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Abstract

This paper presents a framework for embedding watermarks
into DNN hardware accelerators. Unlike previous works that
have looked at protecting the algorithmic intellectual proper-
ties of deep learning systems, this work proposes a methodol-
ogy for defending deep learning hardware. Our methodology
embeds modifications into the hardware accelerator’s func-
tional blocks that can be revealed with the rightful owner’s
key DNN and corresponding key sample, verifying the le-
gitimate owner. We propose an `p-ADMM based algorithm
to co-optimize the watermark’s hardware overhead and im-
pact on the design’s algorithmic functionality. We evaluate
the performance of the hardware watermarking scheme on
popular image classification models using various accelerator
designs. Our results demonstrate that the proposed methodol-
ogy effectively embeds watermarks while preserving the orig-
inal functionality of the hardware architecture. Specifically,
we can successfully embed watermarks into the deep learning
hardware and reliably execute a ResNet ImageNet classifier
with an accuracy degradation of only 0.009%.

Introduction
As deep neural networks (DNNs) continue to increase in
size and complexity, there are growing incentives to de-
ploy machine learning systems to dedicated hardware plat-
forms (Wang et al. 2020). While general-purpose proces-
sors are still widely utilized across the field (Jouppi et al.
2017), FPGA and ASIC solutions can provide superior per-
formance and efficiency needed for critical commercial sys-
tems (Molanes et al. 2018). Nevertheless, modern horizontal
supply chains often outsource fabrication, production, and
distribution across multiple globalized corporations. Adver-
saries can take advantage of vulnerabilities in the supply
chain to overproduce, copy, or recycle hardware designs for
their own profit (Leonhard 2021). Therefore, it is critical
to provide a means for hardware developers to assure the
security of a design relinquished to the horizontal supply
chain (Yasin et al. 2019; Shamsi et al. 2019).

Hardware watermarking allows designers to place a sig-
nature into their hardware intellectual properties (IPs) that
verify rightful ownership (Dubey et al. 2020; Pundir, Jagan-
nath, and Ganapathy 2019). Beyond the security implica-
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tions, watermarks secure the hardware designer’s profit in-
centives and support the field’s creative endeavors. Often,
conventional hardware watermarking operates on logic cir-
cuits by identifying unused states and embeds the signature
functionality in them (Cui et al. 2011; Abdel-Hamid, Tahar,
and Aboulhamid 2005). Recent works have explored the ef-
ficacy of intentionally injecting backdoors into DNN algo-
rithmic IPs for use as a watermark embedded into DNN
weights (Adi et al. 2018; Zhang et al. 2018a; Doan et al.
2021; Doan, Lao, and Li 2021). Several other categories of
DNN watermarking methods have also been investigated,
which are all at the algorithmic level (Fan, Ng, and Chan
2019; Uchida et al. 2017). To the best of our knowledge,
watermarking techniques have not been applied to protect
DNN hardware IPs, and prior algorithmic approaches do not
translate into hardware modifications.

Motivated by a recent work that develops a hardware wa-
termarking technique based on embedding intentional Tro-
jans into hardware IPs (Shayan, Basu, and Karri 2019) and
recent studies for injecting hardware backdoors into DNN
through the accelerator (Clements and Lao 2019; Liu et al.
2020; Hu et al. 2021; Li et al. 2018), we present a frame-
work for embedding hardware watermarks into deep learn-
ing hardware. The main concept leverages hardware back-
doors to embed a signature into the hardware by modifi-
cations to its functional blocks that can be identified with
the owner’s key DNN and key samples. Note that hardware
watermarking is fundamentally different from DNN water-
marking which protects the algorithmic IP. Typically DNN
watermarks are embedded into the model (i.e., by updating
the weights in memory), but hardware-assisted DNN wa-
termarks are also seen. Our signature only alters the pro-
tected hardware and so serves as a strong proof of owner-
ship over that hardware. We optimize the embedding using
a hardware-aware `p-ADMM algorithm that reduces the im-
pact of the watermark’s hardware overhead. Our hardware
modifications are activated under rare input combinations
and produce a minimal impact on the design’s functional-
ity. Our contributions are summarized below:

• This paper explores, for the first time, the application
of hardware watermarking techniques on DNN acceler-
ators. The work proposes a Trojan-inspired methodology
that is able to embed backdoor-based watermarks into
hardware rather than the model parameters.
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• We develop a novel hardware-aware algorithm for em-
bedding watermarks into a DNN model while constrain-
ing alterations based on their hardware mapping.

