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Abstract

We consider a setting where a large number of agents are all
interested in attending some public resource of limited ca-
pacity. Attendance is thus allotted by lottery. If agents ar-
rive individually, then randomly choosing the agents – one
by one - is a natural, fair and efficient solution. We consider
the case where agents are organized in groups (e.g. families,
friends), the members of each of which must all be admitted
together. We study the question of how best to design such
lotteries. We first establish the desired properties of such lot-
teries, in terms of fairness and efficiency, and define the ap-
propriate notions of strategy proofness (providing that agents
cannot gain by misrepresenting the true groups, e.g. join-
ing or splitting groups). We establish inter-relationships be-
tween the different properties, proving properties that cannot
be fulfilled simultaneously (e.g. leximin optimality and strong
group stratagy proofness). Our main contribution is a polyno-
mial mechanism for the problem, which guarantees many of
the desired properties, including: leximin optimality, Pareto-
optimality, anonymity, group strategy proofness, and adjunc-
tive strategy proofness (which provides that no benefit can be
obtained by registering additional - uninterested or bogus -
individuals). The mechanism approximates the utilitarian op-
timum to within a factor of 2, which, we prove, is optimal
for any mechanism that guarantees any one of the following
properties: egalitarian welfare optimality, leximin optimality,
envyfreeness, and adjunctive strategy proofness.

1 Introduction
Each summer, dozens of brown bears descend daily on Mc-
Neil River State Game Sanctuary and Refuge to feed on the
salmon that swim past in their upstream migration. Only
ten lucky visitors, chosen by lottery, are admitted (daily)
to watch this spectacle. Similar lotteries are administered
for entrance permits to dozens of other natural attractions
across the US and Canada, as for awarding tickets to the
White House Easter Egg Roll, and the National Christmas
Tree Lighting Ceremony. In Venice, Italy, a lottery is used to
award 15 lucky citizens with prime seats for observing the
traditional Regata Storica on the Grand Canal. No official
data is available, but it is safe to assume that hundreds such
lotteries, if not more, are carried out worldwide each year.
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How should these lotteries be designed? If people were
only interested in attending the events individually, then ran-
domly choosing the entrants - one by one - is the natural, fair
and efficient solution. However, many people do not want to
enjoy these events alone, but rather with family, friends, and
the like. Indeed, some of these lotteries explicitly allow indi-
viduals to register in groups, which, if win, are all admitted
together. How should such group lotteries be designed? This
is the topic of this paper.

Examples. How can/should the lottery be conducted? One
option is to choose the individuals at random. However, this
means that members of large families are severely disadvan-
taged; if the probability of a lone person to attend is p, then
the probability of a k person family to attend is only ≈ pk.
Another method, commonly used in practice, is to randomly
order the groups, and admit groups in order - so long as the
capacity is not exceeded. If a group overfills the resource,
then the next in order is considered, until no more groups
can be admitted. This method, however, again unduly penal-
izes large groups. Consider the McNeil River park with its
10 person limit, and suppose five couples and two 5-person
families have registered. Then, the random order method
gives more than 1/2 probability for each of the couples to
attend, but less than 0.4 to the families. The reason is that the
families can only attend if they are first, second or third in
line - and even that not always - while the couples have con-
siderably more options. Furthermore, with probability 2/3,
only 9 people end up being admitted. At the same time, by
grouping the two families separately, and the five couples
separately, it is possible to admit each person with probabil-
ity 1/2, and also obtain 100% utilization of the resource.

Next, consider a mechanism that only aims to maximize
utilization, that is, the number of persons admitted. Suppose
there is one family of size 5 and two of size 3. Then, the
mechanism admits the 5 person family with probability 1,
and each of the others with probability 1/2 each. In this
case, the smaller families are better off jointly registering
as a 6-person family - misrepresenting their true structure -
to secure admittance with probability 1 (and - in the course
- reducing the utilization). So, such a mechanism promotes
cheating.

Contributions. In this paper we study the design of such
giveaway lotteries. We seek lotteries that are fair, efficient
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and strategyproof. The contributions of this paper are three
fold. Firstly, we formally define the setting and the relevant
properties of interest for such lotteries, in several regards,
including: fairness, efficiency, and strategy proofness. Sec-
ondly, we establish relationships between the properties, in-
cluding some properties that imply others, and properties
that cannot be obtained simultaneously (e.g. leximin op-
timality and strong group strategyproofness). Thirdly, and
most importantly, we present a polynomial mechanism that
simultaneously achieves many of the desired properties, in-
cluding: leximin optimality, Pareto optimality, anonymity,
envy-freeness, and - importantly - group strategy proofness,
and also adjunctive strategy proofness (which provides that
no benefit can be obtained by registering additional uninter-
ested or bogus individuals). The algorithm also guarantees
at least a 1/2 approximation to the optimal utilization of the
resource (per instance), which, we prove is optimal for any
mechanism that guarantees any one of the following prop-
erties: egalitarian welfare optimality, leximin optimality, en-
vyfreeness, and adjunctive strategy proofness.

