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Abstract

Hamiltonian systems represent an important class of dynami-
cal systems such as pendulums, molecular dynamics, and cos-
mic systems. The choice of solvers is significant to the accu-
racy when simulating Hamiltonian systems, where symplec-
tic solvers show great significance. Recent advances in neu-
ral network-based hypersolvers, though achieve competitive
results, still lack the symplecity necessary for reliable simu-
lations, especially over long time horizons. To alleviate this,
we introduce Hyperverlet, a new hypersolver composing the
traditional, symplectic velocity Verlet and symplectic neural
network-based solvers. More specifically, we propose a pa-
rameterization of symplectic neural networks and prove that
hyperbolic tangent is r-finite expanding the set of allowable
activation functions for symplectic neural networks, improv-
ing the accuracy. Extensive experiments on a spring-mass and
a pendulum system justify the design choices and suggest that
Hyperverlet outperforms both traditional solvers and hyper-
solvers.

Introduction
Systems identification of frictionless dynamical systems
such as pendulums and molecular dynamics through deep
learning has seen a surge in recent years, particularly Hamil-
tonian Neural Networks (Greydanus, Dzamba, and Yosinski
2019). To simulate the temporal evolution of these systems,
most of methods are agnostic to the numerical solver or rely
on a simple Euler solver. However, as shown in (Chen et al.
2020b) the choice of solver is important to the accuracy.

Recent efforts at improving single-step solvers like Euler
solvers include hypersolvers (Shen, Cheng, and Liang 2020;
Poli et al. 2020), which proposes to use a neural network
to correct the error induced by the time discretization of the
base solver. However, for the class of Hamiltonian systems,
this structure fails at capturing the energy conservation and
symplecticity, both of which are key for reliably predicting
the long-term evolution. Our method, Symplectic Hyperver-
let, adopts the perspective of hypersolvers with a base solver
and a neural network corrector for improving the accuracy.
We differ from hypersolvers (Shen, Cheng, and Liang 2020;
Poli et al. 2020) by focusing only on Hamiltonian systems
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Figure 1: Comparison architectures and impact on energy
conservation of Euler, velocity Verlet, HyperEuler, and
Symplectic Hyperverlet. (q, p) is position and momentum,
i.e. the state of the system. In the prediction plots on the
right, the blue, solid line is energy of the prediction com-
puted from (q, p), and the dashed, orange line is the ground
truth energy. Symplecticity and deep learning allows hyper-
verlet to accurately predict the temporal evolution of separa-
ble Hamiltonian systems.

and show that a symplectic base solver and neural network
is important. To support this goal, we utilize velocity Verlet,
a symplectic solver, as the base solver, and augment it with
a SympNet-based corrector (Jin et al. 2020). In Figure 1, we
compare the architectural differences and the impact on the
energy conservation.

To improve the accuracy of our method, we parameterize
SympNets based on time invariant properties such as mass,
pendulum length, etc. Finally, we improve the accuracy by
employing the hyperbolic tangent activation function in the
SympNet architecture, and formally prove that it satisfies the
conditions under which SympNet is a universal approxima-
tion of all symplectic transformations. Table 1 compares the
properties of hyperverlet against existing solvers.
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Solver Hypersolver Symplectic Convergent

Euler ✓
HyperEuler ✓ ✓
RK4 ✓
Velocity Verlet ✓ ✓
FR4 ✓ ✓
SympNet ✓ ✓
Hyperverlet ✓ ✓ ✓

Table 1: Comparison of solvers by being a hypersolver, sym-
plectic, and convergent.

To summarize, we make the following contributions:

• Propose hyperverlet that interleaves traditional symplec-
tic solvers and parameterized SympNet to improve accu-
racy while preserving the symplectic property.

• Prove that hyperverlet is convergent; a core property of
useful solvers.

• Prove that the hyperbolic tangent is r-finite implying the
more powerful tanh-activated SympNet is a universal
approximation of symplectic transformations.

• Show empirically that hyperverlet outperform velocity
Verlet, HyperEuler, and SympNet.