• Our experimental results demonstrate that our methodol-
ogy minimizes the embedded watermark’s impact from
both the hardware and algorithmic perspectives while
successfully embedding the hardware watermark.

Related Work
DNN Hardware Acceleration
The outstanding accuracy of DNN systems comes at the cost
of high computational complexity. As such, hardware accel-
erators for DNN inference have seen a resurgence in recent
years (Zhang et al. 2018b; Qin et al. 2020). While GPUs and
other high-performance computing platforms have enabled
the widespread utilization of deep learning, the increasing
demand for low-latency or low-power applications is driv-
ing a growing interest in more efficient platforms (Sze et al.
2020). Premium DNN accelerators integrate high-volume
computational arrays with well-orchestrated data flows that
can maximize the utilization of hardware resources (Sze
et al. 2017). As illustrated in Figure 1, when a DNN is exe-
cuted on the architecture, a mapper converts the algorithmic
computations to hardware-compatible operations. Through
careful consideration of the specific target scenario, IP de-
velopers generate efficient systems that can surpass general-
purpose solutions (Han et al. 2017).

Hardware Trojan/Backdoor
Hardware Trojans are malicious hardware modifications in-
jected during development across the supply chain. These
Trojans can be used to degrade the performance of a de-
sign, steal secured information, or give an adversary back-
door access to the device (Tehranipoor and Koushanfar
2010). Trojans are composed of two major components:
a trigger and a payload that define the activation criteria
and malicious effect, respectively. Because these modifica-
tions are designed with an emphasis on stealthiness, hard-
ware Trojans are very difficult to detect and remove, espe-
cially in the deep nanometer realm (Jain, Zhou, and Guin
2021). Recently, methodologies for injecting backdoors into
DNN models through their hardware accelerators have been
developed (Clements and Lao 2019; Liu et al. 2020; Hu
et al. 2021; Li et al. 2018). Simultaneously, an additional
work has demonstrated that hardware Trojans can be lever-
aged by a designer to embedding watermarks into hardware
IPs (Shayan, Basu, and Karri 2019).

DNN Watermarking
Watermarking is a technique conventionally deployed as a
countermeasure to multimedia IP theft (Kadian, Arora, and
Arora 2021). Concern over the ease of DNN model theft
has motivated researchers to extend these concepts to deep
learning. To this end, researchers have leveraged model poi-
soning and backdoor attacks as a method of embedding the
owner’s signature into a model (Zhao and Lao 2022; Li,
Wang, and Barni 2021). This induces abnormal outputs for
specific inputs that can identify the DNN. But such schemes

Figure 1: Individual operations in a DNN model will be
mapped to specific functional blocks in the hardware based
on the available hardware resources and data flow schemes
as discussed in (Sze et al. 2017).

are often circumventable by extending the defenses from the
adversarial perspective (Adi et al. 2018; Zhang et al. 2018a;
Yang, Lao, and Li 2021). DNN fingerprinting (He, Zhang,
and Lee 2019; Cao, Jia, and Gong 2021) has also been in-
vestigated recently, which has a similar objective, i.e., IP
ownership verification, but through extracting a fingerprint
from a classifier without altering the model (Cao, Jia, and
Gong 2021). However, these prior works are not applicable
for protecting private DNN hardware. Recent works have
proposed hardware-assisted DNN obfuscation schemes to
protect models (Chakraborty, Mondal, and Srivastava 2020;
Chen et al. 2019). These methodology are not targeted at
identifying pirated models but degrading performance when
used fraudulently.