Organization. Section 2 introduces the model and stud-
ies relevant objectives. The relations between the properties
are studied in Section 3. The polynomial mechanism is pre-
sented in Section 4. Section 5 concludes with future work.

1.1 Related Work
This work is related to a large body of work on fair al-
location, and, in particular, randomized allocations of in-
divisible goods. Due to the limited space we only men-
tion some relevant and foundational works. The early work
of (Hylland and Zeckhauser 1979) considers fair many-to-
one random allocations. (Bogomolnaia and Moulin 2001)
study mechanisms for random allocation of n items to n
agents with ordinal preferences. (Budish et al. 2013) ex-
tend the framework to include many-to-many assignments,
and importantly, to allow for quotas and complementari-
ties within preferences over bundles. Complementarities are
also considered by (Nguyen, Peivandi, and Vohra 2014)
(see also (Gutman and Nisan 2012)). The core difference
of our work from this line is that in our setting the utility of
the players are not independent, but rather fully depend on
the allocation to the other agents. (Aziz, Bogomolnaia, and
Moulin 2019) consider voting rules for fractional distribu-
tion of public goods, where fractional can also be interpreted
probabilistically. Unlike our model, they seek mechanisms
that provide larger groups with a bigger share (/probability)
of the good.

A recent manuscript (Arnosti and Bonet 2021) considers
lotteries for distribution of tickets to events, focusing, as we
do, on groups that seek to attend together. While the setting
is similar to ours, there are major differences, in both the
model and the results. Their main concern is with wasted
tickets and inflated demand, which is only a minor issue in
our model (under the adjunctive strategy proofness - see Sec-
tion 2.4). On the other hand, we seek and obtain leximin op-
timality, while they only aim to maximize the least utility,
and our major result is group strategy proofness, while they
only consider individual strategy proofness.

Strategyproof fair allocation of indivisible goods was con-
sidered, among others, by (Svensson 1999; Pápai 2000; Py-
cia and Ünver 2017), the last of which also considering
group strategy proofness. Strategyproofness in the cake-
cutting (divisible good) context is considered in (Chen et al.
2013; Mossel and Tamuz 2010; Maya and Nisan 2012;
Dall’Aglio, Branzei, and Tijs 2009), the last of which con-
siders group strategy proofness. The key difference of our
work to the above is that in our setting the possible misrepre-
sentation of the agents is not with regards to their individual
utilities but rather of their group structure.

Group preferences are considered in the context of match-
ing, mostly for couples (groups of size 2) (Kojima, Pathak,
and Roth 2013; Abdulkadiroglu et al. 2006; Ashlagi, Braver-
man, and Hassidim 2011; Bronfman et al. 2018). Some
matching literature, e.g. college admissions, considers pref-
erences over the universe of subsets entrants (Roth 1985;
Abizada 2016; Kawase and Iwasaki 2017).

Leximin optimality (also called max-min fairness) as
a fairness criterion was considered in many works, see
(Moulin 2004) for an excellent rewiew. Leximin optimal
routing and load balancing algorithms frequently use an it-
erative algorithm similar to ours, see (Nace, Pioro, and Doan
2006).

Our work is also related to fractional bin packing as in-
troduced by (Karmarkar and Karp 1982).

2 Model and Objectives
2.1 Model
We first formally define the problem setting, which we call
Giveaway Lottery (GaL). A GaL instance is a pair I =
(F , c), where F = (F1, F2, . . . , Fn) is a collection of n dis-
joint sets of individuals, and c is the capacity of the resource
the individuals wish to enjoy. We assume that c ≥ |Fi| for
all i, as a larger Fi’s clearly cannot enjoy the resource, and
may be omitted. Each Fi is called a family. A set S of indi-
viduals is admissible if |S| ≤ c and it is a union of families.
We denote by A the collection of admissible sets. A solu-
tion for a GaL instance is a distribution D = (pD(S))S∈A
over the admissible sets, with the meaning that set S is cho-
sen to enjoy the resource with probability pD(S). Given a
solution distribution D, and a set F of individuals, we de-
note D(F ) =

∑
F⊆S pD(S), which we call the admittance

probability of F .
Given a GaL instance, there are several objectives that

may be of interest in the solution distribution D. We now
list the main objectives of interest.

2.2 Fairness
Fairness can take many meanings. We now review some of
the established criteria, and how they relate to our setting.

Egalitarian Welfare. The egalitarian welfare of a distri-
bution D is the least admittance probability of any family:
eg(D) = mini{D(Fi)}. We seek to maximize eg(D).1

1Here and throughout, we naturally view the admittance proba-
bility of an individual as its utility.
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Leximin Fairness. The egalitarian welfare considers only
the least probability, but does not discern between distribu-
tions that offer the same least probability, but differ in other
probabilities. The leximin criterion takes the entire distribu-
tion into account.