Related Work
The philosophy of hypersolvers is that by augmenting a
solver of ODEs with a neural network, we can either achieve
higher accuracy or faster inference (Shen, Cheng, and Liang
2020; Poli et al. 2020) - the trade-off between the two is the
step size. For hypersolvers, a popular approach is to augment
a traditional numerical solver with neural network (Shen,
Cheng, and Liang 2020; Poli et al. 2020; Zhao et al. 2021).
Other approaches include directly predicting the resulting
value at a variable time (Mattheakis, Joy, and Protopapas
2021; Chen et al. 2020a) and architectures with closed-form
time propagation (Hasani et al. 2021). We take the approach
of augmenting a traditional solver, but only focus on Hamil-
tonian systems.

State of the art numerical solvers for Hamiltonian systems
such as velocity Verlet (Swope et al. 1982), and Forest-Ruth
(Forest and Ruth 1990) rely on symplecticity of the phase
space flow. Alternatively to traditional solvers is symplectic
neural networks. The methods invented integrate the sym-
plecticity in two ways: replacing an agnostic solver with a
symplectic solver like velocity Verlet (Chen et al. 2020b)
or architectural choices ensuring the temporal evolution re-
mains a symplectic transformation (Tong et al. 2021; Zhong,
Dey, and Chakraborty 2020; Saemundsson et al. 2020; Jin
et al. 2020). Interestingly, some of these solvers are non-
convergent meaning that as step size of the discretization
approaches zero, the solution does not converge to the exact
solution, which is otherwise a core property of solvers.

Preliminaries
We briefly introduce Hamiltonian mechanics and SympNets.

Hamiltonian Mechanics
The class of systems for which our method applies is Hamil-
tonian systems, i.e. systems governed by a particular set
of ordinary differential equations (ODE) called Hamilton’s
equations (Taylor 2005).

Definition 1 (Hamiltonian system). A Hamiltonian system
is defined by its energy function H(q, p) = T (q, p) + V (q),
the sum of kinetic and potential energy where q, p ∈ Rd

denote the position and generalized momentum respectively.
It is governed by the following two equations.

q̇ =
dq

dt
=
∂H

∂p
, ṗ =

dp

dt
= −∂H

∂q
(1)

where ẋ denotes the time derivative of x.

To denote the system as a single differential equation, we
let z = (q, p). Then

ż =

(
0 I
−I 0

)
∂H

∂z
(2)

Definition 2 (Separable Hamiltonian system). A separable
Hamiltonian system is the ordinary differential equation in
Eq. 2 where the kinetic energy is only a function of the mo-
mentum, that is

H(q, p) = T (p) + V (q) (3)

A core property of Hamiltonian systems is that the phase
flow is symplectic, a property of area-preservation.

Definition 3 (Symplecticity). The phase flow of a Hamilto-
nian system defined by H is symplectic. That is

∇ · ż = 0 (4)

Symplecticity is important for energy conservation, hence
important for numerical solvers of Hamiltonian systems.

Numerical Solvers
While desirable, analytical solutions to instantiations of
Hamilton’s equations often does not exist with proofs re-
lying on Liouville’s theorem and differential Galois the-
ory. Instead, we rely on numerical approximations, which
discretize the temporal axis into steps of equal size h =
tn+1 − tn for all n ∈ N. The oldest and simplest numeri-
cal solver is the Euler method.

ẑn+1 = zn + h · f(zn, tn) (5)

where zn = (qn, pn) is the state and f = ż is the time
derivative of the state. Euler method is convergent meaning
that the local truncation error approaches zero as h→ 0.

Definition 4 (Local truncation error). For a single-step
method

Φ(zn, tn) = zn + h · ψ(zn, tn) (6)

where ψ is the update function, the local truncation error is

τn = zn − Φ(zn−1, tn−1) (7)
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The update function ψ for the Euler solver is f but for
more complex solvers, it can involve substeps. When the lo-
cal truncation error of a solver is proportional to hp+1, we
call it a pth-order solver.

The Euler solver is unstable meaning that for bounded
systems and step sizes h larger than a threshold, the sim-
ulation is asymptotically unbounded. For Hamiltonian sys-
tems, we can exploit their symplecticity to simulate stable
long-term trajectories (Hairer, Lubich, and Wanner 2003).
A symplectic solver has a bounded error of energy.

