
EMVLight: A Decentralized Reinforcement Learning Framework for Efficient
Passage of Emergency Vehicles

Haoran Su, 1* Yaofeng Desmond Zhong, 2 Biswadip Dey, 2 Amit Chakraborty 2

1New York University,
2Siemens Corporation, Technology

haoran.su@nyu.edu, {yaofeng.zhong, biswadip.dey, amit.chakraborty}@siemens.com

Abstract

Emergency vehicles (EMVs) play a crucial role in respond-
ing to time-critical events such as medical emergencies and
fire outbreaks in an urban area. The less time EMVs spend
traveling through the traffic, the more likely it would help
save people’s lives and reduce property loss. To reduce the
travel time of EMVs, prior work has used route optimiza-
tion based on historical traffic-flow data and traffic signal
pre-emption based on the optimal route. However, traffic sig-
nal pre-emption dynamically changes the traffic flow which,
in turn, modifies the optimal route of an EMV. In addition,
traffic signal pre-emption practices usually lead to signifi-
cant disturbances in traffic flow and subsequently increase the
travel time for non-EMVs. In this paper, we propose EMV-
Light, a decentralized reinforcement learning (RL) frame-
work for simultaneous dynamic routing and traffic signal con-
trol. EMVLight extends Dijkstra’s algorithm to efficiently up-
date the optimal route for the EMVs in real time as it trav-
els through the traffic network. The decentralized RL agents
learn network-level cooperative traffic signal phase strategies
that not only reduce EMV travel time but also reduce the aver-
age travel time of non-EMVs in the network. This benefit has
been demonstrated through comprehensive experiments with
synthetic and real-world maps. These experiments show that
EMVLight outperforms benchmark transportation engineer-
ing techniques and existing RL-based signal control methods.

Introduction
Emergency vehicles (EMVs) are vehicles including ambu-
lances, fire trucks, and police cars, which respond to criti-
cal events such as medical emergencies, fire disasters, and
criminal activities. Emergency response time is the key in-
dicator of a city’s emergency management capability. Re-
ducing response time saves lives and prevents property loss.
For instance, the survival rate from a sudden cardiac arrest
drops 7% - 10% for every minute without treatment, and
there is barely any chance to survive after 8 minutes. EMV
travel time, the time interval for an EMV to travel from a
rescue station to an incident site, accounts for a majority of
the emergency response time. However, overpopulation and
urbanization have been worsening road congestion, making
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it more and more challenging for fast EMV passage. Depart-
ment (2021) have shown that the average EMV travel time
increases from 7.2 minutes in 2015 to 10.1 minutes in 2021
in New York City. Thus, reducing the average EMV travel
time on increasingly crowded roads is a significant problem
which can help save people’s lives.

Existing works have studied strategies to reduce the travel
time of EMVs by route optimization and traffic signal pre-
emption. Route optimization usually refers to the search for a
time-based shortest path. The traffic network (e.g., city road
map) is modeled as a graph with intersections as nodes and
road segments between intersections as edges. Based on the
time a vehicle needs to travel through each edge (road seg-
ment), route optimization calculates an optimal route such
that an EMV can travel from the rescue station to the in-
cident site in the least amount of time. In addition, as the
EMV needs to be as fast as possible, the law in most places
requires non-EMVs to yield to emergency vehicles sound-
ing sirens, regardless of the traffic signals at intersections.
Even though this practice gives the right-of-way to EMVs,
it poses safety risks for vehicles and pedestrians at the in-
tersections. To address this safety concern, existing methods
have also studied traffic signal pre-emption, which refers to
the process of deliberately altering the signal phases at each
intersection to prioritize EMV passage.

However, as the traffic condition constantly changes, an
optimal route returned by route optimization can potentially
become suboptimal as an EMV travels through the network.
Moreover, traffic signal pre-emption has a significant impact
on the traffic flow, which would change the fastest route as
well. Thus, the optimal route should be updated with real-
time traffic flow information, i.e., the route optimization
should be solved in a dynamic (time-dependent) way. As
an optimal route can change as an EMV travels through the
traffic network, the traffic signal pre-emption would need to
adapt accordingly. In other words, the subproblems of route
optimization and traffic signal pre-emption are coupled and
should be solved simultaneously in real-time. Existing ap-
proaches does not address this coupling.