For a multi-set X of reals, let (X1, X2, . . . , ) be the ele-
ments ofX ordered in non-decreasing order. For such multi-
sets X,Y , we denote X ≺leximin Y , if there exists an i such
that, Xj = Yj for j < i, and Xi < Yi. The leximin order
naturally induces an order on the solution distributions. We
denote D ≺leximin D̃, if {D(Fi)}ni=1 ≺leximin {D̃(Fi)}ni=1.
We seek to maximize the solution according to this order.

Anonymity. An algorithm/mechanism is anonymous if it
only takes into account the sizes of the families, and not the
identity of its members. In our case, a mechanism is anony-
mous if D(Fi) = D(Fj) whenever |Fi| = |Fj |.

Envyfreeness. Envyfreeness is a common fairness crite-
rion in the context of fair division (Brams and Taylor 1996),
requiring that no player would prefer to obtain the share of
another player. In our context this translates to saying that no
family Fi would prefer to be admitted instead of any other
family Fj , whenever Fj is admitted. Note, however, that if
Fi is larger than Fj , then there may be cases where Fi can-
not be admitted in Fj’s stance. So, the requirement is only
that Fi not prefer to be admitted in Fj’s stance, whenever it
is possible. Formally, envyfreeness states that for any i, j,

D(Fi) ≥
∑

S:Fj⊆S and (S−Fj)∪Fi∈A

pD(S).

2.3 Efficiency
Ex-Post Pareto Optimality. Conceptually, ex-post Pareto
Optimality says that following the lottery no additional fam-
ily can be admitted, in addition to those chosen by the lot-
tery. Formally, for any S, if pD(S) > 0 then S is not a strict
subset of any other admissible set.

Ex-Ante Pareto Optimality. A distribution D is ex-ante
Pareto optimal if there is no other distribution that gives all
families at least the same as in D, and strictly increases the
probability of some family.

Utilization. The utilization offered by the distribution D
is the expected utilization of the resource; that is ut(D) =∑

S∈A pD(S) · |S|c . We seek to maximize ut(D).

2.4 Strategy Proofness
In our setting, the only information provided by the agents is
the list of registrants, and their kinship structure. So, strategy
proofness provides that individuals/families cannot gain by
falsely reporting this information.

A mechanismM for the GaL problem is an algorithm that,
given an instance I produces a distribution D = M(I).

Individual Strategy Proofness. This level of strategy
proofness provides that no family alone can gain by mis-
representation; that is, by partitioning itself into several fam-
ilies. Formally,

Definition 2.1 (Individual Strategy Proofness). Mecha-
nism M is individually strategy proof if for any F =
{F1, . . . , Fn} and c, any i, and any partition G of Fi, the
following holds. Let D = M(F , c), and D∗ = M(F∗, c),
where F∗ = F \ {Fi} ∪ G. Then, D(Fi) ≥ D∗(Fi).2

Group Strategy Proofness. Group strategy proofness
provides that no collection of families can all gain by collec-
tively misrepresenting their kinship structure. Strong group
strategy proofness requires that no one of the misrepresent-
ing families can gain while the other mis-representing fami-
lies are not harmed. Formally,
Definition 2.2 (Group Strategy Proofness). Mechanism M
is group strategyproof if for any F = {F1, . . . , Fn} and c,
any C ⊆ F , and any partition G of ∪Fi∈CFi, the follow-
ing holds. Let D = M(F , c), and D∗ = M(F∗, c), where
F∗ = F \ C ∪ G. Then, D(Fi) ≥ D∗(Fi) for some Fi ∈ C.
The mechanism is strong group strategyproof if D(Fi) <
D∗(Fi) for some Fi ∈ C implies that D(Fj) > D∗(Fj) for
some other Fj ∈ C.

Adjunctive Strategy Proofness. The GaL setting lends it-
self to another type of misrepresentation. A family, or set
of families, may register additional - non-interested - in-
dividuals, or even bogus ones. Adjunctive Strategy Proof-
ness provides that this cannot be beneficial. We consider
two possibilities as to where the additional, non-interested
individuals can be placed. The hybrid version requires that
the non-interested individuals are placed in families together
with original ones. The apart version allows the formation
of families comprising exclusively of non-interested individ-
uals. Formally,
Definition 2.3 (Adjunctive Group3 Strategy Proofness).
Mechanism M is hybrid adjunctive group strategyproof if
for any F = {F1, . . . , Fn} and c, any C ⊆ F , any S dis-
joint from all Fj’s, and any partition G = {G1, . . . , Gk}
of ∪Fj∈CFj ∪ S wherein Gj 6⊆ S for all j, the following
holds. Let D = M(F , c), and D∗ = M(F∗, c), where
F∗ = F \ C ∪ G. Then, D(Fi) ≥ D∗(Fi) for some Fi ∈ C.

Apart adjunctive group strategyproofness is defined iden-
tically, only not requiring that Gj 6⊆ S for all j.

