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Abstract

Single-cell RNA sequencing (scRNA-seq) provides
high-throughput information about the genome-wide
gene expression levels at the single-cell resolution,
bringing a precise understanding on the transcriptome
of individual cells. Unfortunately, the rapidly growing
scRNA-seq data and the prevalence of dropout events
pose substantial challenges for cell type annotation.
Here, we propose a single-cell model-based deep graph
embedding clustering (scTAG) method, which simul-
taneously learns cell–cell topology representations and
identifies cell clusters based on deep graph convolu-
tional network. scTAG integrates the zero-inflated neg-
ative binomial (ZINB) model into a topology adap-
tive graph convolutional autoencoder to learn the low-
dimensional latent representation and adopts Kull-
back–Leibler (KL) divergence for the clustering tasks.
By simultaneously optimizing the clustering loss, ZINB
loss, and the cell graph reconstruction loss, scTAG
jointly optimizes cluster label assignment and feature
learning with the topological structures preserved in
an end-to-end manner. Extensive experiments on 16
single-cell RNA-seq datasets from diverse yet represen-
tative single-cell sequencing platforms demonstrate the
superiority of scTAG over various state-of-the-art clus-
tering methods.

Introduction
Single-cell RNA-sequencing (scRNA-seq) techniques en-
able elucidating the genetic heterogeneity of individual
cells, which is essential for characterizing cell types based
on the transcriptome (Kolodziejczyk et al. 2015), study-
ing developmental biology (Chowdhury 2021), discovering
complex diseases (Costa et al. 2013), and inferring cell tra-
jectories (Tran and Bader 2020). Therefore, accurate iden-
tification of cell types has become a key step in single-
cell RNA-seq analysis (Macosko et al. 2015). Clustering
has been proven to be the most effective method for cell
type annotation, as it can identify cell types in an unbiased
manner (Kiselev, Andrews, and Hemberg 2019). In early
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research, traditional clustering methods such as K-means
(MacQueen et al. 1967), hierarchical clustering (Johnson
1967) and density-based clustering (Kriegel et al. 2011) have
been applied to address clustering tasks. However, cluster-
ing analysis of scRNA-seq data remains a statistical and
computational challenge, owing to the high heterogeneity
of genome coverage and some technical limitations render-
ing scRNA-seq data very sparse and having a large num-
ber of zero elements (Angerer et al. 2017; Grün, Kester, and
Van Oudenaarden 2014). Therefore, it is imperative to de-
velop effective computational methods to unleash the full
potential of scRNA-seq.

Several clustering methods have been developed to ad-
dress these limitations. Most studies use sophisticated tech-
niques that involve iterative clustering, for instance, CIDR
is a fast PCA-based algorithm for imputation and clustering
based on a dissimilarity matrix (Lin, Troup, and Ho 2017).
SC3 proposes a consensus-clustering framework for single-
cell RNA-seq data, which reduces gene dimensions using
PCA and Laplacian transformation (Kiselev et al. 2017).
SIMLR uses multi-kernel learning to find a more robust dis-
tance metric and to address the high levels of dropout events
(Wang et al. 2017). However, these computational meth-
ods usually tend to provide suboptimal results on scRNA-
seq data because of the extreme sparsity caused by lack of
gene expression levels. Moreover, most of them rely on full
graph Laplacian matrices, which have high computational
and storage costs.

In recent years, deep embedding clustering approaches
have successfully developed to model the high-dimensional
and sparse scRNA-seq data; such as, scDeepcluster (Tian
et al. 2019), scDCC (Tian et al. 2021), scziDesk (Chen
et al. 2020), scDHA (Tran et al. 2021), and DCA (Eraslan
et al. 2019). They can iteratively refine clusters by learning
highly confident assignments using an auxiliary target dis-
tribution to achieve better clustering results. However, these
deep embedding clustering methods often ignore the struc-
tural information propagation and node relationships. Re-
cently, emerging graph neural networks (GNNs) have been
demonstrated to naturally capture graph structure informa-
tion propagated through neighbor information (Zeng et al.
2020). Graph embedding clustering often combines deep au-
toencoder and graph clustering algorithms, which can learn
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the latent compact representation to explore both the rich
content and structural information (Nie, Zhu, and Li 2017).