In addition, most of the existing models on emergency
vehicle service have a single objective of reducing the EMV
travel time. As a result, their traffic signal control strategies
have an undesirable effect of increasing the travel time of
non-EMVs, since only EMV passage is optimized. In this
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paper, we aim to perform route optimization and traffic sig-
nal pre-emption to not only reduce EMV travel time but also
to reduce the average travel time of non-EMVs. In particular,
we address the following two key challenges:

• How to dynamically route an EMV to a destination
under time-dependent traffic conditions in a compu-
tationally efficient way? As the congestion level of each
road segment changes over time, the routing algorithm
should be able to adjust the remaining route as the EMV
passes each intersection. Running the shortest-path algo-
rithm each time the EMV passes an intersection is not
efficient. A computationally efficient dynamic routing al-
gorithm is desired.

• How to coordinate traffic signals to not only reduce
EMV travel time but reduce the average travel time
of non-EMVs as well? To reduce EMV travel time, only
the traffic signals along the route of the EMV need to
be altered. However, to further reduce average non-EMV
travel time, traffic signals in the whole traffic network
need to be operated cooperatively.

To tackle these challenges, we propose EMVLight, a de-
centralized multi-agent reinforcement learning framework
with a dynamic routing algorithm to control traffic signal
phases for efficient EMV passage. Our experimental results
demonstrate that EMVLight outperforms traditional traffic
engineering methods and existing RL methods under two
metrics - EMV travel time and the average travel time of all
vehicles - on different traffic configurations.

Related Work
Conventional Routing Optimization and Traffic Signal
Pre-emption for EMVs. Although, in reality, routing and
pre-emption are coupled, existing methods usually solve
them separately. Many of the existing approaches leverage
Dijkstra’s shortest path algorithm or A* algorithm to get
the optimal route (Wang, Ma, and Yang 2013; Mu, Song,
and Liu 2018; Kwon, Kim, and Betts 2003; Jotshi, Gong,
and Batta 2009; Nordin et al. 2012). However, as this line
of work assumes that the routes and traffic conditions are
fixed and static, they fail to address the dynamic nature of
real-world traffic flows. Another line of work has consid-
ered the change of traffic flows over time. Ziliaskopoulos
and Mahmassani (1993) have proposed a shortest-path al-
gorithm for time-dependent traffic networks, but the travel
time associated with each road at each time step is assumed
to be known in prior. Musolino et al. (2013) propose dif-
ferent routing strategies for different times in a day (e.g.,
peak/non-peak hours) based on traffic history data at those
times. However, in the problem of our consideration, routing
and pre-emption strategies can significantly affect the travel
time associated with each edge during the EMV passage,
and existing methods cannot deal with this kind of real-time
changes. Haghani, Hu, and Tian (2003) formulated the dy-
namic shortest path problem as a mixed-integer program-
ming problem. Koh et al. (2020) have used RL for real-time
vehicle navigation and routing. However, both of these stud-
ies have tackled a general routing problem, and signal pre-
emption and its influence on traffic have not been modeled.

Once an optimal route for the EMV has been determined,
traffic signal pre-emption can be deployed to further reduce
EMV travel time. A common pre-emption strategy is to ex-
tend the green phases of green lights to let the EMV pass
each intersection along a fixed optimal route (Wang, Ma, and
Yang 2013; Bieker-Walz and Behrisch 2019; Asaduzzaman
and Vidyasankar 2017).

Please refer to Lu and Wang (2019) and Humagain et al.
(2020) for a thorough survey of conventional routing opti-
mization and traffic signal pre-emption methods. We would
also like to point out that the conventional methods prioritize
EMV passage and have significant disturbances on the traffic
flow which increases the average non-EMV travel time.