By definition, hybrid adjunctive group strategyproof im-
plies apart hybrid adjunctive group strategyproof, which im-
plies group strategyproof, which implies individual strategy
proofness.

3 Relations Among Properties
3.1 Implications
We now establish properties that imply others.
Proposition 1. Ex-ante Pareto optimality implies ex-post
Pareto optimality, but not the opposite.

Proof. If D is not ex-post Pareto optimal, then there exist
admissible sets S, S with S ( S′, with pD(S) > 0. So,

2D∗(Fi) is the probability that all members of Fi are admitted
together. It is well defined even though Fi is not a family in F∗.

3For brevity we defined adjunctive strategyproofness only in the
group form.
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the distribution D∗ that shifts all the probability of S to S′
ex-ante Pareto dominates D.

For the reverse none-implication consider the setting
|F1| = |F2| = |F3| = 2, |F4| = |F5| = 3 and c = 6.
Then, the distribution that gives probability 1/6 to each of
the 6 combinations of size 5 is ex-post Pareto optimal, but
is ex-ante Pareto dominated by the distribution giving prob-
ability 5/12 to F1 ∪ F2 ∪ F3, and 7/12 to F4 ∪ F5.

Proposition 2. Envyfreeness implies anonymity.

Proof. Suppose that D is not anonymous. So, D(Fi) <
D(Fj), for some |Fi| = |Fj |. So, Fi envies Fj .

Proposition 3. Any distribution that is leximin optimal also:
(i) maximizes the egalitarian welfare, (ii) is Pareto optimal
(ex-ante and ex-post), and (iii) envyfree.

Proof. Let D be a leximin optimal distribution. If D∗ offers
higher egalitarian welfare, then it also dominates D in the
leximin order. The same holds if D∗ ex-ante Pareto domi-
nates the D, and ex-post follows from ex-ante. To show that
D is envyfree, contrariwise suppose that Fi envies Fj . Let
D∗ be wherein Fi is admitted in Fj’s stead, whenever pos-
sible, and Fj is never admitted. Then, D(Fi) < D∗(Fi) ≤
D(Fj). Set ε = D∗(Fi)−D(Fi). Consider the mixture dis-
tribution D∗∗ = (1− ε)D + εD∗. Then,

D∗∗(Fj) = (1− ε)D(Fj) > D(Fj)− ε ≥ D(Fi)

D∗∗(Fi) = (1− ε)D(Fi) + εD∗(Fi) > D(Fi)

D∗∗(F`) = D(F`) for ` 6= i, j.

So, D∗∗ leximin dominates D, contrary to the assumption.

3.2 Impossibility Results
We now establish properties that cannot be simultaneously
guaranteed.

Proposition 4. No mechanism can guarantee both leximin
optimality and strong group strategy proofness.

Proof. Consider the setting with the following family sizes:

|F1| = 9, |F2| = 8, |F3| = |F4| = 5,

|F5| = |F6| = 4, |F7| = 2, |F8| = 1,

and c = 10. Then, the following is leximin optimal:

Pr[F1 ∪ F8] = Pr[F2 ∪ F7] = Pr[F3 ∪ F4] = 1/4,

Pr[F5 ∪ F6 ∪ F7] = Pr[F5 ∪ F6 ∪ F8] = 1/8,

giving probability 3/8 to F7 and F8, and 1/4 to the others.
However, if F3, F4, F5, and F6 collude with F8, creating two
new sets of size 9, F ′ = F3 ∪ F5 and F ′′ = F4 ∪ F6. Then,
the leximin optimal solution is:

Pr[F1 ∪ F8] = Pr[F2 ∪ F7] =

Pr[(F3 ∪ F5) ∪ F8] = Pr[(F4 ∪ F6) ∪ F8] = 1/4,

giving probability 3/4 to F8 without harming the other col-
luding families.

Proposition 5. No mechanism can guarantee both leximin
optimality and apart adjunctive strategyproofness.

Proof. Consider a setting with two families |F1| = 3 and
|F2| = 1, and c = 3. Then, leximin optimality dictates that
each get probability 1/2. Now suppose that F2 registers two
additional, uninterested families F3, F4 of size 2. Then, the
leximin optimal solution to this new instance is

Pr[F1] = Pr[F2 ∪ F3] = Pr[F2 ∪ F4] = 1/3,

increasing F2’s probability to 2/3.

Proposition 6. Any mechanism that is hybrid group adjunc-
tive strategyproof cannot guarantee to approximate the op-
timal utilization to any constant greater than 1/2.

Proof. Let M be hybrid group adjunctive strategyproof.
Consider any ε > 0. Choose c > 2/ε, even. Consider the
setting with c families each of size c/2 + 1. Then, there is
at least one family, w.l.o.g. F1, to which M assigns admit-
tance probability at most 1/c. Now consider what happens if
F1 enlarges itself to size c, by adding external people. Then,
it must be that M still gives this new F1 probability at most
1/c. But then the utilization, of this new instance, is bounded
by:

1

c
· c
c

+
c− 1

c
· c/2 + 1

c
<

1

c
+
c/2 + 1

c
<

1

2
+ ε,

while this instance has a solution with utilization 1. So, M
does not approximate the optimal utilization to 1/2 + ε.

