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Abstract

Motion completion, as a challenging and fundamental prob-
lem, is of great significance in film and game applications.
For different motion completion application scenarios (in-
betweening, in-filling, and blending), most previous meth-
ods deal with the completion problems with case-by-case
methodology designs. In this work, we propose a simple but
effective method to solve multiple motion completion prob-
lems under a unified framework and achieve a new state-of-
the-art accuracy on LaFAN1 (+17% better than the previous
SoTA) under multiple evaluation settings. Inspired by the re-
cent great success of self-attention-based transformer mod-
els, we consider the completion as a sequence-to-sequence
prediction problem. Our method consists of three modules -
a standard transformer encoder with self-attention that learns
long-range dependencies of input motions, a trainable mix-
ture embedding module that models temporal information
and encodes different key-frame combinations in a unified
form, and a new motion perceptual loss for better capturing
high-frequency movements. Our method can predict multi-
ple missing frames within a single forward propagation in
real-time without post-processing. We also introduce a novel
large-scale dance movement dataset for exploring the scal-
ing capability of our method and its effectiveness in complex
motion applications.

Introduction
Motion completion is an important and challenging problem
that provides fundamental technical support for animation
authoring of 3D characters and has been recently success-
fully applied in film production and video games (Thomas
2009; Ciccone, Öztireli, and Sumner 2019). In recent years,
deep learning methods have greatly promoted the research
progress of motion completion. With recent advances in
this field, manpower can now be greatly saved, where high-
quality motion can be generated from a set of historical or
sparse key-frames by learning from large-scale motion cap-
ture data sets (Kaufmann et al. 2020; Harvey et al. 2020).

We consider the motion completion in the following three
scenarios:

* In-betweening. Animators are required to complement
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Figure 1: Motion completion results by our method based on
input key frames (blue ones). We propose a unified frame-
work that can solve multiple motion completion problems
and achieve a new SoTA on a high-quality motion comple-
tion dataset – LaFAN1 (Harvey et al. 2020).

the motion between the past given frames and a provided
further keyframe (Harvey et al. 2020).

* In-filling. As an extension of in-betweening, in-filling
poses the characters on specific positions of the time-
line (Ciccone, Öztireli, and Sumner 2019) and comple-
ments the rest of the frames (Kaufmann et al. 2020).

* Blending. Blending focuses on the automatic generation
of the transition between a pair of pre-defined motions.
Blending is widely used in video games, such as in-game
choreography systems.

However, most previous motion completion methods
deal with different completion scenarios (in-betweening, in-
filling, and blending) with case-by-case designs. In this pa-
per, we propose a novel completion method that deals with
all the above processing scenarios under a unified frame-
work. In our method, we leverage the recent popular deep
learning architecture called Transformer (Vaswani et al.
2017), which is built based on the self-attention mechanism
and is widely used in neural language processing, computer
vision, and reinforcement learning (Tay et al. 2020; Dosovit-
skiy et al. 2020; Parisotto et al. 2020). We adopt BERT (De-
vlin et al. 2018), a recent well-known transformer encoder
as our backbone, where known frames (key-frames) and un-
known frames (need to be complemented) are fed together
as input, and thus all the frames can be predicted in a sin-
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gle propagation at inference. Our method works in a non-
autoregressive manner and can be easily accelerated with
parallelization.

Based on the standard transformer architecture, we also
introduce a mixture embedding module that further inte-
grates temporal knowledge to the transformer encoder and
makes the proposed framework compatible with the above
three different motion completion scenarios. Our embedding
module contains two types of learnable embeddings: posi-
tion embedding and keyframe embedding. Position embed-
ding is a widely studied technology in recent transformer
literature, where a set of pre-defined sinusoidal signals are
usually used to introduce temporal knowledge to the trans-
former model (Harvey and Pal 2018; Harvey et al. 2020).
In our method, we further make this embedding trainable to
deal with different motion completion scenarios. In addition
to the encoding of input frame orders, the Keyframe embed-
ding is introduced to annotate the input frames so that the
model knows which parts of the input frames are keyframes
(already known) and which parts need to be predicted (un-
known). Since the keyframe embedding may have different
forms, our method can be easily applied to different com-
pletion scenarios regardless of how the input keyframes are
arranged. Besides, different from the previous work (Har-
vey et al. 2020) that predicts contact information for post-
processing, we introduce a new motion perceptual loss,
where we directly regularize the velocity of generated re-
sults on the ground contact points and further adopt wavelet
transformation to dynamically capture the structure informa-
tion of the complex movements. Our method can therefore
get rid of the post-processing and can run in real-time.