RL-based Traffic Signal Control. Traffic signal pre-
emption only alters the traffic phases at the intersections
where an EMV travels through. However, to reduce con-
gestion, traffic phases at nearby intersections also need to
be changed cooperatively. The coordination of traffic sig-
nals to mitigate traffic congestion is referred to as traffic
signal control which has been addressed by leveraging deep
RL in a growing body of work. Many of the existing ap-
proaches use Q-learning (Abdulhai, Pringle, and Karakoulas
2003; Prashanth and Bhatnagar 2010; Wei et al. 2019a,b;
Zheng et al. 2019; Chen et al. 2020; Zang et al. 2020). An-
other line of work has used actor-critic algorithms for traf-
fic signal control (El-Tantawy, Abdulhai, and Abdelgawad
2013; Aslani, Mesgari, and Wiering 2017; Chu et al. 2019;
Xu et al. 2021). Please refer to Wei et al. (2019c) for a re-
view on traffic signal control methods. These RL-based traf-
fic control methods, however, focus on reducing the conges-
tion in the traffic network and are not designed for EMV
pre-emption. In contrast, our RL framework is built upon
state-of-the-art ideas such as max pressure and is designed
to reduce both EMV travel time and overall congestion.

Another line of research to reduce EMV travel time fo-
cuses on link level EMV traversal, e.g., fixed lane and
change lane strategies proposed by Agarwal and Paruchuri
(2016); Ismath et al. (2019); Su et al. (2021). However, our
paper does not focus on link level traversal and we leave it
as a future work.

Preliminaries
Definition 1 (Traffic map, link, lane) A traffic map can be
represented by a graph G(V, E), with intersections as nodes
and road segments between intersections as edges. We refer
to a one-directional road segment between two intersections
as a link. A link has a fixed number of lanes, denoted as h(l)
for lane l. Fig. 1 shows 8 links and each link has 2 lanes.

Definition 2 (Traffic movements) A traffic movement
(l,m) is defined as the traffic traveling across an inter-
section from an incoming lane l to an outgoing lane m.
The intersection shown in Fig. 1 has 24 permissible traffic
movements. The set of all permissible traffic movements of
an intersection is denoted asM.

Definition 3 (Traffic signal phase) A traffic signal phase is
defined as the permissible combination traffic movements.
The intersection with 4 links in Fig. 2 has 8 phases.
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Figure 1: Traffic movements illustration and an example
pressure calculation for incoming lane #2.

Definition 4 (Pressure of an incoming lane) The pressure
of an incoming lane l measures the unevenness of vehicle
density between lane l and corresponding out going lanes in
permissible traffic movements. The vehicle density of a lane
is x(l)/xmax(l), where x(l) is the number of vehicles on
lane l and xmax(l) is the vehicle capacity on lane l, which
is related to the length of a lane. Then the pressure of an
incoming lane l is

w(l) =

∣∣∣∣∣∣ x(l)

xmax(l)
−

∑
{m|(l,m)∈M}

1

h(m)

x(m)

xmax(m)

∣∣∣∣∣∣ , (1)

where h(m) is the number of lanes of the outgoing link
which contains m. In Fig. 1, h(m) = 2 for all the outgo-
ing lanes. An example for Eqn. (1) is shown in Fig. 1.

Definition 5 (Pressure of an intersection) The pressure of
an intersection is the average pressure of all incoming lanes.

The pressure of an intersection indicates the unevenness of
vehicle density between incoming and outgoing lanes in an
intersection. Intuitively, reducing the pressure leads to more
evenly distributed traffic, which indirectly reduce congestion
and the average travel time of vehicles.

Dynamic Routing
Dijkstra’s algorithm is a general algorithm that finds shortest
path between a given node and every other nodes in a graph.
It has been widely used for EMV routing. The EMV travel
time along each link, which is referred to as the intra-link
travel time. is estimated based on the number of vehicles on
that link. With the traffic graph, the intra-link travel time and
a destination, Dijkstra’s algorithm calculates the time-based
shortest path as well as estimated travel time from each in-
tersection to the destination. The latter is usually referred to
as the estimated time of arrival (ETA) of each intersection.

However, traffic conditions are constantly changing and
so does the EMV intra-link travel time. Moreover, EMV pre-
emption techniques alters traffic signal phases, which will
significantly change the traffic condition as the EMV travels.
The pre-determined shortest path might become congested

Figure 2: Top: 8 signal phases; Left: phase #2 illustration;
Right: phase #5 illustration.

