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Abstract

As an asset pricing model in economics and finance, fac-
tor model has been widely used in quantitative investment.
Towards building more effective factor models, recent years
have witnessed the paradigm shift from linear models to
more flexible nonlinear data-driven machine learning mod-
els. However, due to low signal-to-noise ratio of the financial
data, it is quite challenging to learn effective factor models.
In this paper, we propose a novel factor model, FactorVAE,
as a probabilistic model with inherent randomness for noise
modeling. Essentially, our model integrates the dynamic fac-
tor model (DFM) with the variational autoencoder (VAE) in
machine learning, and we propose a prior-posterior learning
method based on VAE, which can effectively guide the learn-
ing of model by approximating an optimal posterior factor
model with future information. Particularly, considering that
risk modeling is important for the noisy stock data, Factor-
VAE can estimate the variances from the distribution over the
latent space of VAE, in addition to predicting returns. The
experiments on the real stock market data demonstrate the ef-
fectiveness of FactorVAE, which outperforms various base-
line methods.

Introduction
Stock investors attempt to predict cross-sectional stock re-
turns to construct their stock portfolios that outperform the
average performance of the market consistently. As a widely
employed cross-section analysis method in economics and
finance, factor model, with a very profound influence in
academia and industry, has shown the capacity to predict
the returns of cross-sectional stocks (Daniel, Hirshleifer, and
Sun 2020; Fama and French 2021). Hence, establishing an
effective factor model for the real market is of great impor-
tance in stock investment.

Factor models explain market phenomena and asset re-
turns by various factors, which can be fundamental, techni-
cal, macroeconomic, and so on. Specifically, in factor mod-
els, stock returns are described by factors and correspond-
ing exposure to factors (which means the impact of factors
over stocks), and computed by the linear combination of fac-
tors. According to whether the factor exposure varies with
time, factor models fall under two categories: static models
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Figure 1: Brief illustration of FactorVAE

and dynamic models, and recent research (Fama and French
2020) indicates that dynamic models with time-varying fac-
tor exposure achieve better asset pricing performance than
static methods, so dynamic models become increasingly
popular. However, the traditional dynamic models adopt the
factors designed by practical experience (for example, the
momentum factor is designed based on the observation that
the stocks with higher returns in the past will also perform
better in the future), which may introduce model bias be-
cause of the inconsistency between prior knowledge and real
market.

The recent advancement of machine learning (ML) of-
fers a new data-driven perspective to dynamic factor mod-
els (Karolyi and Van Nieuwerburgh 2020). Due to the su-
perior capacity to capture complex patterns from the market
data, some ML solutions (Kelly, Pruitt, and Su 2019; Ud-
din and Yu 2020; Gu, Kelly, and Xiu 2021) can automati-
cally extract latent factors from the market data, which are
more effective and practical than traditional methods in the
real market. Nonetheless, existing ML solutions may suffer
from a vital issue, i.e., the low signal-to-noise ratio of stock
data. The largely noisy data will interfere with the learning
of ML-based models, and result in poor effectiveness of la-
tent factors extracted by models. Such an issue indeed places
a barrier for obtaining an effective factor model for predict-
ing cross-sectional returns.

To break this barrier, we propose a novel probabilistic dy-
namic factor model based on variational autoencoder (VAE),
called FactorVAE, to bridge the gap between the noisy data
and effective factors. Essentially, we regard factors as the
latent random variables in VAE, to model the noise in data
by the distribution over the latent space of VAE, and then
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introduce a prior-posterior learning method to guide the ex-
traction of effective factors for predicting cross-sectional re-
turns. More concretely, as shown in Figure 1, we first adopt
an encoder-decoder architecture, with access to future stock
returns, to extract optimal factors for reconstructing returns,
and then train a predictor, only given observable histori-
cal data, to predict factors to approximate the optimal fac-
tors. In prediction phase, only the predictor and the decoder
would be utilized without any future information leakage.
Also note that, our model calculates stock returns by the fac-
tors with randomness, which derives a probabilistic model
for estimating risk in addition to predicting returns.