Motivated by the above observations, we propose here
a single-cell model-based deep graph embedding cluster-
ing named scTAG (Fig. 1), which simultaneously learns
cell–cell topology representations and identifies cell clus-
ters from an autoencoder (Du et al. 2017). We first utilize
the zero-inflated negative binomial model (ZINB) to cap-
ture the global probabilistic structure of the data, by learning
three characteristic distribution parameters including mean,
dispersion and dropout probability. Then, scTAG proposes
a ZINB-based graph convolutional autoencoder to preserve
the topological structure of the cells in the low-dimensional
latent space. After that, Kullback–Leibler (KL) divergence
is used to optimize the clustering process. Finally, scTAG
can combine three kinds of training loss, including the clus-
tering loss, the ZINB loss and the cell graph reconstruction
loss to optimize the cell cluster label assignment and to learn
the cell–cell topology representations, generating superior
clustering results. The main contributions of our work are
summarized below:

• We propose a single-cell model-based deep graph em-
bedding clustering called scTAG, which integrates the
zero-inflated negative binomial model into a topology
adaptive graph convolutional autoencoder to capture the
global probabilistic structure of data.

• scTAG constructs a cell graph and uses a topology adap-
tive graph convolutional autoencoder to collectively pre-
serve the topological structural information and the cell-
to-cell relationships in scRNA-seq data.

• To the best of our knowledge, this is the first article
to incorporate ZINB into a graph convolutional autoen-
coder to model highly-sparse and overdispersed scRNA-
seq data.

• We evaluate our model alongside state-of-the-art compet-
itive methods on 16 real scRNA-seq datasets. The results
demonstrate that scTAG outperforms all of the baseline
methods.

Related Work
Deep Clustering Methods
In the past years, deep learning methods have been used,
advanced to analyze scRNA-seq data, due to their strong
learning ability and adaptability. Eraslan et al. proposed a
deep count autoencoder network named DCA, to denoise
the original scRNA-seq data, which takes the count distri-
bution, overdispersion and sparsity of the data into account
(Eraslan et al. 2019). Deng et al. developed scScope, which
introduces a self-correcting layer to perform imputations on
zero-values of scRNA-seq data in an iterative way (Deng
et al. 2018). Grønbech et al. proposed a novel variational
auto-encoder-based method named scVAE, which follows
the Gaussian mixture distribution and then estimates the loss
by sampling from the distribution (Grønbech et al. 2020).
Tian et al. developed a single-cell model-based deep embed-
ded clustering method (scDCC), which integrates the ZINB
model with clustering loss and constraint loss (Tian et al.
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Figure 1: The model architecture of scTAG. scTAG inte-
grates the zero-inflated negative binomial (ZINB) model
into a topology adaptive graph convolutional autoencoder to
learn the low-dimensional latent representation and adopts
Kullback–Leibler (KL) divergence for the clustering tasks.

2021). Chen et al. proposed scziDesk, which combines the
deep learning method with a denoising autoencoder to char-
acterize scRNA-seq data and a soft self-training K-means
algorithm to cluster the cells under a learned latent space
(Chen et al. 2020). However, these deep neural networks
hardly preserve the topological structure of scRNA-seq data,
thereby ignoring the cell-to-cell relationships in the process
of analysis.

Deep Graph Clustering Methods
The emergence of the deep graph autoencoder can greatly
alleviate scRNA-seq data (Kipf and Welling 2016); com-
pared to other autoencoders, it can learn the underlying low-
dimensional representation by providing a global view of the
whole graph. Zeng et al. proposed a new scRNA-seq data
clustering method (GraphSCC), which accounts for struc-
tural cell-cell relationships through a graph convolutional
network. Then, the representation learned from the network
is optimized by a self-supervised module (Zeng et al. 2020).
Wang et al. introduced scGNN in a hypothesis-free deep
learning framework. The framework aggregates the cell–cell
relationships using graph neural networks and applies the
left-truncated Gaussian mixture model to learn heteroge-
neous gene expression patterns (Wang et al. 2021). Luo et
al. proposed a single-cell model based on a graph autoen-
coder (scGAE), which builds a cell graph and uses the graph
autoencoder to preserve the feature and topological structure
information of scRNA-seq data (Luo et al. 2021). Rao et al.
developed an imputation method (GraphSCI) to impute the
dropout events in scRNA-seq data by incorporating graph
convolutional and autoencoder neural networks (Rao et al.
2021).