Proposition 7. Any mechanism that is any one of the fol-
lowing: (i) egalitarian welfare optimal, (ii) leximin optimal,
(iii) envyfree, cannot guarantee to approximate the optimal
utilization to within any constant greater than 1/2.

Proof. Consider ε > 0, and pick c > 2/ε, even. Consider the
setting with c− 1 families of size c/2 + 1 and one family of
size c. Then, any solution that is egalitarian welfare optimal,
leximin optimal, or envyfree must give all families identical
probability 1/c. As in the proof above, the utilization of this
solution is less than 1/2 + ε. So, the utilization is less than
1/2 + ε of the optimal (which is 1 in this case).

4 A Polynomial Mechanism
We now provide a polynomial mechanism to GaL that guar-
antees most of the desired properties that can be simultane-
ously obtained.

4.1 A Linear Programming Formulation
We start with a linear programming formulation of the prob-
lem. Maximizing the eg(D), can formulated as follows:

max p̂ s.t.
∑
S

p(S) = 1∑
S:Fj⊆S

p(S) ≥ p̂ j = 1, . . . , n

p̂, p(S) ≥ 0, ∀S ∈ A
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Here, p̂ is the egalitarian welfare, which we wish to max-
imize. The first constraint (together with non-negativity)
states that the p(S)’s constitute a distribution. The second
set of constraints states that the admittance probability of
each family Fj is at least p̂.

This enables us to maximize eg(D), but does not neces-
sarily produce a leximin optimal or even a Pareto-optimal
solution. To obtain such a solution, we will need to iterate
through a slightly more complex program.

Suppose that for some subset of families we have already
found their optimal/maximal probability, and we only seek
to maximize the probability of the remaining families. That
is, there is a collection of families H ⊂ F , and a sequence
of probabilities p̂̂p̂pH = (p̂(Fj))Fj∈H, such that for each Fj ∈
H, we only require its total probability is p̂(Fj), and do not
seek to further maximize it. Then, the LP formalization of
the problem is:

max p̂ s.t.
∑
S

p(S) = 1∑
S:Fj⊆S

p(S) = p̂(Fj), for Fj ∈ H∑
S:Fj⊆S

p(S) ≥ p̂, for Fj 6∈ H

p̂, p(S) ≥ 0, ∀S ∈ A
Denote the above linear program by LP(H, p̂̂p̂pH). This pro-
gram has an exponential number of variables. Nonetheless,
we now show that it can be solved in time that is polynomial
in n and c, using a separation oracle for the dual.

4.2 Solving the Linear Program Using the Dual
The dual of LP(H, p̂̂p̂pH) is

min (T −
∑

j:Fj∈H
p̂(Fj)yj)

s.t.
∑

j:Fj 6∈H

yj ≥ 1 (1)

T ≥
∑

j:Fj⊆S

yj , ∀S ∈ A (2)

yj ≥ 0, j : Fj 6∈ H
This programs has a polynomial number of variables, but an
exponential number of constraints. We will now construct a
separation oracle for the problem, which operates in time
that is polynomial in n and c. So, the program can be solved
in poly(c,n) time (Grötschel, Lovász, and Schrijver 1981).

A Separation Oracle. Given an assignment T, y1, . . . , yn,
constraint (1) is easy to check. Consider the set of con-
straints of type (2). These, collectively, can be represented as
a knapsack problem with n items, wherein item j has weight
|Fj | and value yj , and the knapsack has capacity c. Then,
a packing of the knapsack with value > T corresponds to
an admissible set for which the constraint is violated. Con-
versely, if the maximum value of the knapsack problem is
≤ T , then no constraint is violated. Using dynamic pro-
gramming Knapsack can be solved in time poly(c,n). This
construction is similar to that of (Karmarkar and Karp 1982).

Algorithm 1: Iterative Probability Maximization (IPMAX)
Input: families F1, . . . , Fn, ordered in decreasing size; c
Output: Distribution D

1: H ← ∅; p̂̂p̂pH ← () (the empty list)
2: for i = 1 to n do
3: Solve LP(H, p̂H). Let D be the optimal assignment

and p̂ the optimal value
4: H ← H∪ {i}; p̂(Fi)← p̂
5: end for
6: return D

Solving the Primal. Given a solution to the dual, it is now
possible to obtain a solution to the primal. For complete-
ness, we outline the process. Let H be the set of constraints
actually used in the process of solving the primal. Then |H|
is polynomial. Let xH be the set of primal variables asso-
ciates with the dual constraints of H . By complementary
slackness, only the variables of xH need to get positive val-
ues. So, one can solve the primal with these variables alone,
which is a polynomial size program.