Problem Setting
Threat Model
In this work, we consider a threat model that is consistent
with the literature of hardware watermarking (Shayan, Basu,
and Karri 2019). We assume that an adversary may attempt
to pirate a DNN accelerator through the supply chain. For
example, a malicious foundry may overproduce the devices
and illegally sell them to other customers, or an adversary
can attempt to make an illegal copy from a proprietary IP.
As discussed above, building these IPs is non-trivial and in-
volves a high cost, so adversaries have a strong economic
incentive to steal an IP without paying the legitimate owner.
Furthermore, previous schemes are targeted at verify the al-
gorithmic IPs and do not extend protection to the hardware.
In alignment with prior works (Cui et al. 2011; Shayan,
Basu, and Karri 2019), we assume the attacker does not have
access to the behavioral description of the IP.

For the watermark verification, we consider a black-box
setting, where after the deployment, the IP owner will only
be able to interact with the hardware through remote API
calls, and any intermediate values are assumed to be un-
known. The watermark should be embedded into the hard-
ware such that its presence can be easily verified through the
API. We also require that the system be general enough to
accommodate and map different models for execution.
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Figure 2: Overview of the proposed algorithm-hardware co-optimized watermarking methodology.

Problem Statement
This paper proposes an algorithm-hardware co-optimized
methodology for embedding a hardware watermark into
DNN hardware accelerators, as illustrated in Figure 2. In or-
der to watermark a hardware design, the IP owner needs to
embed an identifiable signature into the design that can be
verified after deployment. For algorithmic IPs, this has been
done by embedding backdoors into a protected DNN, F p¨q,
by altering the model’s behavior on specific key samples, xk.
Ideally, this signature embedded model, FP p¨q, should only
be altered for xk, described mathematically as:

FP pxq “

"

yk, when x “ xk,

F pxq, otherwise,
(1)

where it is required that yk ‰ F pxkq. This can be done by al-
tering the weights of F p¨q to embed a signature in the DNN.

This work extends the DNN watermarking scheme into
the hardware domain. This is accomplished by embedding
modifications into the M functional blocks that execute the
N operations of in the DNN. These modifications alter the
functionality of DNN executed on the hardware without
directly modifying the DNN itself. However, every modi-
fication to a specific functional block will alter the com-
putation of all operations executed on the block. As such,
we introduce two binary matrices: the hardware mapping,
H P t0, 1uMˆN , and a block selection mask, B P t0, 1uM ,
which identifies the hardware blocks targeted for modifi-
cation. Using these structures, we compose the block con-
strained perturbation, δk P R1ˆN , as:

δk “ δ dBH, (2)

where d signifies element-wise multiplication.
Equation (2) converts the unconstrained perturbation into

a perturbation that describes the impact of hardware modifi-
cations on a DNN. In short, B factorizes δk into groups of
elements mapped to the different hardware blocks. By ad-
justing the elements of B, we can enable or disable the per-
turbations caused by modifications to individual functional
blocks. Then, by adjusting δ we can determine the modifica-
tions needed in each functional block of the DNN. Our goal
is to find a δk that can alter the hardware’s functionality on

a key DNN, Fkp¨q, when evaluating on the key samples, xk.
We denote the execution of a model on hardware modified
to generate a perturbation with a superscript. The hardware
watermarking objective can be described by:

F δdBH
k pxq “

"

yk, when x “ xk,

Fkpxq, otherwise,
(3)

while any other DNNs executed on the hardware remains un-
changed, i.e., F δdBHpxq “ F pxq. As embedding the modi-
fications in the hardware does not require modifying the key
DNN or key sample, the execution of Fkpxkq on any unmod-
ified hardware will produce the expected results from the
algorithmic perspective. This is also a fundamental differ-
ence from prior DNN watermarking methods which enables
hardware verification.