Our contributions are summarized as follows:
1. We propose a transformer-based method to solve the

motion completion of different application scenarios under a
unified framework. A mixture embedding module and a mo-
tion perceptual loss are introduced to unify different com-
pletion tasks and introduce ground contact constraints with
high-frequency representation.

2. We achieve a new benchmark accuracy on the in-
betweening task under multiple evaluation settings, with
+17% better than previous state of the art methods1. Results
on other completion tasks (in-filling and blending) are also
reported as baselines for fostering the research community.

3. Our method can work in a parallel prediction manner
with high efficiency. On a single CPU desktop (I7-8700K
@ 3.70GHz), our method can run in real time (40 motion
sequences per second, each with 50 frames long), 4x faster
than previous methods.

4. A new high-quality and large-scale dance movement
dataset is built for advanced motion completion tasks.

Related Works
Motion Completion
Motion completion is a research hotspot in the field of
computer graphics and multimedia. Some early researches

1Our project is available at: https://github.com/SilvanDuan/
MotionCompletion

of motion completion can be traced back to the late
1980s (Witkin and Kass 1988; Ngo and Marks 1993). Mo-
tion completion can be considered as a conditional motion
sequence generation problem. Different from those uncon-
ditional motion synthesis tasks that focus on the genera-
tion of unconstrained motion sequences by directly sam-
pling from their posterior distribution (Sidenbladh, Black,
and Sigal 2002; Wang, Fleet, and Hertzmann 2007; Taylor,
Hinton, and Roweis 2007), motion completion aims at fill-
ing the missing frames in a temporal sequence based on a
given set of keyframes. Early works of motion completion
typically adopt inverse kinematics to generate realistic tran-
sitions between keyframes. For example, space-time con-
straints and searching-based methods were proposed in the
1980s-1990s (Witkin and Kass 1988; Ngo and Marks 1993)
to compute optimal physically-realistic motion trajectories.
By using such techniques, transitions between different mo-
tions can be smoothly generated (Rose et al. 1996). Also,
probabilistic models like the maximum a posterior meth-
ods (Chai and Hodgins 2007; Min, Chen, and Chai 2009),
the Gaussian process (Wang, Fleet, and Hertzmann 2007),
Markov models (Lehrmann, Gehler, and Nowozin 2014)
were introduced to motion completion tasks and were com-
monly used after 2000s.

Recently, deep learning methods have greatly promoted
the research and the performance of motion completion,
where the recurrent neural network is the most commonly
used framework for motion completion of the deep learn-
ing era (Zhang and van de Panne 2018; Harvey and Pal
2018). For example, Harvey et al. introduce a novel frame-
work named Recurrent Transition Networks (RTN) to learn
a more complex representation of human motions with the
help of LSTM (Harvey and Pal 2018). Besides, generative
adversarial learning has been also introduced to the motion
completion to make the output motion more realistic and
naturalistic (Hernandez, Gall, and Moreno-Noguer 2019).
Some non-recurrent motion completion models are also pro-
posed very recently. Kaufmann et al. propose an end-to-
end trainable convolutional autoencoder to fill in missing
frames (Kaufmann et al. 2020). Another recent progress
by Harvey et al. introduces time-to-arrival embeddings and
scheduled target-noise to further enhance the performance
of RTN and achieve impressive completion results (Har-
vey et al. 2020). Different from the previous RNN-based or
convolution-based method, we propose a transformer-based
model - a more unified solution to this task that can deal
with arbitrary forms of missing frames in parallel with only
a single-shot prediction.

Motion Control
Motion control is a typical conditional motion generation
task, which is also highly related to motion completion. In
motion control, the control signal comes from a pre-defined
temporal sequence, e.g. root trajectory, rather than a set of
keyframes in motion completion.