Algorithm 1: Dynamic Dijkstra’s for EMV routing
Input :
G = (V, E) traffic map as a graph
T t = [T tij ] intra-link travel time at time t
id index of the destination

Output:
ETAt = [ETAti] ETA of each intersection
Nextt = [Nextti] next intersection to go

from each intersection
/* pre-population */

1 ETA0,Next0 = Dijkstra(G,T 0, id)
/* dynamic routing */

2 for t = 0→ T do
3 foreach i ∈ V do (in parallel)
4 ETAt+1

i ← min(i,j)∈E(ETA
t
j + T tji)

5 Nextt+1
i ← argmin{j|(i,j)∈E}(ETA

t
j + T tji)

due to stochasticity and pre-emption. Thus, updating the op-
timal route dynamically can facilitate EMV passage. In the-
ory we can run Dijkstra’s algorithm frequently as the EMV
travels through the network to take into account the updated
EMV intra-link travel time, but this is inefficient.

To achieve dynamics routing, we extend Dijkstra’s algo-
rithm to efficiently update the optimal route based on the up-
dated intra-link travel times. As shown in Algorithm 1, first
a prepopulation process is carried out where a (static) Di-
jkstra’s algorithm is run to get the ETA from each intersec-
tion to the destination. For each intersection, the next inter-
section along the shortest path is also calculated and stored.
We assume this process can be done before the EMV starts
to travel. This is reasonable since a sequence of processes,
including call-taker processing, are performed before the
EMVs are dispatched. Once the pre-population process is
finished, we can update ETA and Next for each intersection
efficiently in parallel, since the update only depends on in-
formation of neighboring intersections. Please see Appendix
for how intra-link travel time is estimated in real time.

Remark 1 In static Dijkstra’s algorithm, the shortest path
is obtained by repeatedly querying the Next attribute of
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each node from the origin until the destination is reached.
In our dynamic Dijkstra’s algorithm, since the shortest path
changes, we only care about the immediate next intersection
to go to, which is exactly Nexti for any intersection i.

Reinforcement Learning Formulation
While dynamic routing directs the EMV to the destination, it
does not take into account the possible waiting times for red
lights at the intersections. Thus, traffic signal pre-emption is
also required for the EMV to arrive at the destination in the
least amount of time. However, since traditional pre-emption
only focuses on reducing the EMV travel time, the average
travel time of non-EMVs can increase significantly. Thus,
we set up traffic signal control for efficient EMV passage as
a decentralized RL problem. In our problem, an RL agent
controls the traffic signal phases of an intersection based
on local information. Multiple agents coordinate the con-
trol signal phases of intersections cooperatively to (1) re-
duce EMV travel time and (2) reduce the average travel time
of non-EMVs. First, we present 3 types of agents. Then we
present agent design and multi-agent A2C framework.

Types of Agents for EMV Passage
When an EMV is on duty, we distinguish 3 types of traffic
control agents based on EMV location and routing (Fig. 3).
An agent is a primary pre-emption agent ip if an EMV is on
one of its incoming links. The agent of the next intersection
is = Nextip is refered to as a secondary pre-emption agent.
The rest of the agents are normal agents. We design these
types since different agents have different local goals, which
is reflected in their reward designs, as described below.

Agent Design
• State: The state of an agent i at time t is denoted as sti

and it includes the number of vehicles on each outgoing
lanes and incoming lanes, the distance of the EMV to
the intersection, the estimated time of arrival (ETA), and
which link the EMV will be routed to (Next), i.e.,

sti = {xt(l), xt(m), dtEMV[Lji],ETA
t′

i ,Next
t′

i }, (2)

where Lji represents the incoming links of intersection
i. With a slight abuse of notation l and m denote the set
of incoming and outgoing lanes, respectively. For the in-
tersection shown in Fig. 1, dtEMV is a vector of four ele-
ments. For primary pre-emption agents, one element rep-
resents the distance of EMV to the intersection in the cor-
responding link, while the rest of the elements are set to
-1. For all other agents, dtEMV are padded with -1.

• Action: Prior work has focused on using phase switch,
phase duration and phase itself as actions. In this work,
we define the action of an agent as one of the 8 phases in
Fig. 2; this enables more flexible signal patterns as com-
pared to the traditional cyclical patterns. Due to safety
concerns, once a phase has been initiated, it should re-
main unchanged for a minimum amount of time, e.g.
5 seconds. Because of this, we set our MDP time step
length to be 5 seconds to avoid rapid switch of phases.