Methods
Data Pre-processing
We take the scRNA-seq gene expression matrix X as input,
where Xij denotes the expression count of the jth gene (1 ≤
j ≤ O) in the ith cell (1 ≤ i ≤ N ). The first step is to filter

4672



out genes that are expressed as non-zero in more than 1% of
the cells, as well as genes that are not expressed. Considering
that the data in the count matrix is discrete and the size factor
varies greatly, the normalization is defined as follows:

N(Xij) = ln

(
m(X)

Xij∑
o Xio

)
(1)

where m(X) represents the median of the total expression
values of the cells. According to Eq. (1), the discrete data is
smoothed and is rescaled by natural log transformation. Af-
ter normalization, we select the first t highly-variable genes
based on the ranking of the normalized dispersion values
calculated by scanpy package (Wolf, Angerer, and Theis
2018) to identify genes with high-level information.

Cell Graph
In this study, we use the embedding learned from the graph
autoencoder to preserve the relationship and neighbor infor-
mation between the cells. Similar to previous works (Wang
et al. 2021), KNN algorithm is employed to construct the
cell graph and each node in the graph represents a cell. In-
deed, there exits nodes a and b and an edge between a and
b; if a is b’s neighbor within the k shortest distance, k is set
to 15. Euclidean distance is calculated to describe the corre-
lation between the nodes to discover the k shortest distance.
After that, the constructed cell graph is an undirected graph
and the weight of the edge is uniformly set as 1.

Topology Adaptive Graph Convolutional
Autoencoder
To capture the graph structure and node relationships, we
developed a variant of the graph convolution autoencoder
that uses topology adaptive graph convolutional network
(TAGCN) (Du et al. 2017) as the graph encoder. The idea is
that TAGCN uses K graph convolution kernels at each layer
to extract local features of different sizes, which avoids the
drawback of approximate convolution kernels not fully ex-
tracting the graph information and thus enhances the learn-
ing ability of the model for scRNA-seq data.

The gene expression matrix X and normalized adjacency
matrix A are used as inputs. A can be represented as A =

D− 1
2 (I + Ã)D− 1

2 , where Ã is the adjacency matrix, and
D = diag{(I+ Ã)1N} is the degree matrix, where N is the
total number of samples and 1N denotes the N -dimensional
vector consisting entirely of one. Considering the l-th hidden
layer, it is assumed that each node has Cl features after fea-
ture mapping at this time, which means that the input data of
the l-th hidden layer is x(l)

c ∈ RN , where c = 1, 2, . . . , Cl.
The graph convolution process can be defined as follows:

y
(l)
f =

Cl∑
c=1

G
(l)
c,fx

(l)
c + bf1N (2)

where y
(l)
f represents f -th output feature map; bf is a learn-

able bias; G(l)
c,f represents the polynomial convolution kernel

in TAGCN, and its internal architecture uses K graph con-
volution kernels to extract local features of different sizes,

which is defined as:

G
(l)
c,f =

K∑
k=0

g
(l)
c,f,kA

k (3)

where g
(l)
c,f,k denotes the polynomial coefficients. Normal-

ized adjacency matrix A is adopted to enable a more sta-
ble computation of the entire convolution operation. After
each graph convolution operation, a nonlinear operation is
applied to the output, as defined below:

x
(l+1)
f = σ(y

(l)
f ) (4)

where σ(·) = max(0, x) denotes a RELU activation func-
tion.

Since most of the structure and information of scRNA-seq
data X is preserved in the latent embedded representation
Z through the TAGCN encoder, the decoder of the graph
autoencoder can be defined as the inner product between the
latent embedding:

Z = fE(X) (5)

Ar = σ(ZTZ) (6)
where, fE represents the TAGCN encoder function; Ar is
the reconstructed adjacency matrix. Therefore, the recon-
struction loss of A and Ar should be minimized in the learn-
ing process as below:

Lr = ||A−Ar||22 (7)

ZINB-based Graph Convolutional Autoencoder
To better capture the structure of single-cell RNA sequenc-
ing data by decoding from the latent embedded represen-
tation Z, we integrate the zero-inflated negative binomial
(ZINB) model into a topology adaptive graph convolutional
autoencoder to capture the global probabilistic structure of
the data. In the following, we first analyze the reasons for ap-
proximating the scRNA-seq data distribution using the zero-
inflated negative binomial distribution (ZINB) under the pre-
vious studies (Risso et al. 2018; Miao et al. 2018).
Theorem 1 The data distribution of the scRNA-seq gene ex-
pression count matrix can be approximated by zero-inflated
negative binomial distribution (ZINB).
Proof. The data distribution of the single cell RNA se-
quencing gene expression count matrix generally conforms
to three characteristics: 1) discrete; 2) variance greater than
the mean; 3) contains many zero values, including non-
expressed genes (true zero) or due to technical reasons
(dropout zero). In the following, we prove that the ZINB
distribution can simulate these three properties. ZINB is de-
fined as follows:

fZINB(x|π, r, p) = πI0(x) + (1− π)fNB(x|r, p) (8)

fNB(x|r, p) =
(

x+ r − 1
x

)
pr(1− p)x (9)

where π denotes the proportion of zero values; I0(x) is an
indicator function, which equals 1 when x = 0, and 0 oth-
erwise; r and p are the parameters of the negative binomial
(NB) distribution, representing the success times and prob-
ability, respectively. Since NB distribution belongs to a dis-
crete distribution, ZINB also satisfies the discrete distribu-
tion property. When x = 0, ZINB can predict the probability
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of the dropout zero (dropout rate) by π, which is deduced as
follows:

d =
(1− π)fNB(0)

π + (1− π)fNB(0)
(10)

Meanwhile, we can prove that the variance is greater than
the mean following the NB distribution. Assuming that the
mean is E(x), which is defined as:

E(x) =

∞∑
x=0

x

(
x+ r − 1

x

)
pr(1− p)x (11)

Let x′ = x− 1, r′ = r + 1, then we have:

E(x) =
r(1− p)

p

∞∑
x′=0

fNB(x
′|r′, p) (12)

Since NB is a discrete distribution, the sum of all proba-
bilities equals 1; that is,

∑∞
x′=0 fNB(x

′|r′, p) = 1. There-
fore, E(x) = r(1−p)

p . Assuming that the variance is V ar(x),
which can be defined as:

V ar(x) = E(x2)− E(x)2 =
r(1− p)

p2
(13)

Then, we can get the relationship between E(x) and
V ar(x):

V ar(x) = E(x) +
E(x)2

r
(14)

Since r > 0, V ar(x) > E(x).
On this basis, we propose to apply the ZINB distribution

model to simulate the data distribution to capture the charac-
ters of scRNA-seq data. Then, the ZINB-based Graph Con-
volutional Autoencoder instead of a regular graph autoen-
coder, which is trained to attempt to reconstruct its input is
defined as follows:

NB(X|µ, θ) = Γ(X + θ)

X!Γ(θ)

(
θ

θ + µ

)θ (
µ

θ + µ

)X

(15)

ZINB(X|π, µ, θ) = πδ0(X) + (1− π)NB(X) (16)
where µ and θ represent the mean and dispersion, respec-
tively; π is the weight of the point mass at zero. The pro-
portion θ

θ+µ replaces the probability p in Eq. (9). After that,
we append three fully connected layers to estimate the pa-
rameters {π,µ,θ} in the latent embedded representation Z
as follows:

Π = sigmoid(WπfD(Z)) (17)
M = exp(WµfD(Z)) (18)
Θ = exp(WθfD(Z)) (19)

where fD is a three-layers fully connected neural network
with hidden layers of 128, 256 and 512 nodes; W represents
the learned weights of the loss functions; Π, M and Θ are
all parameter matrices, representing the dropout probability,
mean and dispersion of the network output, respectively. The
selection of the activation function depends on the range and
definition of the parameters. Dropout probability is between
0 and 1, so the sigmoid function is chosen. In addition, due
to the non-negative value of the mean and dispersion, we
apply the exponential function. The negative log likelihood
of the ZINB distribution can be used as the reconstruction
loss function of the original data X , which can be defined as
below:

LZINB = − log(ZINB(X|π, µ, θ)) (20)

Self-optimizing Deep Graph Embedded Clustering
Since the deep graph embedded clustering method is unsu-
pervised and not guided by labels, it is unable to get a good
optimized feedback during the training process. Therefore,
we apply a self-optimizing embedding algorithm that inputs
latent embedding into a self-optimizing clustering module.
The objective takes the form of Kullback–Leibler (KL) di-
vergence and is formulated as follows:

Lc = KL(P ||Q) =
∑
i

∑
u

piu log
piu
qiu

(21)

where qiu is the soft label of the embedding node zi. This
label measures the similarity between zi and the cluster cen-
tral embedding µu by a Student’s t-distribution, which can
be described as follows:

qiu =
(1 + ||zi − µu||2)−1∑
r(1 + ||zi − µr||2)−1

(22)

It is worth noting that the initial cluster centers {µ} are gen-
erated by spectral clustering through the adjacency matrix
after pre-training of the ZINB-based graph convolutional au-
toencoder. In addition, piu is the auxiliary target distribu-
tion, which puts more emphasis on the similar data points
assigned with high confidence on the basis of qiu, as below:

piu =
q2iu/

∑
i qiu∑

r(q
2
ir/

∑
i qir)

(23)

Since the target distribution P is defined based on Q, the
embedding learning of Q is supervised in a self-optimizing
way to enable it to be close to the target distribution P .