A prevalent symplectic solver is velocity Verlet (Swope
et al. 1982), which assumes the Hamiltonian is separable and
exploit this to split the update of position and momentum.
Definition 5 (Velocity Verlet). For a separable Hamiltonian
system defined by H with ṗ = ma where m is the mass and
a is the acceleration, velocity Verlet ΦV is

qn+1 = qn + vn · h+
1

2
a(qn) · h2 (8)

vn+1 = vn +
a(qn) + a(qn+1)

2
· h (9)

SympNet
SympNet is a set of symplectic neural network modules that
provably can approximate any symplectic transformation,
relying on the property that the composition of symplec-
tic transformations is also a symplectic transformation. (Jin
et al. 2020) present LA-SympNet, comprised of linear and
activation modules, which satisfies a universal approxima-
tion theorem for symplectic transformations.

The linear layer ΦL is computed as follows with two vari-
ants, upper u and lower l where they differ by the position
of S · h and 0.

Φu
L(z, h) =

(
I S · h
0 I

)
z + h · b (10)

where S ∈ Rd×d is a symmetric matrix, I is the identity
matrix, and b ∈ R2d is the bias. To encoding the symmetry
into the learning procedure, S is computed as S = A+ AT

where A is a d× d constraint-free parameter matrix.
The other layer to LA-SympNet is the activation layer,

which is computed as

Φu
A(z, h) =

(
q
p

)
+

(
a⊙ σ(p) · h

0

)
(11)

where a ∈ Rd, ⊙ is the elementwise product, and σ is an
activation function. Similarly to the linear layer, it has a
lower variant l where the blocks of last vector of Eq. 11 are
swapped and the activation is performed on p. The symplec-
ticity of this layer can be proven by interpreting the additive
update as an energy gradient. Composing multiple linear and
activation layers conserves the symplecticity, and due to the
block-triangular shape of the transformations, LA-SympNet
is reversible.

Problem Formulation
Assume a separable Hamiltonian system defined by H and
an initial condition z0 = (q0, p0). The goal for any numeri-
cal solver Φ is to solve the equation z(t) for all time points

tn = h · n, 0 ≤ n < N with minimal global truncation er-
ror. Assume additionally, a dataset D of trajectories of the
system. For numerical hypersolvers with parameters θ, the
goal is to find the parameters for which the global truncation
error is minimized.

θ∗ = argmin
θ

N∑
n=1

z(tn)− Φn(z(t0), t0, h; θ,D) (12)

where Φn denotes the application of Φ repeated n times.

Symplectic Hyperverlet
The architecture of hyperverlet is a predictor-corrector struc-
ture with the predictor being a traditional solver, namely
velocity Verlet, and the corrector being a neural network.
Velocity Verlet is a powerful symplectic solver prevalent in
molecular dynamics. The choice of velocity Verlet restricts
our method to separable Hamiltonian systems, which ex-
cludes systems like double pendulum or cartpole where the
kinetic energy is a function of both position and momentum,
but includes a wide range of systems like pendulum, spring-
mass, molecular dynamics, and cosmic systems. We choose
velocity Verlet despite this restriction for its unparalleled nu-
merical stability and its simplicity.

While velocity Verlet is a numerically stable solver, er-
rors can accumulate; especially phase errors for oscillating
systems. A SympNet-based neural corrector can compensate
for these errors yielding a higher accuracy while maintaining
the symplecticity to improve long-term behavior.

To further improve the accuracy of the method, we pro-
pose three modifications to SympNet: parameterized trans-
formations, hyperbolic tangent activation function, and re-
placing the step size h with h3.

SympNet is for systems identification, and not to general-
ize beyond a single set of time invariant properties x such as
mass, pendulum length, spring constant. To generalize, we
exploit that the symplectic properties of SympNet is only
dependent on the symmetry of the matrix S and parame-
terize transformations with a neural network of x. That is,
we replace the weight matrix A in the linear layer of Symp-
Net with A(x; θA) where θA are the parameters of a neural
network. Similarly, we replace the bias b with b(x; θb) and
the weight vector a of the activation layer with a(x; θa). The
significance of this modification is observed in Fig. 2b where
SympNet fails to capture energy conservation.

Next, we use the hyperbolic tangent as the activation func-
tion of the SympNet activation layer because it empirically
improves the accuracy. However, (Jin et al. 2020) only prove
that logistic sigmoid allows SympNet to approximate any
symplectic transformation. We prove that hyperbolic tangent
exhibits the same desirable traits.

