
subset of agents and the value of the component is the length
of the piece desired by exactly that subset of agents (and not
by any agent outside the subset).
Example 4.4. Consider the instance in Example 2.4. The
corresponding Lf of this instance is (1/8, 1/4, 3/8, 1/4),
where the components correspond to the lengths of the
pieces desired by exactly the set of agents ∅, {1}, {2}, and
{1, 2}, respectively.
Definition 4.5 (Position obliviousness). A mechanismM is
position oblivious if the following holds:

Let f and f ′ be any vectors of density functions such that
Lf = Lf ′ , and letR andR′ be instances represented by these
respective vectors and a given parameter α. If M(R) =
(A,A1, . . . , An) and M(R′) = (A′, A′1, . . . , A

′
n), then

ui(Ai) = u′i(A
′
i) for every i ∈ N .

Position obliviousness has previously been studied by
Bei, Huzhang, and Suksompong (2020). Intuitively, for a po-
sition oblivious mechanism, the utility of an agent depends
only on the lengths of the pieces desired by various subsets
of agents and not on the positions of these pieces. It follows
directly from the definition that the leximin solution is posi-
tion oblivious.6

Theorem 4.6. Let M be a truthful and position oblivious
mechanism. Then, for all n ≥ 1 and α ∈ (0, 1),

Egal-ration,α(M) ≤ α

n− (n− 1)α
.

Proof. Assume for the sake of contradiction that there ex-
ists a truthful and position oblivious mechanism M with
Egal-ration,α(M) = α

n−(n−1)α + δ for some δ > 0. For
each i ∈ N , let Ci be a piece of length `(Ci) = α/n + ε
such that Ci ∩ Cj = ∅ for every pair i, j ∈ N , where ε > 0
is such that

ε < min

{
1− α
n

,
δ(n− (n− 1)α)2

n(n− 1)(α+ δ(n− (n− 1)α))

}
.

Consider an instance R where Wi = Ci for all i ∈ N .
SinceM can allocate length at most α of the cake, it must
return an allocation for which some agent receives utility at
most α/n. Assume without loss of generality thatM returns
an allocation A with u1(A1) ≤ α/n.

Next, consider an instance R′ where W ′i = Ci for all i ∈
N \{1} andW ′1 = [0, 1]\

⋃
i∈N\{1} Ci. (We use the notation

6Bei et al. (2017) considered a slightly stronger version of po-
sition obliviousness, which the leximin solution also satisfies.
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W ′i for instance R′ to distinguish from Wi for instance R.)
For this instance, we have `(W ′1) = 1− (n− 1) · (α/n+ ε).
Let A′ = M(R′), and let Y = A′1 ∩ W ′1. By the def-
inition of egalitarian ratio, we have u1(A′1)/u1([0, 1]) ≥
Egal-ration,α(M), that is,

`(Y ) ≥ Egal-ration,α(M) · `(W ′1)

=

(
α

n− (n− 1)α
+ δ

)
·
(
1− (n− 1) ·

(α
n
+ ε
))

,

which is greater than α/n by our choice of ε.
Finally, consider an instance R′′ where W ′′i = Ci for all

i ∈ N \{1}, while W ′′1 is a subset of [0, 1]\
⋃
i∈N\{1} Ci of

length `(W ′′1 ) = α/n+ε such that `(W ′′1 ∩Y ) > α/n. Since
M is position oblivious, by comparing instancesR′′ withR,
agent 1 must also get a utility of at most α/n in instanceR′′.
However, if the agent reports [0, 1] \

⋃
i∈N\{1} Ci as in R′,

she gets a utility of `(W ′′1 ∩ Y ) > α/n. This means thatM
is not truthful and yields the desired contradiction.

Comparing this ratio with highest possible ratio of αwith-
out the truthfulness condition (Proposition 4.2),7 one can see
that adding the truthfulness requirement incurs a (multiplica-
tive) “price” of n − (n − 1)α on the best egalitarian ratio.
This price can be as large as n when α is close to 0, and
decreases to 1 as α approaches 1.

5 Maximum Nash Welfare
In this section, we address the MNW solution. We start by
showing that like the leximin solution (Proposition 3.1), the
utility that each agent receives is the same in all MNW allo-
cations; this renders the tie-breaking issue insignificant.
Proposition 5.1. Given any instance, for each agent i, the
utility that i receives is the same in all MNW allocations.