Joint Embedding and Clustering Optimization
In the whole training process, graph autoencoder embedding
and clustering learning are optimized jointly. We minimize
the following total objective function:

L = γ1Lr + γ2LZINB + γ3Lc (24)

where Lr and LZINB are the reconstruction loss and ZINB
loss in the graph autoencoder respectively; Lc is the em-
bedding clustering loss; γ1, γ2 and γ3 are weight coeffi-
cients assigned to each loss to control the balance of the
total objective function. In the experiment, {γ1, γ2, γ3} are
set to {0.3,1.0,1.5}. We combine stochastic gradient descent
(SGD) and back propagation to jointly optimize graph au-
toencoder and cluster centers. The gradient of clustering loss
Lc with respect to the latent embedding node zi and cluster
center µu can be calculated as:

∂Lc

∂zi
= 2

∑
u

(1 + ||zi − µu||2)−1(piu − qiu)(zi − µu) (25)

∂Lc

∂µu
= −2

∑
i

(1 + ||zi − µu||2)−1(piu − qiu)(zi − µu) (26)

Given the learning rate is lr, the cluster center µu can be
updated as follows:

µu = µu − lr
N

N∑
i=1

∂Lc

∂µu
(27)
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Dataset Cell Gene Class Platform Reference
Yan 90 20214 6 Tang (Yan et al. 2013)

Camp(Brain) 734 18927 6 SMARTer (Camp et al. 2015)
Camp(Liver) 777 19020 7 SMARTer (Camp et al. 2017)

QS Diaphragm 870 23341 5 Smart-seq2 (Schaum et al. 2018)
QS Limb Muscle 1090 23341 6 Smart-seq2 (Schaum et al. 2018)

QS Lung 1676 23341 11 Smart-seq2 (Schaum et al. 2018)
Muraro 2122 19046 9 CEL-seq2 (Muraro et al. 2016)
Adam 3660 23797 8 Drop-seq (Adam et al. 2017)

Qx Limb Muscle 3909 23341 6 10x (Schaum et al. 2018)
QS Heart 4365 23341 8 Smart-seq2 (Schaum et al. 2018)

Young 5685 33658 11 10x (Young et al. 2018)
Plasschaert 6977 28205 8 inDrop (Plasschaert et al. 2018)
Wang Lung 9519 14561 2 10x (Wang et al. 2018)
Qx Trachea 11269 23341 5 10x (Schaum et al. 2018)

Tosches turtle 18664 23500 15 Drop-seq (Tosches et al. 2018)
Bach 23184 19965 8 10x (Bach et al. 2017)

Table 1: Summary of the real scRNA-seq datasets

where N denotes the total number of nodes. The polynomial
coefficient matrix We of the convolution kernel in encoder
and the weight matrix Wd in decoder are updated as follows:

We = We −
lr
N

(
γ1

∂Lr

∂We
+ γ2

∂LZINB

∂We
+ γ3

∂Lc

∂We

)
(28)

Wd = Wd − lr
N

(
γ1

∂Lr

∂Wd
+ γ2

∂LZINB

∂Wd

)
(29)

When the maximum number of iterations is reached, the op-
timization process stops. Then, we can obtain the predictive
clustering assignment of each cell through Q after model
training.

Experiments
Data Sources
We compared the performance of our model with other base-
line methods on 16 real-world scRNA-seq datasets from sev-
eral representative sequencing platforms. The 16 scRNA-seq
datasets used in our experiments are collected from recently
published papers about scRNA-seq experiments and the de-
tailed information is described in Table 1. All 16 datasets are
from different species, including mouse and human, as well
as from different organs, such as brain, lung, and kidney.
Specifically, the numbers of cells range from 90 to 23184,
and genes range from 14561 to 33658.

Baseline
The performance of scTAG was compared with two base
clustering methods including a K-means clustering algo-
rithm and a spectral clustering algorithm, and several state-
of-the-art scRNA-seq data clustering methods including four
single-cell based deep embedded clustering methods and
three single-cell deep graph embedded clustering methods.

• Deep soft K-means clustering for scRNA-seq data
(scziDesk) (Chen et al. 2020): It incorporates deep learn-
ing method with a denoising autoencoder to characterize
scRNA-seq data in a latent space.