The replacement of h by hn, n ≥ 2 is necessary to prove
the convergence of the hyperverlet, see Thm. 1. We choose
n = 3 because velocity Verlet is a 2nd-order method mean-
ing that its local truncation error is τn = O(h3), hence the
SympNet must correct an error proportional to h3.

Combing the three modifications, Eq. 10 and 11 become
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the following with S = A(x; θA) +A(x; θA)
T

Φu′

L (z, h) =

(
I S · h3
0 I

)
z + h3 · b(x, θb) (13)

Φu′

A (z, h) =

(
p
q

)
+

(
a(x; θa)⊙ tanh(q) · h3

0

)
(14)

Let Φ′
LA denote any LA-SympNet with our three modifi-

cations and ΦV is velocity Verlet. Then hyperverlet is

ΦH(z, h) = Φ′
LA(ΦV (z, h), h) (15)

The design philosophy of SympNet rely on the fact that
the set of symplectic transformations is a monoid with re-
spect to composition to preserve the symplectic property of
their architecture (Jin et al. 2020). This implies that hyper-
verlet is also a symplectic transformation.

While this informal proof is immediately obvious, other
properties not so much. Namely, convergence is desirable,
but non-obvious to prove. We also want to safely apply hy-
perbolic tangent as the activation function, maintaining the
universal approximation property, which is conditioned on
the function being r-finite. We prove the solver properties
and r-finiteness of tanh in the next section.

Theoretic Results
Convergence of a solver is the property that the numerical
solution approaches the exact solution as h → 0 and thus is
a desirable trait. Similarly, the order of the solver is desirable
to know, but since we do not predict the residual, we cannot
employ the proof technique of (Poli et al. 2020). However,
by applying Picard’s theorem stating that if a solver is con-
tinuous in both z and h, consistent, and Lipschitz continuous
in z, it is convergent (Süli 2003), we proceed to prove that
hyperverlet is convergent. Before proving the convergence
of hyperverlet, we need an intermediate result characteriz-
ing Lipschitz continuity in the following.

Lemma 1. The composition f(x) = g(h(x)) of two Lip-
schitz continuous functions g, h with constants Kg,Kh is
also Lipschitz continuous with constant Kf = Kg ·Kh.

Proof. Assume two Lipschitz continuous functions g, h
with constant Kg,Kh. By the definition of Lipschitz con-
tinuity, for any two x1, x2 we have

∥g(h(x1))− g(h(x2))∥ ≤ Kh∥h(x1)− h(x2)∥
≤ Kh ·Kg∥x1 − x2∥

(16)

Thus Lipschitz continuity is preserved under composition.

Theorem 1. For an initial value problem satisfying the con-
ditions of Picard’s Theorem and a Lipschitz continuous ac-
tivation function σ, hyperverlet is convergent.

Proof. If a single-step solver Φ(z, h) with an update func-
tion ψ(z, h) is continuous in z and h, consistent, and Lips-
chitz continuous in z, it is convergent (Süli 2003). Thus we
prove each of the three conditions.

Continuous Since the initial value problem is continu-
ous by the conditions of Picard’s Theorem, the acceleration
function in Eq. 8 and 9 is continuous. Therefore, velocity
Verlet is continuous.

For LA-SympNet, we prove the property for each mod-
ule type. The linear layer is by definition of linearity
everywhere-continuous. The activation layer is linear in the
weight vector a and the step size h. By the conditions of
the theorem, the activation function is Lipschitz continuous,
and by extension continuous. Finally, we observe that h3 is
continuous in h.

Consistent Consistency of a method is if the local trunca-
tion error τn divided by the step size h converges to zero as
h→ 0.

lim
h→0

τn
h

= 0 (17)

To prove consistency, first observe for Eq. 8 and 9 that the
update function divided by h is

ϕq(qn−1, h)

h
= vn−1 +

1

2
a(qn−1)h (18)

ϕv(vn−1, h)

h
=
a(qn−1) + a(qn)

2
(19)

As h approaches zero, this becomes ż = (v, a) where v de-
notes velocity and a acceleration, which is exactly the func-
tion f(z, t) or the right-hand side of the ODE.