The contributions of our paper are as follows:
• We propose FactorVAE as a dynamic factor model to ex-

tract effective factors from noisy market data, and we de-
sign a prior-posterior learning method based on VAE to
further guide the learning of model in the highly noisy
market data.

• To the best of our knowledge, we are the first to treat
factors as the latent random variables in VAE, which en-
hances the capacity of modeling noisy data, and derives
a probabilistic model for risk estimation.

• We conduct extensive experiments on the real stock mar-
ket data, and the results show that our model surpasses
not only other dynamic factor models, but also ML-based
prediction models on cross-sectional returns prediction.

Related Work
Factor Model
Factor models can be classified into two categories, static
models and dynamic models. In static factor models, the fac-
tor exposure of stock is time-invariant. The original static
factor model is the capital asset pricing model (CAPM)
(Treynor 1961; Sharpe 1964; Lintner 1975), which proposes
the market factor and attributes the difference between stock
returns to the different exposure to the market factor. Later in
a seminal work, observing that the firm value and size con-
tribute to explaining the difference in stock expected returns,
(Eugene and French 1992) expands the CAPM by adding the
size and value risk factor, and proposes the famous Fama-
French three-factor model.

In dynamic factor models, factor exposure varies with
time, and is usually calculated from the firm or asset charac-
teristics (such as market capitalization, book-to-market ra-
tio, asset liquidity) . (Kelly, Pruitt, and Su 2019) introduces
the instrumented principal components analysis into factor
model, in which factors exposure depends on the observable
asset characteristics partially and has a linear relationship
with them. Further, (Gu, Kelly, and Xiu 2021) proposes a
latent dynamic factor asset pricing model with a conditional
autoencoder network, to model the non-linearity in the re-
turn dynamics (Bansal and Yaron 2004; He and Krishna-
murthy 2013), and shows that the non-linear factor model
achieve better performance than other leading linear meth-
ods. Nevertheless, these works face the challenges of learn-
ing from the highly noisy market data, neglecting noise may
result in the poor effectiveness of models. Hence our work
dedicates to address the problem of learning from noisy data.

Stock Prediction with Machine Learning
During recent years, many studies on predicting stock re-
turns based on machine learning have emerged. Depending
on the type of data, these methods are mainly classified into
two areas: alternative methods and technical methods. Al-
ternative methods predict stock returns based on diversified
alternative data, such as news texts (Hu et al. 2018), so-
cial media information (Xu and Cohen 2018) and knowl-
edge graphs (Cheng et al. 2020). (Chen et al. 2019) incor-
porates the fine-grained new events into stock movement
prediction, and (Chen, Wei, and Huang 2018) constructs
a financial knowledge graph based on raw news texts for
stock price prediction. Unlike alternative methods, technical
methods only focus on the market data (mainly stock price
and volume and derived features). Among them, (Qin et al.
2017) proposes a dual-stage attention-based recurrent neu-
ral network to capture long-term temporal dependencies in
stock prediction. (Zhang, Aggarwal, and Qi 2017) proposes
a variant of LSTM, which decomposes the hidden states of
memory cells into multiple frequency components to cap-
ture the trading patterns. (Zhang et al. 2020) proposes an en-
semble framework based on sample reweighting and feature
selection for financial market prediction. (Ding et al. 2020)
adopts a method based on Transformer (Vaswani et al. 2017)
to tackle the stock movement prediction task, and shows the
power of mining long-term financial time series.

Variational Autoencoder
This work is also related to variational autoencoder (VAE)
(Kingma and Welling 2013), VAE is a mainstream family of
deep generative models, which describes high-dimensional
observation by probability distribution in low-dimensional
latent space, and its variants have been widely used in vari-
ous applications (Miao, Yu, and Blunsom 2016; Vahdat and
Kautz 2020). (Chung et al. 2015) first proposes a gener-
ative model for sequential data by combining a recurrent
neural network with the elements of VAE, and (Fraccaro
et al. 2016) further improves the sequential neural gener-
ative model by integrating a deterministic recurrent neural
network with a state space model. In financial applications,
(Luo et al. 2018) proposes a stochastic volatility models
based on (Chung et al. 2015; Fraccaro et al. 2016) , to bet-
ter estimate temporal dynamics of stock volatility. (Xu and
Cohen 2018) presents a VAE-based model jointly exploit-
ing social media text and price signals for stock movement
prediction.