• Model-based deep embedding method (scDCC) (Tian
et al. 2021): It is a principle clustering method and ap-
plies domain knowledge to the clustering step, which
adds prior knowledge to the loss function.

• Deep count autoencoder network (DCA) (Eraslan et al.
2019): It takes the sparsity, count distribution, and
overdispersion of the original data into account using a
negative binomial noise model.

• Deep embedded clustering (DEC) (Xie, Girshick, and
Farhadi 2016): It applies deep neural networks to simul-
taneously learn cluster assignments and feature represen-
tations in a lower-dimensional feature space.

• Single-cell graph neural network (scGNN) (Wang et al.
2021): It gives a framework that aggregates cell–cell re-
lationships using graph neural networks and applies a
Gaussian mixture model to learn gene expression pat-
terns.

• Single-cell graph autoencoder (scGAE) (Luo et al.
2021): It builds a cell graph and adopts a multitask-
oriented graph autoencoder to maintain the structural in-
formation of scRNA-seq data.

• GCN-based single-cell clustering (GraphSCC) (Zeng
et al. 2020): It accounts for the structural relations be-
tween cells using a graph convolutional network, and
the learned representation is optimized by a dual self-
supervised module.

Implementation Details
In the proposed scTAG method, the cell graph was con-
structed using KNN algorithm with the nearest neighbor pa-
rameter k=15 to build the cell graph. In the graph autoen-
coder, TAG was set as two layers of 128 and 15 nodes,
and the nodes of three hidden layers in the fully connected
decoder set at 128, 256, and 512. Our algorithm consists
of pre-training and formal training, in which pre-training,
epochs were set at 1000, while in formal training, epochs
were set at 300. Our model was optimized using Adam al-
gorithm with the learning rate 5e-4 in pre-training and 1e-
4 in formal training (Kingma and Ba 2015). For baseline
methods, the parameters were set the same as in the original
papers. We conducted our experiments on a Ubuntu server
with NVIDIA GTX 2080Ti GPU with 24 GB memory size.
The initial weights and bias used the default settings of Ten-
sorflow.

Clustering Performance
Two widely-used clustering metrics including normalized
mutual information (NMI) and adjusted rand index (ARI)
were employed to measure the performance of our method
and the other nine baseline methods. The higher the value of
the metrics, the better clustering performance.

Table 2 summarizes the clustering performance of scTAG
and the baseline methods on 16 scRNA-seq datasets. Each
clustering method was run ten times to take the average,
and the values highlighted represent the best results. Obvi-
ously, our method outperforms other the baseline clustering
methods for clustering performance. For the 16 scRNA-seq
datasets, scTAG achieved the best NMI and ARI on 13 and
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Datasets Ours Deep Graph Embedded Methods Deep Embedded Methods Base Methods
scTAG scGNN scGAE GraphSCC scziDesk scDCC DCA DEC K-means Spectral

NMI

Yan 0.8118 0.7599 0.7389 0.6783 0.7656 0.8004 0.8050 0.6750 0.7632 0.7475
Camp(Brain) 0.5607 0.3579 0.5201 0.4347 0.5232 0.4677 0.4609 0.4331 0.4428 0.5540
Camp(Liver) 0.7767 0.7497 0.8109 0.6688 0.7343 0.7488 0.6918 0.6282 0.7878 0.7858

QS Diaphragm 0.9346 0.7608 0.7351 0.8966 0.9210 0.8223 0.9174 0.8815 0.8846 0.8881
QS Limb Muscle 0.9616 0.7726 0.7398 0.7009 0.9468 0.4624 0.7691 0.9257 0.8911 0.9389

QS Lung 0.8038 0.6642 0.6766 0.6824 0.7543 0.4982 0.6400 0.7285 0.7785 0.7976
Muraro 0.8399 0.6294 0.7619 0.5723 0.7349 0.8347 0.7865 0.7449 0.8194 0.8291
Adam 0.8931 0.2731 0.6784 0.5606 0.8509 0.7494 0.5119 0.7470 0.7201 0.8473

Qx Limb Muscle 0.9481 0.7457 0.7569 0.6501 0.9131 0.8774 0.8152 0.7645 0.7715 0.8652
QS Heart 0.8857 0.6540 0.6039 0.8350 0.8723 0.4242 0.7854 0.8216 0.8299 0.8454