For LA-SympNets with h3 observe that for h = 0, both
the linear and activation layer reduces to the identity trans-
formation. Hence, hyperverlet is consistent.

Lipschitz continuous The composition of two Lipschitz-
continuous functions is also Lipschitz continuous and veloc-
ity Verlet is Lipschitz continuous (Madsen and Mathiesen
2021). Therefore, it suffices to show that LA-SympNets is
Lipschitz continuous, which we may do by module due to
Lemma 1. Starting with the linear layer, let

ψu
L(z, h) =

(
0 S · h3
0 0

)
z + h3 · b (20)

Then ψu
L is Lipschitz continuous in z if

∥ψu
L(z1, h)− ψu

L(z2, h)∥ ≤ K∥z1 − z2∥ (21)

For this particular operation, we may compute the Lipschitz
constant directly K = h3 max |S|. The proof holds for a
lower linear layer too. The update function of the upper acti-
vation layer is (a⊙σ(q) ·h3, 0). By Lemma 1, the Lipschitz
continuity of linearity, and the condition of the theorem that
σ is Lipschitz continuous, the activation layer is Lipschitz
continuous, and again the proof holds for the lower variant.

Therefore, hyperverlet is convergent.

(Jin et al. 2020) prove that LA-SympNets is a universal
approximation for all symplectic transformations if the ac-
tivation function is r-finite, and prove that logistic sigmoid
σ exhibit this property. An alternative sigmoid-like function
that is desirable for its higher convergence rate is the hyper-
bolic tangent function tanh (Dreyfus 2005). Here, we prove
that tanh is r-finite for any non-negative integer r. Starting
with the definition of r-finiteness (Jin et al. 2020).
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Definition 6 (r-finiteness). Let N0 = {0} ∪ N where N is
the set of positive integers. A function f is r-finite for some
r ∈ N0 if f is a smooth function satisfying

0 <

∫ ∣∣∣∣ drdxr f
∣∣∣∣ dλ <∞ (22)

where λ denotes a Lebesgue measure on R.

To prove that tanh is r-finite, we follow the same proof
structure as Lemma 1 of (Jin et al. 2020).
Theorem 2. The hyperbolic tangent function tanh is r-finite
for any r ∈ N0.

Proof. The derivative of the hyperbolic tangent is bounded
0 < tanh′(x) ≤ 1 for all x so∫

| tanh′(x)|dλ =

∫
tanh′(x)dλ = 2 (23)

By mathematical induction, we may easily show by exploit-
ing that tanh′(x) = 1− tanh2(x) that for n ≥ 2

tanh(n)(x) = tanh′(x)P (n−1)(tanh(x)) (24)

where P (n−1) denotes an n− 1 order polynomial. Then

0 <

∫
| tanh(r) |dλ

≤
∫

| tanh′(x)|dλ ·
(
sup |P (r−1)(tanh(x))|

)
= sup

y∈(−1,1)

|P (r−1)(y)| <∞

(25)

Therefore tanh is r-finite for any r ∈ N0.

With this property, we can safely apply tanh as the activa-
tion function while maintaining the universal approximation
property, which improves the accuracy of hyperverlet.

Experiment Setup
We test the performance on the two classical systems, un-
damped spring-mass and pendulum (Greydanus, Dzamba,
and Yosinski 2019). They are chosen because they are sim-
ple separable Hamiltonian systems, which allows compar-
ing solvers. To synthesize, the training and test data, we uti-
lize a 4th-order Forest-Ruth symplectic solver (Forest and
Ruth 1990) with small time steps to produce a high-precision
dataset, which we coarsen by an integer factor to obtain the
final dataset.

Spring-mass
The simplest of the studied systems is the spring-mass where
a positive point-mass m is attached to a Hookian spring,
which oscillates back and forth indefinitely. We measure the
position q of the point-mass relative to the mount of the
spring, and denote the idle extension l. A force is applied
towards the idle extension linearly by a spring constant k.
The Hamiltonian dynamics of system are

q̇ =
p

m
, ṗ = −k(q − l) (26)

Parameter Spring-mass Pendulum

Step size h N (1e−3, 1e−4) N (1e−3, 1e−4)
Number of steps 100000 600000
Length l U(0.5, 2.0) U(0.5, 2.0)
Spring constant k U(0.8, 1.2) -
Mass m U(0.9, 1.1) U(0.9, 1.1)

Table 2: Parameters of the dataset generation using a higher-
order solver with small time steps. N (µ, σ) and U(l, u) de-
notes a normal and uniform distribution.