As illustrated in Figure 2, to verify the design, the IP
owner first accesses a stolen watermarked version of the
hardware accelerators and the original watermark-free ver-
sion. Then, the owner must load the key DNN, Fkp¨q, onto
the hardware. First, establishing the functionality of both de-
signs is demonstrably the same when executing Fkp¨q over
a dataset randomly drawn from the input domain. Then, the
IP owner then compares the functionality of both designs
when computing the key sample, F δdBH

k pxkq ‰ Fkpxkq.
The owner can then identify the irregular behavior as an
embedded signature verifying ownership of the design. This
verification procedure follows a scheme similar to those seen
in the algorithmic perspective (Guo and Potkonjak 2018).

Methodology
High-level Overview
The proposed method is mainly composed of three stages.
First, we determine a block constrained perturbation, δk,
that can produce the signature embedded model F δk

k p¨q

by perturbing Fkp¨q. As the end goal is to embed these
perturbations into the hardware, δk is carefully crafted
so that they are constrained to operations mapped to the
same hardware blocks. To this end, as opposed to perturb-
ing the weight of Fkp¨q, we introduce the perturbations on
the functional blocks, as seen in previous hardware back-
door attacks (Clements and Lao 2019). We utilize a novel
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hardware-aware algorithm that constrains δk based on the
hardware mapping of the DNN’s operations. We then mini-
mize the effect of δk within each hardware block by filtering
out redundant perturbations to produce, ρk, the operation re-
duced perturbation. ρk defines which of the specific opera-
tions executed within the target hardware blocks that should
be perturbed. Then, in the final stage of the algorithm, we
can convert ρk into a hardware modification set, µk, that
defines the specific trigger and payload signals. These mod-
ifications can then be embedded into the functional blocks
to induce the desired behavior when executing Fkpxkq.

Block Constrained Perturbations
The first step in the proposed methodology is to determine
a set of perturbations, δk, seen in Equation 2. To minimize
the number of hardware blocks that need to be modified, we
craft δk by targeting DNN operations executed on the same
functional block. We can utilize the decomposition of δk,
δdBH, as discussed in the previous section. A δk that em-
beds the signature should satisfy the optimization problem:

minimize
δ,B

LpF δdBH
k pxkq, ykq,

subject to 1TB ă c, B P t0, 1uM .
(4)

Here L represents a loss function, such as cross entropy loss,
that quantifies the watermarking objective with respect to a
target output, yk. 1TB ă c is a cardinality constraint that
defines an upper bound on the number of hardware blocks
that B selects to be perturbed. To ensure that we find a min-
imal choice for B, we are able to begin our search by using
a large value for c and iteratively decrease it until a valid so-
lution cannot be found. Because δ is a continuous function,
while B is a discrete integer, Equation (4) presents a Mixed
Integer Programming (MIP) problem.

A methodology, known as `p-Box Alternating Direction
Method of Multipliers (`p-ADMM), for solving such MIP
problems has recently emerged (Wu and Ghanem 2019).
This method has been broadly employed in many inte-
ger programming tasks for its superior performance (Fan
et al. 2020; Zhou et al. 2020; Zhang et al. 2021). Follow-
ing this methodology, we decompose the integer constraint
as: B P t0, 1uM ô B P Sb X Sp where Sb “ r0, 1sM

and Sp “ tB : }B ´ 1
2 p1q}

2
2 “

M
4 u. A detailed proof of

this relationship can be found in the original paper (Wu and
Ghanem 2019). Intuitively, these constraints define an `8-
box and corresponding `2-sphere which intersects the box
only at its corners. These structures are carefully positioned
so that their intersection contains only all binary combina-
tions of B. This substitution allows Equation (4) to be refor-
mulated as a continuous representation of the MIP problem:

minimize
δ,B,S1PSp,S2PSb

LpF δdBH
k pxkq,ykq,

subject to 1TB ă c, B “ S1, B “ S2,
(5)

where S1 P Sp and S2 P Sb. Because of the element-wise
product between δ and BH, this problem can iteratively
solved by alternating between fixing one variable while op-
timizing the other, as seen in Algorithm 1.