Figure 3: Three types of agents.

• Reward: PressLight (Wei et al. 2019a) has shown that
minimizing the pressure is an effective way to encourage
efficient vehicle passage, we adopt a similar idea for nor-
mal agents. For secondary pre-emption agents we addi-
tionally encourage less vehicles on the link between the
primary and the secondary agent in order to encourage
efficient EMV passage. For primary pre-emption agents,
we simply assign a unit penalty at each time step to en-
courage fast EMV passage. Thus, depending on the agent
type, the local reward for agent i at time t is

rti =


−P ti i /∈ {ip, is},
−βP tis −

1−β
|Lipis |

∑
l∈Lipis

x(l)
xmax(l)

i = is,

−1 i = ip.

(3)

Justification of Agent Design. The quantities in local agent
state can be obtained at each intersection using various tech-
nologies. Numbers of vehicles on each lane (xt(l), xt(m))
can be obtained by vehicle detection technologies, such
as inductive loop (Gajda et al. 2001), based on the hard-
ware installed underground. The distance of the EMV to
the intersection dtEMV[Lji] can be obtained by vehicle-to-
infrastructure technologies such as VANET(Buchenscheit
et al. 2009), which broadcasts the real-time position of a ve-
hicle to an intersection. Prior work by Wang et al. (2013)
and Noori, Fu, and Shiravi (2016) have explored these tech-
nologies for traffic signal pre-emption.

The dynamic routing algorithm (Algorithm 1) can pro-
vide (ETA,Next) for each agent at every time step. How-
ever, due to the stochastic nature of traffic flows, updating
the route too frequently might confuse the EMV driver, since
the driver might be instructed a new route, say, every 5 sec-
onds. There are many ways to ensure reasonable frequency.
One option is to inform the driver only once while the EMV
is travels in a single link. We implement it by updating the
state of an RL agent (ETAt

′

i ,Next
t′

i ) at the time step when
the EMV travels through half of a link. For example, if the
EMV travels through a link to agent i from time step 11 to 20
in constant speed, then dynamic routing information in s16i
to s20i are the same, which is (ETA15

i ,Next
15
i ), i.e., t′ = 15.

As for the reward design, one might wonder how an agent
is able to know its type. As we assume that an agent can
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observe the state of its neighbors, agent type can be inferred
from the observation. This will become clearer below.

Multi-agent Advantage Actor-critic
We adopt a multi-agent advantage actor-critic (MA2C)
framework similar to Chu et al. (2019). The difference is that
our local state includes dynamic routing information and our
local reward encourages efficient passage of EMV. Here we
briefly introduce the MA2C framework. Please refer to Chu
et al. (2019) for additional details.

In a multi-agent network G(V, E), the neighborhood of
agent i is denoted as Ni = {j|ji ∈ E or ij ∈ E}. The local
region of agent i is Vi = Ni ∪ i. We define the distance
between two agents d(i, j) as the minimum number of edges
that connect them. For example, d(i, i) = 0 and d(i, j) =
1, ∀j ∈ Ni. In MA2C, each agent learns a policy πθi (actor)
and the corresponding value function Vφi

(critic), where θi
and φi are learnable neural network parameters of agent i.

Local Observation. In an ideal setting, agents can ob-
serve the states of every other agent and leverage this global
information to make a decision. However, this is not practi-
cal in our problem due to communication latency and it will
cause scalability issues. We assume agents can observe its
own state and the states of its neighbors, i.e., stVi = {s

t
j |j ∈

Vi}. The agents feed this observation to its policy network
πθi and value network Vφi .

Fingerprint. In multi-agent training, each agent treats
other agents as part of the environment, but the policy of
other agents are changing over time. Foerster et al. (2017)
introduce fingerprints to inform agents about the changing
policies of neighboring agents in multi-agent Q-learning.
Chu et al. (2019) bring fingerprints into MA2C. Here we
use the probability simplex of neighboring policies πt−1Ni

=

{πt−1j |j ∈ Ni} as fingerprints, and include it into the input
of policy network and value network. Thus, our policy net-
work can be written as πθi(a

t
i|stVi , π

t−1
Ni

) and value network
as Vφi

(s̃tVi , π
t−1
Ni

), where s̃tVi is the local observation with
spatial discount factor, which is introduced below.