Preliminaries
In this section, we first formally define the notations and de-
scribe the problem, and then introduce variational autoen-
coder briefly.

Problem Formulation
In this paper, we use lower-case letters (e.g., h) to denote
vectors or matrices, and capital letters (e.g., N ) to denote
scalars, if not otherwise specified. In addition, all w and b
without definition represent to the weight and bias of linear
layers, which will not be described later for simplicity.
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First, we formally introduce the dynamic factor model
(DFM). According to (Ng, Engle, and Rothschild 1992), the
general functional form of DFM is formulated as

ys = αs +
K∑
k=1

β(k)
s z(k)s + εs (1)

where ys =
prices+1−prices

prices
∈ RNs denotes future returns of

Ns stocks in cross-section at time step s, αs ∈ RNs is the
vector of stock idiosyncratic returns, βs ∈ RNs×K is factor
exposure matrix. zs ∈ RK is the vector of K factors, εs is
the idiosyncratic noises with zero mean.

The formulation of the task is to learn a dynamic fac-
tor model with parameter Θ, for predicting future cross-
sectional returns from historical data.

ŷs = f(xs; Θ) = α(xs) + β(xs)z(xs) (2)

where xs ∈ RNs×T×C is the historical stock characteristics
(such as volatility, liquidity) of past T time-steps, Ns is the
number of stocks in cross-section at time step s (we only
consider the stocks that exist in cross-section at all T time
steps), C is the number of characteristics.

We formally define the problem as:
Input: A set of samples {(xs, ys)}, where xs ∈

RNs×T×C is the sequential characteristics of stocks, and
ys ∈ RNs is the future returns of cross-sectional stocks.

Output: A dynamic factor model as Equation 2, which
outputs the prediction returns ŷs.

Variational Autoencoder
As a generative model based on dimension reduction, vari-
ational autoencoder (VAE) (Kingma and Welling 2013) fol-
lows an encoder-decoder architecture, and generates the
high-dimensional data from low-dimensional latent space,
as shown in Figure 2.

We assume that observation data x can be generated from
a latent random variable z, and use an encoder with param-
eter φ to describe the posterior distribution of z given x, de-
noted as qφ(z|x), then use a decoder with parameter θ to
generate the reconstructed observation data x′ from zpost,
where zpost is sampled from qφ(z|x). Meanwhile, qφ(z|x)
is enforced to close to a given prior distribution p(z) (such
as a standard Gaussian distribution). In the generation phase,
VAE generate a new observation from the zprior, where zprior
is sampled from p(z). Formally, the objective function of

𝒛𝑝𝑟𝑖𝑜𝑟

𝒙′𝒙

𝒛𝑝𝑜𝑠𝑡

Posterior

Prior

Observation  Reconstrued
observation  

Encoder Decoder

Latent random 
variable

Figure 2: The architecture of variational autoencoder

VAE is
max
θ,φ
{Ez∼qφ(z|x) [ln pθ (x|z)]−KL [qφ(z|x)‖p(z)]} (3)

where the first term is to reduce the reconstruction error
(by maximizing the expected log-likelihood), and the sec-
ond term is to keep the posterior distribution close to the
prior distribution (by minimizing the Kullback–Leibler di-
vergence (KLD) between qφ(z | x) and p(z)).

Methodology
In this section, we establish FactorVAE to extract effective
factors from the noisy market data. First, we obtain opti-
mal factors by an encoder-decoder architecture with access
to future data, and then train a factor predictor according
a prior-posterior learning method, which extracts factors to
approximate the optimal factors. The overall framework of
model is summarized in Figure 3.