In the case of two agents, we show that MNW and leximin
are in fact equivalent. The high-level idea is that both solu-
tions can be obtained via the following process: First, select
portions of the cake desired by both agents. If the quota α
has not been reached, let the agents ‘eat’ their desired piece
using the same speed, until either (i) one of the agents has
no more desired cake, in which case we let the other agent
continue eating, or (ii) we run out of quota.
Theorem 5.2. Consider an instance with two agents. Any
leximin allocation is an MNW allocation, and vice versa.

Theorems 3.3 and 5.2 together imply the following:
Corollary 5.3. For two agents and arbitrary tie-breaking,
the MNW solution is truthful.

When n ≥ 3, the two mechanisms are no longer equiva-
lent. This can be seen from the instance with W1 = [0, 1/2]
and Wi = [1/2, 1] for all 2 ≤ i ≤ n, and α = 1/2. The lex-
imin solution selects length 1/4 from each half of the cake,
while MNW selects length 1

2n from the first half and n−1
2n

from the second half. For our main result of this section,
we demonstrate that the MNW solution is not truthful even

7Note that the mechanism that achieves egalitarian ratio α in
Proposition 4.2 satisfies position obliviousness.

when an agent is only allowed to report a subset of her true
desired piece—as discussed in Section 1.1, this strength-
ens the non-truthfulness result of Aziz, Bogomolnaia, and
Moulin (2020) where the manipulation is not of this sim-
ple nature. In particular, we construct an instance with six
agents such that one of the agents can obtain a higher utility
by reporting a subset of her actual desired piece.

Theorem 5.4. The MNW solution is not truthful under sub-
set reporting regardless of tie-breaking.

We remark here that even if we allow the MNW solution
to choose any Ai such that A ∩ Wi ⊆ Ai ⊆ A instead
of always choosing Ai = A ∩Wi (that is, the mechanism
may give agent i some parts of A that she does not value,
along with all parts of A that she values), our example in
Theorem 5.4 still shows that any resulting mechanism is not
truthful under subset reporting.

6 Impossibility Result Without Blocking
As we have so far assumed that mechanisms can block
agents from accessing certain parts of the resource, an in-
teresting question is what guarantees the mechanisms can
achieve without the ability to block. Indeed, while block-
ing can be easily implemented in our introductory appli-
cations by restricting access to the sports facility or files
in a cache memory, it may be harder or more costly in
other situations, e.g., cleaning streets or constructing pub-
lic parks. In this section, we consider mechanisms without
the blocking ability. When no blocking is allowed, given an
input instance, a mechanism M simply chooses a piece of
cake A with `(A) ≤ α, and each agent i receives a utility of
ui(A) = `(A ∩Wi).

First, we observe that while the leximin solution is truthful
if it has the ability to block (Theorem 3.3), this is no longer
the case in the absence of blocking.

Example 6.1 (Leximin is not truthful without blocking). Let
α = 1/2. First, consider an instance R with two agents
whose utility functions are given as follows:

W1 = [0, 1/2], W2 = [1/2, 1].

Assume without loss of generality that the tie-breaking rule
chooses A = [1/4, 3/4]. Next, consider an instance R′ with
the following utility functions:

W1 = [0, 3/4], W2 = [1/2, 1].

Agent 1 receives a utility of 3/8 in every leximin allocation
for R′. However, if agent 1 misreports that W1 = [0, 1/2],
the instance becomes the same as R, and agent 1 receives a
utility of 1/2 from the allocation A.

Our main result of this section shows that Example 6.1 is
in fact not a coincidence.

Theorem 6.2. Without blocking, for every α ∈ (0, 1), no
truthful, Pareto optimal, and position oblivious mechanism
can achieve a positive egalitarian ratio even in the case of
two agents.
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Figure 1: Example instances in the proof of Theorem 6.2.

Proof. We assume for contradiction that there exists some
α ∈ (0, 1) and a truthful, Pareto optimal, and position obliv-
ious mechanism M with Egal-ratio2,α(M) > 0. We con-
sider a sequence of instances with two agents, which we il-
lustrate in Figure 1. In the following, the superscripts denote
the indices of the instances. In all of the instances that we
consider, every part of the cake is desired by at least one
agent, so Pareto optimality implies thatMmust allocate ex-
actly α of the cake.

• Instance R1: W 1
1 = [0, 0.5],W 1

2 = [0.5, 1].
Let M(R1) = A1. Because α < 1, at least one of the
agents will not obtain her maximum utility of 0.5. As-
sume without loss of generality that `(W 1

1 ∩ A1) = x <
0.5; in other words, W 1

1 \A1 is nonempty. SinceM has
a positive egalitarian ratio, it must hold that 0 < x < α.