Young 0.7968 0.4145 0.6536 0.6047 0.7394 0.5575 0.5339 0.6420 0.7533 0.7787
Plasschaert 0.7749 0.5856 0.5563 0.7489 0.7899 0.5786 0.6466 0.6433 0.8642 0.5216
Wang Lung 0.8210 0.3975 0.3150 0.0270 0.7965 0.0482 0.8929 0.8455 0.8917 0.8682
Qx Trachea 0.7966 0.3587 0.4868 0.7360 0.7341 0.6728 0.5591 0.5658 0.6969 0.7725

Tosches turtle 0.7286 0.5427 - 0.6937 0.6082 0.7151 0.5947 0.6617 0.7047 0.7127
Bach 0.8635 0.7430 - 0.6950 0.8343 0.8214 0.8372 0.6259 0.7706 0.8342

ARI

Yan 0.7478 0.6945 0.6563 0.4599 0.5628 0.7344 0.7189 0.4809 0.6707 0.6502
Camp(Brain) 0.4334 0.3041 0.4152 0.2498 0.4151 0.4263 0.3366 0.2551 0.2763 0.4291
Camp(Liver) 0.6087 0.5806 0.6872 0.4315 0.6005 0.5587 0.5117 0.4215 0.6465 0.6190

QS Diaphragm 0.9628 0.5646 0.5638 0.9619 0.9517 0.8895 0.9165 0.9372 0.9110 0.9170
QS Limb Muscle 0.9813 0.6399 0.5419 0.5303 0.9743 0.3449 0.6567 0.9562 0.8922 0.9615

QS Lung 0.6526 0.3631 0.2797 0.5180 0.7401 0.2908 0.4429 0.5793 0.7329 0.7559
Muraro 0.8878 0.5080 0.6413 0.3391 0.6784 0.7100 0.8300 0.7245 0.8452 0.8741
Adam 0.9108 0.1608 0.5090 0.2444 0.8680 0.6576 0.3885 0.6903 0.5590 0.8284

Qx Limb Muscle 0.9581 0.5899 0.4983 0.4534 0.9441 0.7964 0.7875 0.7346 0.6628 0.7431
QS Heart 0.9371 0.5222 0.2497 0.8908 0.9324 0.2584 0.7804 0.9025 0.8376 0.8757

Young 0.6928 0.2588 0.5066 0.3795 0.6836 0.3702 0.3716 0.4785 0.6218 0.6543
Plasschaert 0.8280 0.4272 0.3540 0.7965 0.8634 0.4668 0.4660 0.5978 0.8999 0.2916
Wang Lung 0.9004 0.1771 0.1035 0.0852 0.8975 0.0351 0.9501 0.9237 0.9426 0.9387
Qx Trachea 0.9154 0.1270 0.1790 0.8725 0.8085 0.4668 0.3145 0.4407 0.7638 0.8667

Tosches turtle 0.6942 0.5279 - 0.5555 0.6165 0.6150 0.3767 0.4619 0.6439 0.6783
Bach 0.9057 0.6089 - 0.6546 0.8738 0.7549 0.8871 0.5393 0.7391 0.8622

Table 2: Performance of our method and the other baseline methods on 16 scRNA-seq datasets. The bold font indicates the best
values among the compared methods.
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Figure 2: Parameter analysis. (A) Comparison of the average
NMI and ARI values with different neighbor parameters, k.
(B) Comparison of the average NMI and ARI values with
different numbers of genes.

12 of them, respectively, and even in ‘QS Limb Muscle’,
the NMI and ARI reached 0.9616 and 0.9813. Meanwhile,
we can observe that the general deep graph embedded mod-
els have no advantage and the clustering performance is not
stable. For example, they performs poorly on ‘Wang Lung’.
The main reason is that the information structure preserved
by the cell graph alone cannot address the particularities

of scRNA-seq data well, and further simulation of the data
by ZINB distribution is necessary, which again proves the
superiority of scTAG. Furthermore, the clustering perfor-
mance of deep embedded clustering with the ZINB distri-
bution model including scziDesk and scDCC is better and
stable. However, scTAG still has an advantage. This is be-
cause the TAGCN could effectively extract the key genes of
the scRNA-seq data, so that the latent embedding represen-
tation in the model could retain the major information for
clustering. For the base methods, we can see that the clus-
tering performance of spectral clustering is generally better
than that of K-means, because spectral clustering is based on
the cell graph. Although the cell graph as described above
does not fit well into the structure of scRNA-seq data, it is
still an improvement over K-means clustering. This is also
the reason why scTAG adopts spectral clustering to initial-
ize the cluster center when optimizing the clustering loss. In
summary, we can conclude that scTAG performs better than
the other methods under two clustering evaluation metrics.