Note that there exists an analytical solution to this system
(Madsen and Mathiesen 2021). The time invariant properties
x for the spring-mass system are the massm, spring constant
k, and idle length l. We generate this dataset by drawing
from the arbitrarily chosen distributions listed in Table 2.

Pendulum
The frictionless pendulum distinguishes from the spring-
mass system by polar coordinates instead of Cartesian and
non-linear equations of motion. The choice of polar coor-
dinates is natural as the position and momentum along the
magnitude axis is constant and thus ignorable. The position
on the magnitude axis is the length of the pendulum l, and
the driving force is gravity with acceleration of g. The dy-
namics of system are

q̇ =
p

ml2
, ṗ = −mgl sin q (27)

Note that the momentum is not p = mv as usual, which is
due to the polar coordinates. The time invariant properties
x for the pendulum system are the mass m and pendulum
length l. We generate this dataset by drawing from the arbi-
trarily chosen distributions listed in Table 2.

Baselines
As baselines, we employ the following four solvers:
• Euler - a non-symplectic solver that is simple but noto-

riously unstable,
• HyperEuler (Poli et al. 2020) - a non-symplectic hyper-

solver that improves the accuracy of the Euler solver by
predicting the local truncation error,

• Velocity Verlet - a symplectic solver used for separable
Hamiltonian systems, and

• SympNet (Jin et al. 2020) - a symplectic neural network
that is non-convergent.

We only consider up to 2-order solvers because the goal
is to accelerate computations for systems with a computa-
tionally heavy acceleration evaluation. Hence we exclude
solvers with more evaluations, such as 4-order solvers RK4
(Süli 2003) and FR4 (Forest and Ruth 1990).

Training Procedure and Hyperparameters
For the neural network of HyperEuler, we use a fully con-
nected neural network with 4 hidden layers of 16 neurons,
sigmoid activation, and no activation on the output layer.
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Figure 2: Results of the solver comparison by energy con-
servation and phase errors. (a) shows the total energy as a
function of time for the pendulum system comparing hy-
perverlet against 1st- and 2nd-order baselines. Euler is ex-
cluded for its large energy accumulation. (b) shows a subset
of (a) with SympNet included to observe its large energy
bound. (c) shows the position and momentum in a window
of [7400, 7500] time steps for a single trial to observe phase
errors, namely that velocity Verlet desynchronizes with the
ground truth. (d) shows a comparison of runtimes as a func-
tion accuracy. Euler is excluded for its large loss. Note that
the number of samples for the runtime study is very low, and
that implementations were not optimized for speed.

The weights are initialized using kaiming normal initializa-
tion, and bias is initialized to all zeros. The SympNet archi-
tecture consists of 4 alternating linear layers starting with an
upper module, followed by one lower activation layer with
tanh as the activation function. The structure is repeated
with 4 linear layers and a upper activation layer. This 10
layer structure is repeated twice. The corrector for hyper-
verlet is the same architecture except for the modifications
detailed in Sec. where the parameterization is a fully con-
nected network with a single hidden layer of 16 neurons.
We adopt the initialization procedure of SympNet (Jin et al.
2020) where the weights are initialized randomly from the
distribution N (0, 0.01), and bias is initialized to all zeros.

For all trainable solvers, we employ a learning rate of
1e−3, an Adam optimizer with weight decay of 1e−2,
and the loss is MSE of single-step predictions. Solvers are
trained for 6c epochs where c denotes the integer coarsening
factor relative to the high precision dataset. The dependence
on the coarsening factor is due to the less amount of data
available for higher coarsening. We train all solvers using a
batch size of 100,000.

Implementation Details
Experiments are conducted on a Linux Manjaro desktop
with an Intel i7-6700k processor and 16GB RAM. No GPU
is used for the reported experiments. The method is imple-
mented in Pytorch 1.9.0, and the code is available at https:
//github.com/Zinoex/hyperverlet. All randomness is seeded
in Pytorch, Numpy, and Python arbitrarily with 42.