• Instance R2: W 2
1 = [0, 0.5],W 2

2 = A1 ∪ [0.5, 1].
Let M(R2) = A2. We must have A2 ⊆ W 2

2 ; in other
words, agent 2 will receive utility α. This is because oth-
erwise, agent 2 can benefit by reporting W 2

2
′
= [0.5, 1]

and the instance becomes R1, in which case agent 2 will
receive utility α from the output allocation A1. Note that
because A2 is contained entirely in W 2

2 , we still have
`(W 2

1 ∩A2) ≤ x.
• Instance R3: W 3

1 = [0, 0.5] \A1,W 3
2 = A1 ∪ [0.5, 1].

LetM(R3) = A3. By the positive egalitarian ratio, we
have `(W 3

1 ∩A3) = y > 0.
• Instance R4: W 4

1 =
(
[0, 0.5] \A1

)
∪ B,W 4

2 = A1 ∪
[0.5, 1], where B is an interval of length x contained in
W 3

2 with the largest intersection with A3. That is,
– if `(W 4

2 ∩ A3) ≥ x, let B be any subset of W 4
2 ∩ A3

of length x;
– if `(W 4

2 ∩ A3) < x, let B be any interval of length x
that contains W 4

2 ∩A3.
Let M(R4) = A4. In this instance, we must have
u1(A

4) > x. This is because otherwise, agent 1 can ben-
efit by reporting W 4

1
′
= [0, 0.5] \ A1 and the instance

becomes R3, in which case agent 1 will obtain a utility
of x+ y (when `(W 4

2 ∩A3) ≥ x) or a utility of α (when
`(W 4

2 ∩ A3) < x). In both cases this value is strictly
larger than x.

Finally, observe that instances R2 and R4 have the same
Lf vector. In particular, we have `(W 2

1 ) = `(W 4
1 ) = 1/2,

`(W 2
2 ) = `(W 4

2 ) = 1/2 + x, and `(W 2
1 ∩W 2

2 ) = `(W 4
1 ∩

W 4
2 ) = x. This means that each agent should receive the

same utility in these two instances from our position oblivi-
ous mechanismM. However, agent 1 receives utility at most
x in R2 and utility strictly larger than x in R4. We have
reached a contradiction.

7 Conclusion and Future Work
In this paper, we have studied truthful and fair mechanisms
in the cake sharing setting where all agents share the same
subset of a heterogeneous divisible resource. Our results es-
tablished the leximin solution as an attractive mechanism
due to its truthfulness and its optimal egalitarian ratio among
all truthful and position oblivious mechanisms. On the other
hand, we constructed an intricate example showing that the
maximum Nash welfare solution, which often exhibits de-
sirable properties in other settings, fails to yield truthfulness
in cake sharing even when the agents are restricted to sub-
set reporting. Moreover, we showed that in the absence of
blocking, no truthful, Pareto optimal, and position oblivious
mechanism can achieve a positive egalitarian ratio—in par-
ticular, this implies that the leximin solution is not truthful
without blocking. An intriguing question is whether the im-
possibility still holds if we remove Pareto optimality or po-
sition obliviousness (or both), or whether there is a truthful
mechanism that attains a non-trivial fairness guarantee even
when blocking is not allowed.

In future research, it would be interesting to extend our
cake sharing model to capture other practical scenarios. One
natural direction is to allow agents to have more complex
preferences beyond piecewise uniform utilities. The first
step in this direction would be to consider piecewise con-
stant utilities, where an agent’s density function is constant
over subintervals of the cake. Another extension is to allow
non-uniform costs over the cake—this models, for example,
the fact that reserving a sports facility or a conference room
can be more expensive during peak periods. In the full ver-
sion of our paper (Bei, Lu, and Suksompong 2021), we show
that a natural generalization of the leximin solution is still
truthful and achieves the optimal egalitarian ratio for piece-
wise constant cost functions. Furthermore, as in cake cut-
ting, it may be fruitful to consider scenarios in which there
are constraints on the shared cake (Suksompong 2021).8
Other questions addressed in cake cutting, such as the price
of truthfulness and the price of fairness—that is, the loss
of social welfare due to truthfulness and fairness, respec-
tively (Caragiannis et al. 2012; Maya and Nisan 2012)—are
equally relevant and worthy of exploration in cake sharing
as well.

8A desirable property in certain applications is contiguity—for
example, a contiguous time slot is often more useful than a union
of disconnected slots. However, note that if contiguity is imposed,
we may not be able to avoid leaving some agents empty-handed.
A trivial example is when one agent only values a small piece of
cake at the left end while another agent only values one at the right
end. In this case, unless α is very close to 1, one of the agents will
necessarily receive utility 0.
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