4.3 IPMAX - The Iterative Algorithm
We now describe an iterative algorithm that produces the de-
sired solution. Order the families in decreasing order of size;
that is, |F1| ≥ |F2| ≥ · · · ≥ |Fn|. The algorithm, fully de-
scribed in Algorithm 1, iteratively optimizes and fixes the
probabilities of the families, one by one, by order of size.
In each iteration, having fixed the probabilities of the bigger
families, it maximizes the egalitarian welfare of the remain-
ing families. This is similar in spirit to mechanisms for max-
min fairness in routing and load-balancing (Nace, Pioro, and
Doan 2006), but here families are considered in order of size
- which is key to proving strategy proofness.

Theorem 1. Algorithm IPMAX is hybrid adjunctive group
strategyproof (and in particular group strategy proof), pro-
duces a solution that is leximin optimal, and approximates
the utilization to at least a 1/2 factor.

By Propositions 3 and 2, IPMAX is also anonymous,
envy-free, and Pareto optimal (ex-ante and ex-post). By
Propositions 4 and 5, hybrid adjunctive group strategyproof
is the strongest possible stretegy proofness if leximin opti-
mality is desired, and by Propositions 7 and 6, a 1/2 uti-
lization is the best possible for either leximin optimality or
hybrid adjunctive group strategyproofness. So, in this sense,
the properties of IPMAX are the best possible. The remain-
der of this section is devoted to proving Theorem 1.

4.4 Leximin Optimality
Lemma 1. p̂(Fi) ≤ p̂(Fi+1) for all i.

Proof. p̂(Fi) is fixed to the optimum of the LP of the i-th
iteration, which admits all families indexed i and up, with
probability p̂(Fi). So, this optimal assignment is also a fea-
sible assignment for the LP of the next iteration, in which
p̂(Fi+1) is fixed.
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Lemma 2. There always exists a leximin optimal distribu-
tion D̃ wherein D̃(Fi) ≤ D̃(Fj) whenever |Fi| ≥ |Fj |.

Proof. Let D be leximin optimal distribution. If the claim
does not already holds for D, then let i, j be such that
|Fi| > |Fj | and D(Fi) > D(Fj). We construct another
distribution D̃, wherein the probabilities of Fi and Fj are
switched, while all other probabilities remain the same. Iter-
ating this process, the result follows.

Set ∆ = D(Fi) − D(Fj). By assumption is ∆ > 0. Let
Ai,−j be the admissible sets that contain Fi but not Fj . Set
q =

∑
S∈Ai,−j

pD(S). Then, q ≥ ∆. For S ∈ Ai,−j , let
Si→j = S \ Fi ∪ Fj . Since |Fi| ≥ |Fj |, Si→j is also admis-
sible. Let D̃ be the distribution wherein for each S ∈ Ai,−j ,
instead of admitting S with probability pD(S), we admit S
with probability pD(S) · (1− ∆

q ), and Si→j with probability
pD(S) · ∆

q (this probability is added to the original probabil-
ity of this set). Then, the total amount of probability added
to Fj is

∑
S∈Ai,−j

pD(S) · ∆
q = ∆, and the same amount is

subtracted from the admittance probability of Fi.

Claim 1. The output of IPMAX is leximin optimal.

Proof. Let D be the output of IPMAX, and, contrariwise,
suppose it is not leximin optimal. Let D̃ be a leximin optimal
distribution. By Lemma 2, we may assume that D̃(Fi) ≤
D̃(Fi+1), for all i. Let i be the minimum integer such that
D(Fi) < D̃(Fi). So, D̃(Fi) ≤ D̃(Fj) for j > i. So, the
distribution D̃ is a feasible solution for the LP solved in the
i-th iteration of IPMAX. So, the optimum of this LP must
be at least D̃(Fi), which we assumed is not the case.

4.5 Strategy Proofness
We now prove that IPMAX is hybrid adjunctive group strat-
egyproof, and, in particular, group strategyproof. Let D =
IPMAX(F , c). We call the families of F the original fami-
lies. Consider C ⊆ F , which we call the cheating families.
Let S be such that S is disjoint from ∪Fi∈FFi (S are the ad-
ditional, uninterested registrants). Let G = {G1, . . . , Gk} be
a partition of∪Fj∈CFj∪S, such that for all j,Gj 6⊆ S (this is
the hybrid requirement). We call the families of G contrived
families, and those ofF\C - authentic.4 SetF∗ = F\C∪G.
Let D∗ = IPMAX(F∗, c).

We need to show that it cannot be that D∗(Fj) > D(Fj)
for all cheating families. Suppose that this is the case. The
following Lemmas 4-7 are under this counter-factual as-
sumption.

Order the families of F∗ in decreasing size order, F∗ =
{B1, B2, . . . , Bn∗}. Some of the Bi’s are authentic families
and some contrived. Note that the distribution D∗ induces
admittance probabilities on the original families.