Encoder-Decoder Architecture
Our model follows the encoder-decoder architecture of
VAE, to learn an optimal factor model, which can recon-
struct the cross-sectional stock returns by several factors
well. As shown in Figure 3, with access to future stock re-
turns, the encoder plays a role as an oracle, which can ex-
tract optimal factors from future data, called posterior fac-
tors, and then the decoder reconstructs future stock returns
by the posterior factors. Specially, the factors in our model
are regarded as the latent variables in VAE, with the capacity
of modeling noisy data.

Concretely, this architecture contains three components:
feature extractor, factor encoder and factor decoder.

Feature Extractor Feature extractor extracts stocks latent
features e from the historical sequential characteristics x,
formulated as e = φfeat(x). In order to capture the temporal
dependence in sequences, we adopt the Gate Recurrent Unit
(GRU), a variant of RNN (Chung et al. 2014). At time-step
t, it performs as:

h
(i,t)
proj = LeakyReLU

(
wprojx

(i,t) + bproj

)
h(i,t)gru = GRU

(
h
(i,t)
proj , h

(i,t−1)
gru

) (4)

where x(i,t) ∈ RC is the characteristics of i-th stock at time
step t, hproj, h

(i,t)
gru ∈ RH are the hidden states with dimen-

sion H , and LeakyReLU(x) =

{
x, if x ≥ 0

ζx, otherwise
, ζ is neg-

ative slope.
Finally, we use the hidden state of GRU at last time step

T as the latent features of stocks, i.e., e = h
(T )
gru .

Factor Encoder Factor encoder extracts posterior factors
zpost from the future stock returns y and the latent features e

[µpost, σpost] = φenc(y, e)

zpost ∼ N
(
µpost, diag

(
σ2

post
)) (5)

where zpost is a random vector following the independent
Gaussian distribution, which can be described by the mean
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Figure 3: The overall framework of FactorVAE. All the modules with dotted lines, involving the future data, are only used in
the training phase, and would be removed in the test phase or in prediction.

µpost ∈ RK and the standard deviation (std) σpost ∈ RK , K
is the number of factors.

The architecture of φenc is shown in Figure 4(a). Because
the number of individual stocks in cross-section is large and
varies with time, instead of using stock returns y directly,
we construct a set of portfolios inspired by (Gu, Kelly, and
Xiu 2021), these portfolios are dynamically re-weighted on
the basis of stock latent features, i.e., yp = y · ϕp(e) =
y · ap , where ap ∈ RM denotes the weight of M portfolios.
Formally,

a(i,j)p =
exp

(
wpe

(i) + bp
)(j)

∑N
i=1 exp (wpe

(i) + bp)
(j)

(6)

y(j)p =

N∑
i=1

y(i)a(i,j)p (7)

where a(i,j)p denotes the weight of i-th stock in j-th portfolio
and meets

∑N
i=1 a

(i,j)
p = 1, yp ∈ RM is the vector of port-

folio returns. The main advantages of constructing portfo-
lios lie in: 1) reducing the input dimension and avoiding too
many parameters. 2) robust to the missing stocks in cross-
section and thus suitable for the market (see Experiment 2).

And then the mean and the std of posterior factors are
output by a mapping layer [µpost, σpost] = ϕmap(yp), that is

µpost = wpostµyp + bpostµ

σpost = Softplus(wpostσyp + bpostσ )
(8)

where Softplus(x) = log(1 + exp(x))

Factor Decoder Factor decoder uses factors z and the la-
tent feature e to calculate stock returns ŷ

ŷ = φdec(z, e) = α + βz (9)

Essentially, the decoder network φdec consists of alpha layer
and beta layer, as shown in Figure 4(b).