Graph-based motion control is the most common type
of method in this field before the deep learning era (Lee
et al. 2002; Safonova and Hodgins 2007; Kovar, Gleicher,
and Pighin 2008; Arikan and Forsyth 2002; Beaudoin et al.
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2008). For example, Arikan et al. formulate the motion gen-
eration as a randomized search of the motion graph, which
allows complex motions editing (Arikan and Forsyth 2002).
Beaudoin et al. propose a string-based motif-finding algo-
rithm named Motion-Motif Graphs, which further considers
the motif length and the number of motions in a motif (Beau-
doin et al. 2008). Besides, there are many statistical methods
proposed to avoid searching from predefined motion tem-
plates (Grochow et al. 2004; Wang, Fleet, and Hertzmann
2007; Min, Chen, and Chai 2009; Min and Chai 2012). Chai
et al. propose a statistical dynamic model to generate mo-
tions with motion prior (e.g. user-defined trajectory) and for-
mulate the constrained motion synthesis as a maximum a
posterior problem (Chai and Hodgins 2007). Ye et al. intro-
duce a nonlinear probabilistic dynamic model that can han-
dle perturbations (Ye and Liu 2010). Levine et al. propose
a probabilistic motion model that learns a low-dimensional
space from example motions and generates character anima-
tion based on user-specified tasks (Levine et al. 2012).

Recently, some popular deep learning architectures like
convolutional autoencoder and recurrent neural networks are
widely used in the motion control problems (Holden et al.
2015; Holden, Saito, and Komura 2016; Holden, Komura,
and Saito 2017; Lee, Lee, and Lee 2018; Aberman et al.
2020b,a; Gomes et al. 2021). Adversarial training has also
played an important role in this problem and can help gener-
ate more realistic motion sequences (Barsoum, Kender, and
Liu 2018; Gui et al. 2018; Harvey et al. 2020). Besides, some
recent approaches also leverage reinforcement learning to
further incorporate physical rules to improve the quality of
the generation results (Coros, Beaudoin, and Van de Panne
2009; Yin, Loken, and Van de Panne 2007; Baram, Anschel,
and Mannor 2016; Peng et al. 2017, 2018; Bergamin et al.
2019). As far as we know, the transformer-based prediction
architecture proposed in this paper is still rarely studied in
both motion completion and motion control.

Methods
In this work, we consider motion completion as a sequence-
to-sequence prediction problem. We choose BERT, an off-
the-shelf transformer architecture (Devlin et al. 2018) as our
network backbone with minimum modifications. In this way,
the subsequent variations can be easily introduced without
impediment. The unknown motion frames can be generated
in a single forward propagation conditioned by those input
keyframes at the inference stage.

Motion Completion Transformer
Fig.2 shows an overview of our method. Our network con-
sists of 1) a mixture embedding module that converts the
motion to a set of sequential tokens, and 2) a standard trans-
former encoder used to process sequential features. Our
method supports multiple input coded format, e.g. [local po-
sitions & rotations] or [global positions & rotations] or [po-
sitions only]. Without loss of generality, we assume that the
input contains both positions (x, y, z) and rotations (q0, q1,
q2, q3) variables (no matter local or global), and therefore,
a single pose can be represented as two matrices - a posi-
tion coordinate matrix P ∈ RJ×3 and a quaternion matrix

Figure 2: An overview of our method. Our method con-
sists of a standard transformer encoder, a mixture embed-
ding layer, and input/output convolutional heads. In motion
completion, the unknown input frames are first generated by
using linear interpolation (shown in red characters) before
being fed to the model. Our method takes in a whole masked
sequence and completes the prediction within only a single
forward propagation.

Q ∈ RJ×4, where J represents the joint number of the input
pose.