First note that it cannot be that D∗(Fj) ≥ D(Fj) for all
authentic families, as this would mean that D∗ is a Pareto
improvement over D. Accordingly, let d be the least index
such that Bd is an authentic family and D∗(Bd) < D(Bd).
Families of size at least |Bd| we call big, and the others

4Note that a contrived family may also be original.

small. The following technical lemma will be useful in the
future.
Lemma 3. Let X = {x1, . . . , xk}, Y = {y1, . . . , yk} sets
(of numbers), ordered in decreasing size, such that there ex-
ist indexes i1 ≤ i2 such that:

(a) for i < i1, yi ≥ xj for some j ≥ i,
(b) for i1 ≤ i < i2, yi ≥ xj , for some j > i,
(c) yi2 > xi1 .
Then, X ≺leximin Y .

Proof. From (a) we have that yi ≥ xi for i < i1, and from
(b) that yi ≥ xi+1, for i1 ≤ i < i2. So for i < i2, yi ≥ xi,
and for i = i2, yi ≥ yi−1 ≥ xji−1

≥ xi. So, yi ≥ xi for
i ≤ i2. Suppose that they are all equal. Then,

xi1 = yi1 ≥ xi1+1 = yi1+1 ≥ · · · ≥ xi2 = yi2 ,

in contradiction to (c).

Lemma 4. All contrived families are small.

Proof. Contrariwise, suppose thatB` is a big contrived fam-
ily. First, suppose that B` intersects with a small cheating
family Fj . Then

D∗(Fj) ≤ D∗(B`) since Fj intersects B`

≤ D∗(Bd) since |B`| ≥ |Bd|
< D(Bd) by definition of Bd

≤ D(Fj) since |Bd| ≤ |Fj |
But this means that D∗ reduces the probability of the cheat-
ing family Fj , which cannot be.

Hence, B` intersects only with big cheating families. Let
Fb be the cheating family with the least probability ac-
cording to D∗. Then, D∗(Fb) ≤ D∗(B`) ≤ D∗(Bd).
Consider the sets P (D) = {D(Fj)}nj=1 and P (D∗) =
{D∗(Fj)}nj=1. Let k be the number entries of P (D∗)
smaller than D∗(Fb). These k elements are all of authen-
tic families, D∗(Fj1), . . . , D∗(Fjk). Clearly, jt ≥ j, for all
t = 1, . . . , k. Now, consider the k + 1 smallest elements of
P (D). These are D(F1), . . . , D(Fk+1). Consider two case.

1. F1, . . . , Fk+1 are all non-cheating. Then, b > k + 1, and
D∗(Fb) > D(Fb) ≥ D(Fk+1), and the conditions of
Lemma 3 hold with i1 = i2 = k + 1.

2. There exists î ≤ k + 1 such Fî is a cheating family, and
î is the smallest such index. So, D∗(Fb) > D(Fb) ≥
D(Fî). So, the conditions of Lemma 3 hold with i1 = î
and i2 = k + 1.

In both cases, D∗ leximin dominates D on F , in contradic-
tion to the leximin optimality of D.

Lemma 5. For all i < d, D∗(Bi) = D(Bi).

Proof. By Lemma 4, for i < d, all families Bi are authen-
tic. So, D∗(Bi) ≥ D(Bi), by the definition of d. Suppose
that D∗(Bî) > D(Bî), for some î < d. Let P (D) =

{D(Fj)}nj=1 and P (D∗) = {D∗(Fj)}nj=1. Then, for i < î,
D∗(Bi) ≥ D(Bi) ≥ D(Fi), and D∗(Bî) > D(Bî) ≥
D(Fî). So, D∗ leximin dominates D (on the original fami-
lies), which cannot be.
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Lemma 6. For every contrived family B`, D∗(B`) >
D∗(Bd).

Proof. First, suppose that B` intersects with a small cheat-
ing family Fj . Then,

D∗(B`) > D(Fj) ≥ D(Bd) > D∗(Bd) (1)

Hence, suppose that B` intersects with a big cheating fam-
ily. By Lemma 4 B` is small. So, D∗(B`) ≥ D∗(Bd). Sup-
pose that D∗(B`) = D∗(Bd). Then, we show that D∗ lex-
imin dominates D on F . Consider P (D) = {D(Fj)}nj=1

and P (D∗) = {D∗(Fi)}nj=1. We show that the conditions
of Lemma 3 hold.The smallest d elements of P (D∗) are
D∗(B1), . . . , D∗(Bd), which are all of probabilities of au-
thentic families. So, they are the d smallest authentic fami-
lies, which we denote Fj1 , Fj2 , Fjd . Clearly, jt ≥ t for all
t. The d smallest elements of P (D) are D(F1), . . . , D(Fd).
Let Fb be a big cheating family intersecting B`. Consider
two cases. If b > d, Then,

D∗(Bd) = D∗(B`) ≥ D∗(Fb) > D(Fb) ≥ D(Fd).