Alpha layer outputs idiosyncratic returns α from the la-
tent features e. We assume that α is a Gaussian random vec-
tor described by α ∼ N

(
µα, diag

(
σ2
α

))
, where the mean

µα ∈ RN and the std σα ∈ RN are output by a distribution

Future 
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Portfolio   
Layer 𝜑𝑝

Portfolios 
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returns 𝑦𝑝
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LayerTensor Random variable 

（a）Factor encoder （b） Factor decoder

Latent 
features 𝑒

Figure 4: The encoder-decoder architecture of FactorVAE.
(a) Factor encoder extracts posterior factors with access to
future data, (b) Factor decoder reconstructs stock returns
from the posterior factors

network πalpha, i.e., [µα, σα] = πalpha(e). Specifically,

h(i)
α = LeakyReLU

(
wαe

(i) + bα
)

µ(i)
α = wαµh

(i)
α + bαµ

σ(i)
α = Softplus(wασh

(i)
α + bασ )

(10)

where h(i)α ∈ RH is the hidden state.

Beta layer calculates factor exposure β ∈ RN×K from
the latent features e by linear mapping. Formally,

β(i) = ϕbeta(e
(i)) = wβe

(i) + bβ (11)

Note that α and z are both follow independent Gaus-
sian distribution, and thus the output of decoder ŷ(i) ∼
N
(
µ
(i)
y , σ

(i)
y

2)
, where

µ(i)
y = µ(i)

α +

K∑
k=1

β(i,k)µ(k)
z

σ(i)
y =

(
σ(i)2

α +

K∑
k=1

β(i,k)2σ(k)2

z

) 1
2

(12)
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where µz, σz ∈ RK are the mean and the std of factors re-
spectively.

Prior-Posterior Learning
As mentioned before, our goal is to bridge the gap between
the noisy market data and an effective factor model for pre-
dicting returns. The model trained in an end-to-end method
may not extract effective factors from the noisy data. There-
fore, we propose a prior-posterior learning method based on
VAE to fulfill this goal: train a factor predictor only given
the historical observation data, which predicts factors to ap-
proximate the optimal posterior factors above, called prior
factors. Then we use the factor decoder to calculate the stock
returns by the prior factors without any future information
leakage, as the predicted returns of model.

Factor Predictor Factor predictor extracts prior factors
zprior from the stock latent features e:

[µprior, σprior] = φpred(e)

zprior ∼ N
(
µprior, diag

(
σ2

prior
)) (13)

where zprior is a Gaussian random vector, described by the
mean µprior ∈ RK and the std σprior ∈ RK .

Considering that a factor usually represents a certain type
of risk premium in the market (such as the size factor fo-
cuses on the risk premium of small-cap stocks), we design
a muti-head global attention mechanism to integrate the di-
verse global representations of the market in parallel, and
extract factors from them to represent diverse risk premium
of market, as shown in Figure 5. Formally, a single-head at-
tention performs as

k(i) = wkeye
(i), v(i) = wvaluee

(i)

a
(i)
att =

max

(
0, qk(i)

T

‖q‖2·‖k(i)‖2

)
∑N
i=1 max

(
0, qk(i)

T

‖q‖2·‖k(i)‖2

)
hatt = ϕatt(e) =

N∑
i=1

a
(i)
att v

(i)

(14)

where query token q ∈ RH is a learnable parameter, and
hatt ∈ RH is the global representation of market. The muti-
head attention concatenates K independent heads together

hmuti = Concat ([ϕatt1(e), . . . , ϕattK (e)]) (15)

where hmuti ∈ RK×H is the muti-global representation.
And then we use a distribution network πprior to predict the

mean µprior and the std σprior of prior factors zprior, similar to
Equation 10

[µprior, σprior] = πprior(hmuti) (16)

Objective Function Our objective consists of two parts,
the first part is to train an optimal posterior factor model, and
the second part is to effectively guide the leaning of factor
predictor by the posterior factors. Thus, the loss function of
model is

L(x, y) = − 1

N

N∑
i=1

logPφdec

(
ŷ(i)

rec = y(i)|x, zpost

)
+ γ ·KL

(
Pφenc (z|x, y) , Pφpred (z|x)

) (17)
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Figure 5: Illustration of factor predictor. The muti-head
global attention mechanism integrates diverse global repre-
sentations from the stock latent features, and the distribu-
tion network outputs the distribution of prior factors from
the global representations.

where the first loss term is the negative log likelihood, to re-
duce the reconstruction error of posterior factor model, and
ŷ
(i)
rec = α(i) + β(i)zpost is the reconstructed return of i-th

stock. The second loss term is the Kullback–Leibler diver-
gence (KLD) between the distribution of prior and posterior
factors, for enforcing the prior factors to approximate to the
posterior factors, γ is the weight of KLD loss.