For each input pose, we firstly flatten P and Q into 1-
D vectors p and q, and then concatenate the two vectors
together into a long vector:

x = [p, q] ∈ RJ×(3+4). (1)

For those unknown input frames, we use linear interpolation
to fill in their missing values along the temporal dimension
before feeding them to the transformer model. We then use
a 1-D temporal convolution layer to transform those pose
vectors to tokens:

Z = Conv1D([x1;x2; ...;xT ]), (2)

where T is the length of the input sequence, Z ∈ RT×F

is the formated temporal feature of the tokens, and F is
the output dimension of the Conv1D layer. The convolu-
tion is performed in the joint dimension. Note that different
from the previous transformer-based models in computer vi-
sion (Dosovitskiy et al. 2020) that use a linear projection to
generate the embeddings, here we use a convolution layer
for better capturing the temporal information, e.g. velocity
and acceleration.

Considering that the transformer does not know the order
of the keyframes in the input sequence as well as their ex-
act locations, we introduce a mixture embedding E to anno-
tate these frames before feeding their features into the trans-
former. For each group of input configuration of keyframes,
an embedding E is learned as a global variable on the train-
ing data and will not change along with the pose feature Z.
We represent the final annotated features Z as follows:

Ẑ = [z1 + e1; z2 + e2; ...; zT + eT ], (3)

where zt and et are the sub-vectors of input feature Z and
mixture embedding E at the time t.
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The BERT transformer we used consists of multiple en-
coder layers (Devlin et al. 2018). Each encoder layer further
consists of a multi-head self-attention layer (MHSA) and
a feed-forward network (FFN). A residual connection (He
et al. 2016) is applied across the two layers. The forward
mapping of the transformer can be written as follows:

Ĥ l = Norm(H l−1 + MHSA(H l−1))

H l = Norm(Ĥ l + FFN(Ĥ l)),
(4)

where H is the output of hidden layers. l = 1, ..., L are the
indices of encoder layers. “Norm” represents the layer nor-
malization (Ba, Kiros, and Hinton 2016) placed at the output
end of the residual connections. We use H0 = Norm(Ẑ) as
the hidden representation of the input layer.

In the multi-head self-attention layer (MHSA), a dense
computation between each pair of input frames are con-
ducted, and thus a very long-range temporal relations be-
tween frames can be captured. The processing of a single
head can be represented as follows:

fatt = Softmax(
QKT

α
)V , (5)

where Q = WqH represents a query matrix, K = WkH
represents a key matrix, and V = WvH represents a value
matrix. Wq , Wk and Wv are all learnable matrices. We fol-
low the multi-head attention configuration in BERT and set
the dimension of Q, K and V to 1

M of the input H , M
represents the number of heads in the attention layer. Fi-
nally, the outputs from different heads are collected, con-
catenated and projected by a matrix Wmhsa as the output of
the MHSA layer:

MHSA(H) = Wmhsa[f
(1)
att ;f

(2)
att ; ...;f

(M)
att ]. (6)

For the feed-forward network (FFN), it consists of two
linear layers and a GeLU layer (Hendrycks and Gimpel
2016). FFN processes each of the frame individually:

FFN(H) = W
(1)
ffn(GeLU(W

(2)
ffn(H))), (7)

where W
(1)
ffn and W

(2)
ffn are the learnable linear projection

matrices. Finally, we apply another 1D-convolution layer at
the output end of the transformer, and final completion out-
put Y can be written as follows:

Y = Conv1D(HN ). (8)

Mixture Embeddings
The mixture embedding E we used consists of a posi-
tional embedding Epos ∈ RT×F and a keyframe embedding
Ekf ∈ RT×F , where T is the length of temporal sequence
and F is the input feature dimension of transformer. Fig.3
gives an illustration of the mixture embedding module.

The position embedding Epos is a matrix that contains T
sub-vectors, each for a single time step:

Epos = [e1pos, e
2
pos, ..., e

T
pos]. (9)

The keyframe embeddings Ekf are selected from a learnable
dictionary D that contains three types of embedding vectors

Figure 3: An illustration of mixture embedding module. We
design a position embedding and a keyframe embedding,
where the former one integrates position information and the
latter one annotates whether the frame is the keyframe or
not. (Blue dash-lines represent ignored frames that exceed
the prediction range)