Parameter Analysis
Impact of the Neighbor Parameter k: k is the neighbor
parameter of the KNN algorithm to construct the cell graph,
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Figure 3: Clustering performance on the ‘Macosko’ dataset. (A) Comparison of NMI and ARI values between scTAG and
baseline methods. (B) Comparison of clustering results with 2D visualization by UMAP.

and it determines the number of edges between each node
and others. In order to investigate the impact of k, we ran
our model with the parameters 5, 10, 15, 25 and 30. Fig.
2(A) shows the NMI and ARI values with different numbers
of k. As depicted in Fig. 2(A), we observe that the two met-
rics first increase rapidly from parameter 5 to 10, and reach
the best value at k =15, and then decrease slowly from pa-
rameter 15 to 25. Therefore, we set the neighbor parameter
k as 15 in our scTAG model.

Different Numbers of Variable Genes Analysis: In
single-cell data analysis, highly variable genes can provide
more biological information and have more importance in
determining the cell type. To explore the impact of the num-
ber of selected highly variable genes, we apply scTAG on
real datasets with gene numbers from 300 to 2000. Fig. 2(B)
shows the bar plot of the average NMI and ARI on the 16
datasets selecting 300, 500, 1000, 1500 and 2000 genes with
high variability, respectively. It can be seen that the perfor-
mance with 500 highly variable genes is the best, while the
performance with 300 genes is much worse than the others.
Therefore, to save computational resources and reduce run-
ning time, we set the number of selected high-variance genes
in the model to 500.

Ablation Study

In this experiment, we analyzed the effect of each compo-
nent of the scTAG method. Specifically, we ablated different
components in three cases: 1) No TAG and ZINB-based de-
coder, with the general GCN and decoder used for replace-
ment. The total loss function consists of reconstruction loss,
clustering loss and MSE loss of output and raw data. 2) No
TAG convolution operation. 3) No ZINB-based decoder. Ta-
ble 3 tabulates the average NMI and ARI values on the 16
datasets for the three cases with scTAG. As shown in Ta-
ble 3, it can be clearly observed that gene screening and ex-
traction of scRNA-seq data via TAG convolution operation
improves the clustering performance. Moreover, the ZINB
has a significant impact on the final clustering results (ARI),
indicating that the simulation of scRNA-seq data through
ZINB distribution is necessary. In summary, all components
of the scTAG method are reasonable and effective.

Methods NMI ARI
Without TAG&ZINB 0.7827 0.7372

Without TAG 0.8013 0.7758
Without ZINB 0.8077 0.7993

scTAG 0.8252 0.8138

Table 3: Ablation study measured by NMI and ARI values

Scalability of scTAG
To further demonstrate that scTAG can also be utilized to
cluster large-scale data, we used a large mouse retina dataset
called ‘Macosko’(Macosko et al. 2015), which contains a
total of 44808 cells and 23288 genes grouped into 12 cell
types. Fig. 3(A) summarizes the clustering peformance of
scTAG and the baseline methods. Since scGNN and sc-
GAE clustering methods failed to run on this large-scale
dataset, they are not shown in the figure. It can be observed
that scTAG maintains good clustering performance even on
large-scale data, with the best NMI and ARI values. Fur-
thermore, to illustrate the effectiveness of the latent embed-
ding representation of scTAG and observe more intuitively
the clustering effect on large-scale data, we applied UMAP
(McInnes, Healy, and Melville 2018) to visualize the final
embedding points of scTAG and the baseline methods in
two-dimensional space as depicted in Fig. 3(B). It demon-
strates that similar cells in the large-scale dataset can be well
separated in the latent embedding representation of scTAG,
and much better than with the other baseline methods.

Conclusion
In this paper, we propose a single-cell model-based deep
graph embedding clustering called scTAG, which combines
the ZINB model into a topology adaptive graph convolu-
tional autoencoder for clustering scRNA-seq data. scTAG
first extracts the key genes of the scRNA-seq data, preserv-
ing the cell–cell topological structure, and then performs
graph reconstruction, decoding based on ZINB distribution
and finally, self-optimized embedded clustering on the la-
tent representation. Experimental results on 16 real scRNA-
seq datasets indicate the superiority of the proposed scTAG
method over other state-of-the-art baseline methods. In addi-
tion, the robustness and scalability analyse demonstrate that
scTAG is effective, robust and scalable.
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