Spatial Discount Factor and Adjusted Reward. MA2C
agents cooperatively optimize a global cumulative reward.
We assume the global reward is decomposable as rt =∑
i∈V r

t
i , where rti is defined in Eqn. (3). Instead of optimiz-

ing the same global reward for every agent, Chu et al. (2019)
propose a spatial discount factor α to let each agent pay less
attention to rewards of agents far away. The adjusted reward
for agent i is

r̃ti =

Di∑
d=0

( ∑
j∈V|d(i,j)=d

(α)drtj

)
, (4)

where Di is the maximum distance of agents in the graph
from agent i. When α > 0, the adjusted reward include
global information, it seems this is in contradiction to the
local communication assumption. However, since reward is
only used for offline training, global reward information is
allowed. Once trained, the RL agents can control traffic sig-
nal without relying on global information.

Temporal Discount Factor and Return. The local re-
turn R̃ti is defined as the cumulative adjusted reward R̃ti :=∑T
τ=t γ

τ−tr̃τi , where γ is the temporal discount factor and
T is the length of an episode. we can estimate the local re-
turn using value function,

R̃ti = r̃ti + γVφ−i
(s̃t+1
Vi , π

t
Ni
|πθ−−i

), (5)

where φ−i means parameters φi are frozen and θ−−i means the
parameters of policy networks of all other agents are frozen.

Network Architecture and Training. As traffic flow
generates spatial temporal data, we leverage a long-short
term memory (LSTM) layer along with fully connected (FC)
layers for policy network (actor) and value network (critic).
Our multi-agent actor-critic training pipeline is similar to
that in Chu et al. (2019). We provide neural architecture de-
tails, policy loss expression, value loss expression as well as
a training pseudocode in the Appendix.

Experimentation
In this section, we demonstrate our RL framework using
Simulation of Urban MObility (SUMO) (Lopez et al. 2018)
SUMO is an open-source traffic simulator capable of sim-
ulating both microscopic and macroscopic traffic dynam-
ics, suitable for capturing the EMV’s impact on the re-
gional traffic as well as monitoring the overall traffic flow.
A pipeline is established between the proposed RL frame-
work and SUMO, i.e., the agents collect observations from
SUMO and preferred signal phases are fed back into SUMO.

Datasets and Map Descriptions
We conduct the following experiments based on both syn-
thetic and real-world map.

Synthetic Grid5×5 We synthesize a 5 × 5 traffic grid,
where intersections are connected with bi-directional links.
Each link contains two lanes. We design 4 configurations,
listed in Table 1. The origin (O) and destination (D) of the
EMV are labelled in Fig. 4. The traffic for this map has a
time span of 1200s. We dispatch the EMV at t = 600s to
ensure the roads are compacted when it starts travel.

Figure 4: Left: the synthetic grid5×5. Origin and destination
of the EMV are labeled. Right: an intersection illustration in
SUMO, the teal area are inductive loop detected area.
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Config Traffic Flow (veh/lane/hr) Origin Destination
Non-peak Peak

1 200 240 N,S E,W
2 160 320

3 200 240 Randomly

4 160 320 generated

Table 1: Configuration for Synthetic Grid5×5. Peak flow is
assigned from 400s to 800s and non-peak flow is assigned
out of this period. For Config. 1 and 2, the vehicles enter the
grid from North and South, and exit toward East and West.

Manhattan16×3 This is a 16× 3 traffic network extracted
from Hell’s Kitchen area in Manhattan (Fig. 5) and cus-
tomized for demonstrating EMV passage. In this traffic
network, intersections are connected by 16 one-directional
streets and 3 one-directional avenues. We assume each av-
enue contains four lanes and each street contains two lanes
so that the right-of-way of EMVs and pre-emption can be
demonstrated. The traffic flow for this map is generated from
open-source NYC taxi data. Both the map and traffic flow
data are publicly available.1 The origin and destination of
EMV are set to be far away as shown in Fig. 5

Figure 5: Manhattan map: a 16-by-3 traffic network in Hell’s
Kitchen area. Dispatching origin and destination are labeled.