Experiment Results
To measure the accuracy, we employ the traditional mean
squared error (MSE) of the canonical coordinates z, i.e. both
position and momentum, where the average is computed
over the temporal and spatial axis. We report the mean and
standard deviation of the MSE over trials as µ ± σ in Ta-
ble 3 for both the spring-mass and pendulum systems. The
number of trials are 100 for both systems.

Comparing Euler and HyperEuler in Table 3, we see
the accuracy rapidly decreases as the step size h increases,
which is a result of its instability and lack of energy conser-
vation. Hyperverlet outperforms both testifying to the im-
portance of the base solver. We also find that the accuracy of
hyperverlet scales better with higher step sizes compared to
velocity Verlet. Finally, we see that SympNet is largely un-
affected by step size, but this is because it fails at capturing
energy conservation and by extension time evolution.

Analysis of energy conservation is shown in Fig. 2a and
2b. Note the figures show a single trial so the results may not
generalize, but still reveal very interesting properties of each
solver. Observing the symplectic solvers, i.e. velocity Verlet,
SympNet, and hyperverlet, we find that bounded oscillations
rather than energy conservation is inherent to symplecticity.
SympNet is also only listed in short-term energy plot in Fig.
2b because its oscillation bounds are enormous and would
be hiding the details of the other solvers.

To analyze phase errors, we analyze the phase space as
shown in Fig. 2c where the window of [7400, 7500] time
steps corresponding to the last 100 samples from one trajec-
tory of the pendulum system. We find that velocity Verlet is
out of sync whereas hyperverlet is almost synchronous with
the ground truth. We also observe that SympNet predicts a
low amplitude of the oscillations in momentum.

Figure 2d shows the runtime as a function of accuracy.
Note that for each coarsening factor and solver pair, there
is only one sample, and that implementations were not opti-
mized for speed.

Ablation Study
To study the impact of a symplectic corrector, the parame-
terization of the symplectic transformations, and the choice
of activation function, we conduct an ablation study. The ex-
periments are conducted on the pendulum system with mean
step size h = 0.08 as it is the most difficult case studied.

We study the cases listed in Table 4. The first case is a
non-symplectic corrector, i.e. a neural network that predicts
the local truncation error similar to HyperEuler. The neural
network is the same structure as for HyperEuler.

The other 4 cases are all symplectic where we study our
modifications. As a baseline, we use SympNet as a correc-
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Spring-mass Mean step size h
Solver 0.025 0.05 0.1 0.2

Euler 2.4e+14± 1.7e+15 - - -
HyperEuler 1.0e−3± 3.4e−3 3.0e−3± 7.1e−3 5.6e−1± 5.5e+0 -
Velocity Verlet 7.7e−5± 1.2e−4 1.2e−3± 1.8e−3 1.9e−2± 2.9e−2 2.5e−1± 3.6e−1
SympNet 6.9e−1± 7.8e−1 6.9e−1± 7.7e−1 6.9e−1± 7.7e−1 6.9e−1± 7.6e−1
Hyperverlet 1.2e−5± 3.8e−5 2.2e−5± 4.9e−5 4.7e−5± 1.6e−4 7.6e−4± 2.2e−3

Pendulum Mean step size h
Solver 0.02 0.04 0.06 0.08

Euler 2.1e+7± 2.5e+7 3.8e+7± 3.8e+7 4.3e+7± 3.0e+7 4.1e+7± 1.9e+7
HyperEuler 8.7e+0± 1.2e+1 8.0e+0± 1.1e+1 7.6e+0± 1.1e+1 7.4e+0± 9.5e+0
Velocity Verlet 4.1e−2± 4.4e−2 5.8e−1± 5.7e−1 2.2e+0± 2.1e+0 4.8e+0± 5.1e+0
SympNet 7.6e+0± 9.0e+0 7.6e+0± 9.0e+0 7.6e+0± 9.0e+0 7.7e+0± 9.2e+0
Hyperverlet 4.7e−2± 9.2e−2 6.3e−2± 1.5e−1 1.4e−1± 2.6e−1 3.5e−1± 5.2e−1

Table 3: MSE of the canonical coordinates of each solver for both the spring-mass and pendulum systems. µ ± σ denotes the
mean and standard deviation of the MSE over 100 trials. The symbol - means that the MSE was inf , which is due to the
instability of Euler. Bold denotes the best MSE for each system and step size.
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Figure 3: Results of the ablation study. The whiskers de-
note the 95% confidence interval. The meaning of the solver
names is listed in Table 4.