So, the conditions of Lemma 3 hold with i1 = i2 = d. If
b ≤ d, then

D∗(Bd) = D∗(B`) ≥ D∗(Fb) > D(Fb).

So, the conditions of Lemma 3 hold with i1 = b, i2 = d.

Let t be the smallest index for which D∗(Bt) > D∗(Bd).
We will now construct a distribution D∗∗ that leximin dom-
inates D∗ on the instance (F∗, c). Choose a q with 1 >

q > D∗(Bd)
D∗(Bt)

. Let D∗∗ be the mixture probability D∗∗ =

q ·D∗ + (1− q)D.5 Then,
Lemma 7. D∗∗ leximin dominates D∗ on F∗.

Proof. Set P (D∗) = {D∗(Bi)}n
∗

i=1 and P (D∗∗) =

{D∗∗(Bi)}n
∗

i=1. Consider the different possible values of i.
i ≥ t:

D∗∗(Bi) ≥ q ·D∗(Bi) ≥ q ·D∗(Bt)

>
D∗(Bd)

D∗(Bt)
·D∗(Bt) = D∗(Bd).

d ≤ i < t: By Lemma 6 all these Bi’s are authentic. So,

D∗∗(Bi) = q ·D∗(Bi) + (1− q)D(Bi)

≥ q ·D∗(Bd) + (1− q)D(Bd) > D∗(Bd).

i < d: by Lemma 4 Bi is authentic. So, by Lemma 5,

D∗∗(Bi) = q ·D∗(Bi) + (1− q)D(Bi)

= D∗(Bi) ≤ D∗(Bd),

where the last inequality is since i < d. So,
D∗∗(B1), . . . , D∗∗(Bd−1), are the d − 1 smallest elements
of P (D∗∗), and are identical to the d−1 smallest elements of
P (D∗), which areD∗(B1), . . . , D∗(Bd−1). The d-th small-
est element of P (D∗) is D∗(Bd), while all other elements
of P (D∗∗) are greater than this value, as we have seen. So,
P (D∗∗) leximin dominates P (D∗).

5Note that while D was computed based on the original fami-
lies, it induces an admittance probability for any set, including con-
trived ones. For any set F , D(F ) =

∑
F⊆S pD(S).

Lemma 7, which ultimately results from the contrariwise
assumption, is in contradiction to Claim 1. We thus obtain:
Claim 2. IPMAX is hybrid adjunctive group strategyproof.

4.6 Utilization
Claim 3. The utilization the output of IPMAX is at least 1/2
of the optimal (for the instance).

Proof. If all families can be admitted together, than this will
be the solution, and the utility is 1. Otherwise, let AM be
the set of maximal admissible sets; i.e. those not strictly con-
tained in another admissible set. Since D is ex-post Pareto
optimal it gives a positive probability only to sets of AM .
Note that for any S, S′ ∈ AM , S 6= S′, it must be that
|S| + |S′| > c (or else they are not maximally admissible).
In particular, there is at most one set Ŝ ∈ AM with Ŝ ≤ c/2.
If there is no such set Ŝ, then the utilization is clearly> 1/2.
Otherwise, consider two cases.
• p = pD(Ŝ) ≤ 1/2: Set ŝ = |Ŝ|/c. The utilization in this

case is∑
S∈AM ,S 6=Ŝ

pD(S)
|S|
c

+ pŝ ≥ (1− p)(1− ŝ) + pŝ

≥ 1

2
(1− ŝ) +

1

2
ŝ =

1

2
,

where the second line follows since the last term in the
first is non-increasing in p.

• p = pD(Ŝ) > 1/2: Then, for any Fi 6⊆ Ŝ, D(Fi) < 1/2.
Now consider D∗ which shifts some probability from Ŝ

to the other sets: pD∗(Ŝ) = 1/2, and for all other sets
S ∈ AM , pD∗(S) = pD(S)· 1/2

1−p . Then,D∗ increases the

probability of families not in Ŝ, while keeping those of
Ŝ at least 1/2. So, it leximin dominates D, which cannot
be.

5 Future Work
There are many ways in which this work can and should be
extended. We mention a few. This work considered a single
incarnation of the resource. In practice, there may be several
incarnation, e.g. several days in which the event takes place.
In such a case, agent groups may indicate days in which they
can and cannot attend, or even preferences over the days.
This is actually the setting in many of the park entrance lot-
teries. Additionally, there may be several different resources,
e.g. several different parks, and the goal is to achieve fair-
ness in the overall allocation. Another interesting extension
is where individuals may belong to several groups, e.g. fam-
ily and friends, and they are satisfied if they are admitted in
any one of them.

In this work we focused on fair solutions. An interesting
question is what can be achieved when the fairness require-
ment is dropped, and only utilization is of interest? In par-
ticular, it is easy to see that group strategy proofness rules
out (guaranteeing) a utilization better than 5/6, but can 5/6
be achieved? what is the true bound?
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