D = {ê0, ê1, ê2}, which annotate the keyframes, unknown
frames, and ignored frames, respectively (Keyframe = 0, Un-
known = 1, Ignored = 2). These types of frames can be con-
figured in any forms according to different completion tasks
and scenarios (e.g., in-betweening, in-filling, and blending).
The keyframe embeddings are written as follows:

Ekf = [e1kf , e
2
kf , ..., e

T
kf ], (10)

where emkf ∈ {ê0, ê1, ê2}. Finally, the two types of embed-
dings are mixed by adding together position-by-position:

E = Epos +Ekf . (11)

It is worth noting that our keyframe embedding is not lim-
ited to the above three configurations shown in Fig.3. It can
be in any format with practical meaning. As a special case,
if the keyframes are randomly specified, then our keyframe
embedding turns out to be the random token mask in the
original BERT paper (Devlin et al. 2018).

Motion Perceptual Loss
We train our transformer and the embeddings with multi-
task losses, including basic reconstruction loss, kinematic
constraint, and motion perceptual loss.

Reconstruction loss: Given a set of predicted motions
and their ground truth, we design our pose reconstruction
loss Lrec as follows:

Lrec =
1

NT

N∑
n=1

T∑
t=1

(
∥∥pt

n − p̂t
n

∥∥
1
+
∥∥qt

n − q̂t
n

∥∥
1
), (12)

where pt
n and qt

n are the position coordinates and rotation
quaternions of the predicted motion sequence n at the time
step t. p̂t

n and q̂t
n are their ground truth. N represents the

length of motion sequences and T is the total number of
training sequences in the data set. Note that the above losses
can be used in both global and local coordinate systems.

Kinematic constraint: We introduce two kinematics
losses to improve the results in different coordinate systems:

1) Forward Kinematics (FK) lossLFK . We follow Harvey
et al. (Harvey et al. 2020) and calculate the global position
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coordinates by using local ones with forward kinematics and
weight the local reconstruction loss on different joints:

LFK = ‖FK(r, qlocal)− pglobal‖1 . (13)

2) Inverse Kinematics (IK) loss LIK . We also apply IK
loss to constrain the T-pose when in global coordinate sys-
tem. We first compute the local position from the global one
with inverse kinematics, and then we compare the offsets
between the inverse output and the original input:

LIK = ‖IK(pglobal, qglobal)− b‖1 , (14)

where b represents the offset vector. We remove the root co-
ordinate and keep predicted offsets only when computing
the IK loss.

Motion perceptual loss: Inspired by the previous
work (Harvey et al. 2020), we also introduce ground con-
tact constraints to reduce the foot-skate in human motion.
However, we do not predict the ground contact points but
we suppress the velocity on these points to get rid of the
post-processing requirements. Furthermore, we apply dis-
crete wavelet transformation (DWT) for better capturing the
high-frequency information, thus our perceptual loss can be
written as follow:

Lper =
∑

t∈Tcontact

∥∥ṗt
n

∥∥
1

+
1

L

L∑
n=1

(‖DWT (p)−DWT (p̂)‖1),
(15)

where Tcontact is the contact points provided by datasets
(e.g. LaFAN1 (Harvey et al. 2020)) and L represents the
level of extracted high-frequency information by DWT.

Our final training loss is written as follow:

L = αrecLrec + αKLK + αperLper, (16)

where αs are the coefficients to balance different loss terms.
LK represents the kinematics loss in the global system
(LIK) or the local system (LFK).

Implementation Details
We adopt BERT (Devlin et al. 2018) as the backbone of our
transformer with 8 encoder layers. In each encoder layer, we
set the number of attention heads to M = 8. For our input
and output Conv1D layers, the kernel size is set to 3 and the
padding is set to 1. We set the dimension of the feature em-
bedding in the MHSA layers to 256, and set those in the FFN
layers to 512. In our training loss, we set αrec = αper = 1.0
and αK = 0.01. Consider that the quaternions q ∈ [0, 1]
while the position coordinates p are in a much larger range,
we scale the localization loss and the rotation loss to the
same order of magnitude.

We train our network by using Adam optimizer (Kingma
and Ba 2014). We set the maximum learning rate to
10−3. The whole framework is implemented using Py-
Torch (Paszke et al. 2019). For a more detailed training con-
figuration, please refer to our experimental section.