Prediction In prediction phase, the model predicts stock
returns only by the predictor and the decoder, without en-
coder or any future information leakage. Formally,

ŷpred = φdec(zprior, x) = α+ βzprior (18)

where
e = φfeat(x)

α ∼ πalpha(e)

β = ϕbeta(e)

zprior ∼ φpred(e)

(19)

According to Equation 12, the predicted return follow Gaus-

sian distribution ŷ
(i)
pred ∼ N

(
µ
(i)
pred, σ

(i)
pred

2)
, where the mean

µ
(i)
pred represents the expected return of i-th stock, and the std

σ
(i)
pred can be used to estimate risk, which helps the investment

in the real market (see Experiment 3).

Experiments
In this section, we evaluate the proposed model on the real-
world stock market data, and demonstrate the effectiveness
of our model by various experiments. To lead our discussion,
we first raise the following research questions:

• RQ1: Does the prior-posterior learning method guide the
learning of model effectively?

• RQ2: Is our model robust to the stocks that have never
been learned in the training phase?

• RQ3: How does the risk estimate of our model help stock
investment?
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Experiment Settings
Dataset We conduct the experiments over China A-shares
market, the raw data is collected from Yahoo Finance, con-
taining the day-level price-volume data of all stocks ex-
cept the suspension or other abnormal stocks. We adopt Al-
pha158 dataset from Qlib platform1 (Yang et al. 2020) con-
taining 158 technical features extracted from price-volume
data, and we use 20 features selected by Qlib for the time
series model. The sequence length is T = 20, and the daily

stock return is computed by y(i) =
p
(i)
t+2−p

(i)
t+1

p
(i)
t+1

, where t is the

prediction day, and p(i)t+1 denotes the close price of i-th stock
on the next trading day of the prediction day.

Finally, we split data into training (3432 stocks, from
01/01/2010 to 12/31/2017), validation (3450 stocks, from
01/01/2018 to 12/31/2018) and test (3923 stocks, from
01/01/2019 to 12/31/2020) datasets. The increase stock
number is due to the issuance of new stocks.

Baselines We compare our model with other dynamic fac-
tor models and ML-based prediction models:

• Linear is a linear dynamic factor model.
• CA (Gu, Kelly, and Xiu 2021) is a dynamic factor model

with a conditional autoencoder to extract latent factors.
• GRU is a neural network with a GRU layer (Chung et al.

2014) and a linear prediction layer.
• ALSTM (Qin et al. 2017) is a variant of LSTM, which

adds an attention layer into the LSTM model to aggregate
information attentively.

• GAT (Veličković et al. 2017) is a graph attention net-
work, which treats stocks as the nodes on graph and pre-
dicts without knowing the graph structure upfront.

• Trans (Ding et al. 2020) is a neural network adopting
Transformer architecture for stock returns prediction.

• SFM (Zhang, Aggarwal, and Qi 2017) is a RNN that uses
discrete fourier transform to decompose the hidden states
and capture the multi-frequency trading patterns.