Baselines
Due to the lack of existing RL methods for efficient EMV
passage, we select traditional methods and RL methods for
each subproblem and combine them to set up baselines.

For traffic signal pre-emption, the most intuitive and
widely used approach is the idea of Green Wave (Corman
et al. 2009), which extends green light period for EMV pas-
sage at each intersection. Walabi (W) (Bieker-Walz and
Behrisch 2019) is an effective rule-based method that im-
plemented Green Wave for EMVs in SUMO. We integrate
Walabi with combinations of routing and traffic signal con-
trol strategies introduced below as baselines.

Routing baselines:

1https://traffic-signal-control.github.io/

• Static routing is performed when EMV is dispatched and
the route remains fixed as the EMV travels. We adopt A*
search as the baseline since it is a powerful extension to
the Dijkstra’s shortest path algorithm and is used in many
real-time applications because of its optimality. 2

• Dynamic routing relies on real-time information of traf-
fic conditions. To set up the baseline, we run A* every
50s as EMV travels. This is because running the full A*
to update optimal route is not as efficient as our proposed
dynamic Dijkstra’s algorithm.

Traffic signal control baselines:
• Fixed Time (FT): Cyclical fixed time traffic phases with

random offset (Roess, Prassas, and McShane 2004) is a
policy that split all phases with an predefined green ratio.
It is the default strategy in real traffic signal control.

• Max Pressure (MP): The state-of-the-art (SOTA)
network-level signal control strategy based on pressure
(Varaiya 2013). It aggressively selects the phase with
maximum pressure to smooth congestion.

• Coordinated Learner (CL): A Q-learning based coordi-
nator which directly learns joint local value functions for
adjacent intersections (Van der Pol and Oliehoek 2016).

• PressLight (PL): A RL method aiming to optimize the
pressure at each intersection(Wei et al. 2019a).

Results
We evaluate the performance of EMVLight and baseline
models under two metrics: EMV travel time, which measures
routing and pre-emption ability, and average travel time,
which indicates the ability of traffic signal control for effi-
cient vehicle passage. The performance of our EMVLight
and the baselines in both the synthetic and the Manhattan
map is shown in Table 2. The results of all methods are av-
eraged over five independent runs and RL methods adopt
different random seeds in each run. We observe that EMV-
Light outperforms all baseline models under both metrics.

In terms of EMV travel time TEMV, the dynamic rout-
ing baselines perform better than static routing baselines.
This is expected since dynamic routing considers the time-
dependent nature of traffic conditions and updates the op-
timal route accordingly. EMVLight further reduces EMV
travel time by 18% in average as compared to dynamic
routing baselines. This advantage in performance can be at-
tributed to the design of secondary pre-emption agents. This
type of agents learn to “reserve a link” by choosing signal
phases that help clear the vehicles in the link to encourage
high speed EMV passage (Eqn. (3)).

As for average travel time Tavg, we first notice that the
traditional pre-emption technique (W+Static+FT) indeed in-
creases the average travel time by around 10% as compared
to a traditional Fix Time strategy without EMV (denoted as
“FT w/o EMV” in Table 2), thus decreasing the overall vehi-
cle passage efficiency. Different traffic signal control strate-
gies have a direct impact on overall efficiency. Fixed Time
is designed to handle steady traffic flow. Max Pressure, as

2Our implementation of A* search employs a Manhattan dis-
tance as the heuristic function.
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Method EMV Travel Time TEMV [s] Average Travel Time Tavg [s]

Config 1 Config 2 Config 3 Config 4 Manhattan16×3 Config 1 Config 2 Config 3 Config 4 Manhattan16×3

FT w/o EMV N/A N/A N/A N/A N/A 353.43 371.13 314.25 334.10 1649.64

W + Static + FT 257.20 272.00 259.20 243.80 487.20 372.19 389.13 342.49 355.05 1811.03
W + Static + MP 255.00 269.00 261.20 245.40 461.80 349.38 352.54 307.91 322.68 708.13
W + Static + CL 281.20 286.20 289.80 277.80 492.20 503.35 524.26 488.12 509.55 2013.54
W + Static + PL 276.00 282.20 271.40 275.00 476.00 358.18 369.45 332.98 338.95 1410.76