Experiments
Motion Completion Tasks
In our experiment, we evaluate our method across three dif-
ferent motion completion tasks:

1. “In-betweening” on LaFAN1 (Harvey et al. 2020):
LaFAN1 is a public high-quality general motion dataset in-
troduced by Harvey et al. from Ubisoft. In this task, given
the past 10 keyframes and another future keyframe, we aim
to predict the motion of the rest frames.

2. “In-filling” on Anidance (Tang, Mao, and Jia 2018):
Anidance is a public music-dance dataset proposed by Tang
et al. (Tang, Mao, and Jia 2018). We test our method on
this dataset for the in-filling task, where equally spaced
keyframes are given.

3. “Blending” on our newly proposed dance dataset: We
collect a new dance movement dataset, which contains high-
quality dance movements performed by senior dancers and
is much larger and is more challenging than the previous
ones. We evaluate our method on this dataset for exploring
the potential of our method in dance applications in-game
environments.

Besides, since Kaufmann et al. ’s method can also take
in arbitrary input, we re-implement and apply this method
across the above tasks as our comparison baseline (as there
is no publicly available source code). To be fair, we adopt
the same input (in the global coordinate system) and training
strategy for the re-implemented version.

Novel Dance Movement Dataset
Since dance is the most complex form of movements, we
build a new challenging dance dataset to explore the po-
tential of our method, where we invited four senior dancers
to perform five types of dance movements (including Jazz
dance, Street dance, J-pop dance, Indian dance, Folk dance).
For better universality, we follow the classic theory of Doris
Humphrey (Humphrey 1959) for choreography. We use mo-
tion capture devices (Vicon V16 cameras) to record the
dance movements at 30Hz. As shown in Tab 3, our dataset
is 2∼4 times larger than the previous two datasets. Also, the
choreography of our dataset is more professional and our
dance style is more diverse. As a comparison, the LaFAN1
dataset (Harvey et al. 2020) only provided “free dance”, the
Anidance dataset (Tang, Mao, and Jia 2018) cannot be di-
rectly applied in the game environment since the rotation
of the joints are not provided, and AIST++ dataset is built
by fitting methods rather than Mocap devices (Loper et al.
2015; Kolotouros et al. 2019; Li et al. 2021).

Metrics
We follow Harvey et al. (Harvey et al. 2020) and use L2Q,
L2P, and NPSS as our evaluation metrics. The L2Q defines
the average L2 distances of the global quaternions between
the predicted motions and their ground truth. Similarly, the
L2P defines the average L2 distances of the global posi-
tions.2 The NPSS, proposed by Gopalakrishnan (Gopalakr-

2In Harvey et al. ’s implementation, the predicted positions and
their ground truth are normalized by mean and std of the training
set. We also follow this setting for a fair comparison.
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L2Q L2P NPSS
Length 5 15 30 5 15 30 5 15 30

Zero-Vel 0.56 1.10 1.51 1.52 3.69 6.60 0.0053 0.0522 0.2318
Interp 0.22 0.62 0.98 0.37 1.25 2.32 0.0023 0.0391 0.2013

Harvey et al. (LSTM-based) 0.17 0.42 0.69 0.23 0.65 1.28 0.0020 0.0258 0.1328
Kaufmann et al. (Conv-based) 0.49 0.60 0.78 0.84 1.07 1.53 0.0048 0.0345 0.1454

Ours (local w/ ME) 0.18 0.47 0.74 0.27 0.82 1.46 0.0020 0.0307 0.1487
Ours (local w/ ME & FK loss) 0.17 0.44 0.71 0.23 0.74 1.37 0.0019 0.0291 0.1430
Ours (global w/ ME) 0.14 0.36 0.61 0.21 0.57 1.11 0.0016 0.0238 0.1241
Ours (global w/ ME & IK loss) 0.14 0.36 0.61 0.22 0.56 1.10 0.0016 0.0234 0.1222

Ours (global transformer only) 0.16 0.37 0.63 0.24 0.61 1.16 0.0018 0.0243 0.1284
Ours (global full) 0.18 0.37 0.61 0.23 0.56 1.06 0.0018 0.0238 0.1218
Ours (noisy training data - 30 db) 0.19 0.39 0.63 0.27 0.59 1.11 0.0020 0.0248 0.1259

Table 1: Experimental results on LaFAN1 dataset.Interpolation and zero-velocity are used as the naive baselines following (Har-
vey et al. 2020). A lower score indicates better performance. (*Note that for a fair comparison, the T-pose of our global results
have been replaced by a standard one in local coordinate system.