Experiment 1: Cross-Sectional Returns Prediction
In this experiment, we train models to predict the future re-
turns of cross-sectional stocks. In order to evaluate the per-
formance of the compared methods, we adopt the rank infor-
mation coefficient (Rank IC) as a metric, which is the domi-
nate ranking metric in finance. Formally,

Rank ICs =
1

Ns

(rŷs −mean (rŷs))
T (ryt −mean (rys))

std (rŷs) · std (rys)
(20)

Rank IC =
1

Ttest

Ttest∑
s=1

Rank ICs (21)

where Ttest is the number of trading days in test range,
rŷs , rys are the predicted and true ranks of stocks in cross-
section on s-th trading day respectively. In addition, to evalu-
ate the stability of prediction, we also report the information

1https://github.com/microsoft/qlib

Category Method Rank IC Rank ICIR

ML-based
prediction

model

GRU 0.032(0.002) 0.398(0.031)
ALSTM 0.031(0.004) 0.360(0.019)

GAT 0.034(0.002) 0.390(0.032)
Trans 0.033(0.003) 0.417(0.032)
SFM 0.037(0.001) 0.456(0.004)

Dynamic
factor
model

Linear 0.022(0.002) 0.333(0.033)
CA 0.039(0.002) 0.442(0.036)

FactorVAE-prior 0.042(0.003) 0.384(0.033)
FactorVAE 0.055(0.004) 0.568(0.044)

Table 1: Cross-sectional returns prediction performance of
the compared methods on test dataset; the higher, the better.
We report the mean and the standard deviation values of the
results with 5 random seeds.

ratio of Rank IC (Rank ICIR), which is calculated by divid-
ing the average by the standard deviation of Rank ICs.

Note that FactorVAE is a probabilistic model and the pre-

dicted returns ŷ
(i)
pred ∼ N

(
µ
(i)
pred, σ

(i)
pred

2)
, so we adopt the

mean µpred as the predicted value.
Thorough comparison of performance on the test dataset

are summarized in Table 1, from which we have the follow-
ing observations:

• FactorVAE has the best performance among all the com-
pared methods, which illustrates the effectiveness of the
proposed method.

• FactorVAE-prior is a variant of our model without the
prior-posterior learning method, which is trained to pre-
dict returns by prior factors directly. As we can see from
the results, without the guide of posterior factors, it is
hard to learn an effective factor model from the real mar-
ket data, which shows that the prior-posterior learning
method is critical to our model (RQ1).

Experiment 2: Robustness
In this experiment, we evaluate the robustness of models to
the missing stocks in training dataset. Specifically, we ran-
domly remove m stocks S = {s(i1), . . . , s(im)} from the
training dataset, and use the new training dataset Dtrain =
{(xs, ys)}s/∈S to train models. Then we predict the stock re-
turns on test dataset Dtest, and select the predicted returns
of these m stocks {ŷ(i)pred}i∈S . Finally, we evaluate the per-
formance of models on missing stocks by calculate the Rank
IC and Rank ICIR of stock set S on test dataset.

Table 2 lists the results on different number of missing
stocks sampled from 5 random seeds, and we observe that:

• FactorVAE is superior to other baseline methods on all
m, which shows that our model is more robust to the
stocks that have never been learned before (RQ2), and
thus suitable for the situation in the real market (e.g., pre-
dict the return of newly issued stocks).

• FactorVAE-port is a variant which replaces the portfolio
layer ϕp in factor encoder with the portfolio construction
used in the baseline model CA. In particular, the portfo-
lios in this variant are constructed by yp = (eT e)−1eT y
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Methods m=50 m=100 m=200
Rank IC Rank ICIR Rank IC Rank ICIR Rank IC Rank ICIR

GRU 0.031(0.005) 0.184(0.029) 0.030(0.004) 0.234(0.030) 0.031(0.004) 0.282(0.032)
ALSTM 0.027(0.004) 0.162(0.022) 0.028(0.007) 0.210(0.045) 0.026(0.005) 0.237(0.041)

GAT 0.029(0.008) 0.166(0.043) 0.023(0.011) 0.176(0.085) 0.025(0.009) 0.215(0.071)
Trans 0.034(0.007) 0.201(0.040) 0.034(0.006) 0.259(0.043) 0.033(0.003) 0.302(0.023)
SFM 0.037(0.007) 0.220(0.042) 0.038(0.004) 0.294(0.035) 0.038(0.003) 0.342(0.036)
linear 0.018(0.005) 0.138(0.075) 0.018(0.005) 0.147(0.044) 0.018(0.004) 0.176(0.042)
CA 0.038(0.008) 0.215(0.046) 0.039(0.004) 0.284(0.034) 0.039(0.003) 0.328(0.027)