Name Sympletic Parameterized Activation

Non-symp - -
SympNet ✓ Sigmoid
Tanh ✓ Tanh
Param ✓ ✓ Sigmoid
Full ✓ ✓ Tanh

Table 4: Model properties in the ablation study.

tor and substitute logistic sigmoid with hyperbolic tangent,
static weights for dynamics weights, or both. The parame-
terizaton of the weights are the same as for hyperverlet.

The results of the ablation study are shown in Fig. 3.
While symplecticity alone does not yield significant im-
provement, combined with parameterized transformations it
greatly improves accuracy. Regarding the activation func-
tion, we interestingly observe that hyperbolic tangent only
improves accuracy when SympNet is parameterized. This
improvement is significant with a 42% decrease in mean
MSE over the 100 trials.

Conclusions and Outlook
We present Hyperverlet, a novel solver combining velocity
Verlet, a traditional, symplectic solver for separable Hamil-
tonian systems, with SympNet, a symplectic neural network,
to achieve state-of-the-art results on a spring-mass and pen-
dulum system. We modify the SympNet architecture with
parameterization and tanh activation to improve the accu-
racy of our method, and prove that the solver is convergent.
Hyperverlet is symplectic, i.e. preserving area of the phase
flow, which is desired for simulating Hamiltonian systems.
As a final theoretic result, we show that hyperbolic tangent
is r-finite, which is a necessary condition for SympNet to be
a universal approximation of symplectic transformations.

Similarly to (Jin et al. 2020), we believe that exploiting
the underlying geometrical structures are vital to improving
the accuracy of simulations. An interesting direction is the
extension to graph neural networks. For systems like molec-
ular dynamics and cosmic models where the number of bod-
ies model may vary, the scalability is interesting as it allows
reusing the solver with retraining.

An important limitation that hyperverlet can only solve
problems with separable Hamiltonian systems, meaning that
the kinetic energy is only a function of the momentum.
This excludes systems like the double pendulum or the au-
tonomous cartpole system, but includes a wide range of sys-
tems like the pendulum, molecular dynamics, and cosmic
models. Future research may focus on how to apply sym-
plectic hypersolvers for non-separable Hamiltonian systems.
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Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Hairer, E.; Lubich, C.; and Wanner, G. 2003. Geomet-
ric numerical integration illustrated by the Störmer–Verlet
method. Acta Numerica, 12: 399–450.
Hasani, R.; Lechner, M.; Amini, A.; Liebenwein, L.;
Tschaikowski, M.; Teschl, G.; and Rus, D. 2021. Closed-
form Continuous-Depth Models. arXiv:2106.13898.
Jin, P.; Zhang, Z.; Zhu, A.; Tang, Y.; and Karniadakis, G. E.
2020. SympNets: Intrinsic structure-preserving symplectic
networks for identifying Hamiltonian systems. Neural Net-
works, 132: 166–179.
Madsen, A.; and Mathiesen, F. B. 2021. HyperVerlet:
A Deep Learning Method for Numerically Solving Initial
Value Problems of Hamiltonian Systems. Master’s thesis,
Aalborg University.
Mattheakis, M.; Joy, H.; and Protopapas, P. 2021. Unsuper-
vised Reservoir Computing for Solving Ordinary Differen-
tial Equations. arXiv:2108.11417.
Poli, M.; Massaroli, S.; Yamashita, A.; Asama, H.; and Park,
J. 2020. Hypersolvers: Toward Fast Continuous-Depth Mod-
els. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M. F.; and Lin, H., eds., Advances in Neural Information
Processing Systems, volume 33, 21105–21117. Curran As-
sociates, Inc.
Saemundsson, S.; Terenin, A.; Hofmann, K.; and Deisen-
roth, M. 2020. Variational Integrator Networks for Physi-
cally Structured Embeddings. In Chiappa, S.; and Calandra,
R., eds., Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, 3078–3087.
PMLR.
Shen, X.; Cheng, X.; and Liang, K. 2020. Deep Euler
method: solving ODEs by approximating the local trunca-
tion error of the Euler method. arXiv:2003.09573.
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