Method 1 x 30 10 x 30 CPU info

Harvey et al. 0.31s 0.40s E5-1650

Kaufmann et al. 0.066s 0.33s I7-8700K
Ours(global full) 0.025s 0.083s I7-8700K

Table 2: Speed performance comparison on LaFAN1
dataset. CPU inference time are recorded in different batch
sizes (1 & 10) where In-betweening length is set to 30
frames (i.e. 1 second).

Dataset Frames Duration Types Format
LaFAN1* 45,690 0.42h 1 pos + rot
Anidance 101,390 1.13h 4 (pro) pos only
Ours 228,165 2.11h 5 (pro) pos + rot
* Only dance-related subset of LaFAN1 is reported.

Table 3: Comparison between three Mocap dance datasets.

ishnan et al. 2019), is a variant of L2Q, which computes
the Normalized Power Spectrum Similarity and is based on
angular frequency distance between the prediction and the
ground truth.

Note that when we generate our results based on the
global coordinate system, we replace the T-pose with the
standard one under the local system (by using global to local
coordinate transformation) for a fair comparison.

Motion In-Betweening
We evaluate our method on the LaFAN1 dataset (Harvey
et al. 2020) for the motion in-betweening task. The whole
dataset contains 496,672 frames performed by 5 motion sub-
jects and are recorded by using Mocap in 30Hz. The training
set and the test set are clearly separated, where the test set
contains motions from subject No.5 only. Since the origi-
nally captured motions are in very long sequences, we fol-

low Harvey et al. (Harvey et al. 2020) and introduce motion
windows to this dataset, where the width of the window is
set to 50 (65) frames, and the offset is set to 20 (25) frames
for training (test). Finally, there are 20,212 and 2,232 win-
dows extracted for training and testing, respectively. Since
our method can take in arbitrary-length inputs, we set the
transition length of in-betweening to 5∼39 (since the maxi-
mum length is 39). For the unknown frames, before feeding
them to our model, we interpolate them based on the nearest
two keyframes by linear interpolation (LERP) and spherical
linear interpolation (SLERP).

During the evaluation, only the first 10 keyframes and an-
other keyframe at the frame 10+L+1 are given, where L is
a predefined transition length. We keep the same configura-
tion with Harvery et al. , where transition lengths are set to
5, 15, and 30. We evaluate our method under both local and
global coordinate systems.

L2P
Length 5 15 30

Zero-Vel 2.34 5.12 6.73
Interp 0.94 3.24 4.68
Kaufmann et al. 3.57 3.69 3.93
Ours (full) 0.84 1.46 1.64

Table 4: In-filling results on Anidance dataset (Tang, Mao,
and Jia 2018). Since only position coordinates are provided
in this dataset, we cannot compute the L2Q and NPSS score.
(A lower L2P score indicates a better performance)

We show in Tab 1 that our method can still achieve high
accuracy on the LaFAN1 dataset even when the transition
length L = 30, better than the results of Kaufmann et
al. (Kaufmann et al. 2020) and Harvey et al. (Harvey et al.
2020). We can also see that there is a noticeable accuracy im-
provement when switching the generation mode from local
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L2Q L2P NPSS
Length 8 16 32 8 16 32 8 16 32

Zero-Vel 0.93 1.41 1.89 2.71 4.08 5.73 0.0221 0.1003 0.4875
Interp 0.40 0.92 1.44 1.16 2.34 3.70 0.0122 0.1095 0.4726

Kaufmann et al. 1.36 1.35 1.35 3.64 3.63 3.64 0.0392 0.1223 0.3944
Ours 0.35 0.60 0.98 0.79 1.35 2.32 0.0122 0.0631 0.3124
Ours (enhanced) 0.29 0.51 0.89 0.62 1.12 2.12 0.0098 0.0529 0.2817