FactorVAE-port 0.043(0.005) 0.241(0.022) 0.039(0.003) 0.272(0.005) 0.041(0.004) 0.328(0.011)
FactorVAE 0.053(0.007) 0.299(0.039) 0.056(0.002) 0.384(0.044) 0.050(0.008) 0.399(0.063)

Table 2: The robustness of the compared methods.
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Figure 6: The performance of portfolios on the test period.

(using the same notations as above). The comparison re-
sults illustrate the effectiveness of constructing dynami-
cally re-weighted portfolios.

Experiment 3: Portfolio Investment
In this experiment, we construct portfolios based on the pre-
diction of models, and compare their performance through
backtest. We adopt the TopK-Drop strategy2, to maintain a
portfolio on each trading day. Formally, on trading day t,
TopK-Drop constructs an equal weight portfolio of k stocks
Pt = {s(i1)t , . . . , s

(ik)
t }, which are selected according to the

ranking of predicted returns, under the turnover constraint
that the number of intersection stocks Pt ∩ Pt−1 ≥ k − n.
We set k = 50 and n = 5 in the experiment.

As a widely used benchmark in China A-shares market,
CSI300 index consists of the 300 largest and most liquid
A-share stocks, aiming to reflect the overall performance of
market. Therefore, we choose CSI300 index as the bench-
mark, and select 50 stocks from CSI300 stocks on each trad-
ing day to construct portfolios. In the experiment, we use
a strict backtest procedure to simulate the real market, in
which we take into account the trading fee, stock suspension
and price limit in A-share market.

The portfolio performance of the compared methods are
show in Figure 6, where (a) shows the cumulative excess
returns (relative to the CSI300 index) of methods, and (b)
shows the cumulative returns (in terms of absolute returns)
of methods. We also report the performance of portfolios

2https://qlib.readthedocs.io/en/latest/component/strategy.html

Method AR(↑) SR(↑) MDD(↓)
GRU 2.28% 0.31 9.08%

ALSTM 2.20% 0.27 12.19%
GAT 4.49% 0.56 7.20%
Trans 4.79% 0.62 5.01%
SFM 3.33% 0.42 7.32%

Linear 0.01% 0.02 8.02%
CA 3.62% 0.47 7.00%

FactorVAE 15.32% 1.92 4.47%
FactorVAE(TDrisk) 16.32% 2.09 4.50%

Table 3: The portfolio performance relative to the bench-
mark. ↑means the larger the better while ↓means the smaller
the better.

by measuring the annualized return (AR), Sharpe ratio (SR),
and maximum drawdown (MDD) of cumulative excess re-
turns, which are summarized in Table 3. From the backtest
results, it can be observed that:
• The portfolios based on FactorVAE outperform all the

compared portfolios, which indicates our model can
achieve a profitable investment in the real market.

• TDrisk is a variant of TopK-Drop considering risk aver-
sion, which selects k stocks according to the risk-
adjusted returns µ(i)

pred − ησ
(i)
pred, where η is risk aversion

weight. Combined with TDrisk, our model further in-
creases the AR and SR of portfolio, which shows the ef-
fectiveness of risk estimation in investment (RQ3).

Conclusion
In this paper, we show how to learn an effective factor model
for predicting cross-sectional stock returns. Specifically, in
view of the low signal-to-noise ratio of stock data, we pro-
pose a probabilistic dynamic factor model based on varia-
tional autoencoder (VAE). By treating factors as the latent
random variables in VAE, the proposed model with inher-
ent randomness can model the noisy data and estimate stock
risk. In order to extract effective factors from noisy market
data, we propose a prior-posterior learning method, which
can guide the learning of model effectively. The experiment
results over the real stock market data have demonstrated the
effectiveness of our model. In the future, we plan to explore
more portfolio strategies based on our model.
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