W + dynamic + FT 229.60 231.20 228.60 227.20 442.20 370.09 393.40 330.13 345.50 1699.30
W + dynamic + MP 226.20 234.60 224.20 217.60 438.80 345.45 348.43 313.26 325.72 721.32
W + dynamic + CL 273.40 269.60 281.00 270.80 450.20 514.29 536.78 502.12 542.63 1987.86
W + dynamic + PL 251.20 257.80 247.00 268.80 436.20 359.31 342.59 340.11 349.20 1412.12

EMVLight 198.60 192.20 199.20 196.80 391.80 322.40 318.76 301.90 321.02 681.23

Table 2: Performance comparison of different methods evaluated in the four configurations of the synthetic traffic grid as well as
Manhattan Map. For both metrics, the lower value indicates better performance. The lowest values are highlighted in bold. The
average travel time of Manhattan map (1649.64) is retrieved from data. Variations of these values are shown in the Appendix.

a SOTA traditional method, outperforms Fix Time and, sur-
prisingly, outperforms both RL baselines in terms of overall
efficiency. This shows that pressure is an effective indica-
tor for reducing congestion and this is why we incorporate
pressure in our reward design. Coordinate Learner performs
the worst, probably because its reward is not based on pres-
sure. PressLight doesn’t beat Max Pressure because it has
a reward design that focuses on smoothing vehicle densi-
ties along a major direction, e.g. an arterial. Grid networks
with the presence of EMV make PressLight less effective.
Our EMVLight improves its pressure-based reward design
to encourage smoothing vehicle densities of all directions
for each intersection. This enable us to achieve an advantage
of 5% over our best baselines (Max Pressure).

Ablation Study on Pressure and Agent Types We
propose three types of agents and design their rewards
(Eqn. (3)) based on our improved pressure definition and
heuristics. In order to see how our improved pressure def-
inition and proposed special agents influence the results,
we (1) replace our pressure definition by that defined in
PressLight, (2) replace secondary pre-emption agents with
normal agents and (3) replace primary pre-emption agents
with normal agents.

Table 3 shows the results of these ablations: (1)
PressLight-style pressure (see Appendix) yields a slightly
smaller EMV travel time but significantly increases the
average travel time; (2) Without secondary pre-emption
agents, EMV travel time increases by 45% since almost
no “link reservation” happened; (3) Without primary pre-
emption agents, EMV travel time increases significantly,

Ablations (1) (2) (3) EMVLight

TEMV [s] 197 289 320 199
Tavg [s] 361.05 347.13 359.62 322.40

Table 3: Ablation study on pressure and agent types. Exper-
iments are conducted on the Config 1 synthetic grid5×5.

which shows the importance of pre-emption.

Ablation Study on Fingerprint In multi-agent RL, fin-
gerprint has been shown to stabilize training and enable
faster convergence. In order to see how fingerprint af-
fects training in EMVLight, we remove the fingerprint de-
sign, i.e., policy and value networks are changed from
πθi(a

t
i|stVi , π

t−1
Ni

) and Vφi(s̃
t
Vi , π

t−1
Ni

) to πθi(a
t
i|stVi) and

Vφi
(s̃tVi), respectively. Fig. 6 shows the influence of fin-

gerprint on training. With fingerprint, the reward converges
faster and suffers from less fluctuation, confirming the effec-
tiveness of fingerprint.

Figure 6: Reward convergence with and without fingerprint.
Experiments are conducted on Config 1 synthetic grid5×5.

Conclusion
In this paper, we proposed a decentralized reinforcement
learning framework, EMVLight, to facilitate the efficient
passage of EMVs and reduce traffic congestion at the same
time. Leveraging the multi-agent A2C framework, agents in-
corporate dynamic routing and cooperatively control traf-
fic signals to reduce EMV travel time and average travel
time of non-EMVs. Evaluated on both synthetic and real-
world map, EMVLight significantly outperforms the exist-
ing methods. Future work will explore more realistic micro-
scopic interaction between EMV and non-EMVs, efficient
passage of multiple EMVs and closing the sim-to-real gap.
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