Table 5: Blending results of our new dance dataset (A lower score indicates a better performance).

to global. This may be because of the accumulative errors of
rotations in local coordinates, and the previous method pro-
poses to use the FK loss to reduce this error (Harvey et al.
2020). Our results suggest that the motion completion can be
better solved in the global coordinate system, although the
T-pose predicted in the global coordinate system may not be
accurate enough (can be further improved by IK loss). We
further evaluate the Mixture Embedding (ME) and percep-
tual loss used in our method, where the former one improves
the accuracy in all evaluation settings (L=5, 15, and 30) and
the latter one can significantly improve the position accuracy
(L2P) in long-term generation (L = 30). The noisy training
data also shows that our method has good robustness.

Besides, Tab 2 indicates that our method can achieve a
very high inference speed on CPU devices and can even
run in real-time (< 0.033s), which benefits from its non-
autoregressive design.

Dance In-Filling
Next, we evaluate our method on the in-filling task of the
Anidance dataset (Tang, Mao, and Jia 2018). In this dataset,
four types of dance movements (Cha-cha, Tango, Rumba,
and Waltz) are captured in the global coordinate system.
This dataset was originally designed for music-to-dance
generation and contains 61 independent dance fragments
with 101,390 frames.

We apply similar evaluation settings on this dataset, where
the time window is set to 128 frames and the offset is set to
64. 20% dance fragments are randomly selected as the test
set, and thus there are 1,117 sequences in the training set
and 323 sequences in the test set. We train our model on this
dataset with 3000 epochs, and the rest of the configurations
are kept the same with the in-betweening task. We set the
interval of keyframes to 5∼30 for in-filling, which means
that there are only 5 keyframes given to the model when their
interval is 30, and the initial transitions between keyframes
are also interpolated by LERP.

Tab 4 shows the evaluation results of our method on the
test set of Anidance. The transition lengths are set to 5,
15, and 30 respectively. We evaluate our method under the
global coordinate system since the Anidance dataset con-
tains global positions only. Similar to the results in the in-
betweening task, our method can achieve the highest com-
pletion accuracy among all comparison methods on both
long-term and short-term completion settings, while Kauf-
mann et al. ’s results contain some dislocations of joints.

Dance Blending

To further evaluate our method on a much more complex
motion completion application, we test our method on the
dance blending task using our own dance dataset. In this ex-
periment, the time window is set to 64 and the offset is set
to 32, and there are finally 5,651 sequences for training and
1,379 sequences for testing. We keep the same experimen-
tal configurations with the in-betweening task, but half the
maximum learning rate.

We set the blending window to 5∼32 frames. For exam-
ple, when the blending window is set to 32, the 16 frames
before and after this window are given as keyframes, and
frames within this window are masked out. Tab 5 shows our
evaluation results with the window width = 8, 16, 32 respec-
tively. We can see our method can still generate very high-
quality results on this challenging dataset.

Scaling Capability

To further explore the scaling capability of our method, we
collect an extra-large dance dataset that is 3x larger than our
current version. We pre-train our method on this dataset by
using the setting of in-betweening task and then fine-tuning
on our own standard dance dataset for 200 epochs with 10−4

learning rate. From the last row of Tab 5, we can see the en-
hanced version of our method gets ∼ 10% relative improve-
ment over our standard version when more training data is
provided, which suggests that our model still has great po-
tential for further improvement.

Conclusion
In this paper, we propose a simple but effective method to
solve motion completion problems under a unified frame-
work. In our method, a standard transformer encoder, a mix-
ture embedding, and a new motion perceptual loss are in-
troduced to handle arbitrary motion sequence input. Our
method can predict multiple missing frames in a single for-
ward propagation rather than running in an auto-regressive
manner and does not require any post-processing. Experi-
mental results show that our method can be well applied to
different motion completion tasks, including in-betweening,
in-filling, and blending. Our method has better computa-
tional efficiency, good scaling capability, and also achieves
a new state-of-the-art result on the LaFAN1 dataset.
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