Algorithm 1: Block Constrained Perturbations

Require: Fkp¨q, Lp¨q, H, xk, yk
Hyperparameters: c, Tδ , TB , εδ , εB , ρ1, ρ2, ρ3
Ensure: Fkpxkq ‰ yk

1: B “ 1; δ “ 0
2: while 1TB ą c or F δdBH

k pxkq ‰ yk do
3: for i P r1, Tδs do

4: δ “ δ ´ εδ
”

BLpF δdBH
k pxkq,ykq

Bδ

ı

5: end for
6: Z1 “ Z2 “ 1; Z3 “ 1
7: for i P r1, TBs do
8: S1 “ PSppB`

1
ρ1
Z1q

9: S2 “ PSbpB`
1
ρ2
Z2q

10: B “ B´ εB
“

δL
δB

‰

# L is defined in Equation (9)
11: Update the dual parameters using Equation (16)
12: end for
13: end while
14: δk “ δ dBH
15: return δk

First, we initialize B to 1 and fix its value. This allows
Equation (5) to be simplified to:

minimize
δ

LpF δdBH
k pxkq, ykq. (6)

This is a standard optimization problem similar to those seen
across the field of machine learning, which can be solved
using simple gradient descent based methods by iteratively
updating δ according to Equation (7):

δ “ δ ´ εδ

«

BLpF δdBH
k pxkq, ykq

Bδ

ff

. (7)

Here εδ is a learning rate used to control the speed of con-
vergence during gradient descent.

Second, for a fixed value of δ, Equation (5) simplifies to

minimize
B,S1PSp,S2PSb

LpF δdBH
k pxkq, ykq,

subject to 1TB ă c, B “ S1, B “ S2.
(8)

This optimization problem should be solved by using the
ADMM. The augmented Lagrangian function of Equa-
tion (8) can be expressed as:

.LpB,S1,S2,Z1,Z2,Z3q “ LpF δdBH
k pxkq, ykq

` pZ1q
T pB´ S1q ` pZ2q

T pB´ S2q `
ρ1
2
}B´ S1}

2
2

`
ρ2
2
}B´ S2}

2
2 `

ρ3
2
p1TB´ cq ` h1pS1q ` h2pS2q.

(9)
Here Z1 P RM , Z2 P RM , and Z3 P R1 are dual vari-
ables with corresponding penalty parameters: ρ1, ρ2, and ρ3.
While h1pS1q and h2pS2q are boolean valued functions that
return 1 when S1 P Sp or S2 P Sb, and 0 otherwise.

The first step in solving Equation (8) is to update S1 by
solving:

S1 “ argmin
S1PSp

pZ1q
T pB´ S1q `

ρ1
2
}B´ S1}

2
2. (10)
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Projecting the unconstrained solution into Sp, we get:

S1 “ PSppB`
1

ρ1
Z1q. (11)

A standard solution when projecting to the `8-box is to
clip all values back within the space using PSppSq “

maxpminpS,1q,0q.
Second, S2 is updated by minimizing Equation (12):

S2 “ argmin
S2PSb

pZ2q
T pB´ S2q `

ρ2
2
}B´ S2}

2
2. (12)

Similar to S1, this can be found by projecting the uncon-
strained solution back onto Sb.

S2 “ PSbpB`
1

ρ2
Z2q. (13)

where PSbpSq “
?
M
2

S´0.5p1q
}S´0.5p1q} `

1
2 p1q.

Next, B is updated by perturbing the variable according
to the augmented Lagrangian function, L, as below.

B “ B´ εB
„

δL
δB



, (14)

where

δL
δB

“
δLpF δdBH

k pxkq, ykq

δB
` ρ1pB´ S1q ` Z1

` ρ2pB´ S2q ` Z2 ` pρ3p1
TB´ cq ` Z3q1.

(15)
Finally, we update the dual variables with:

Z1 “ Z1 ` ρ1pB´ Z1q

Z2 “ Z2 ` ρ2pB´ Z2q

Z3 “ Z3 ` ρ3p1
TB´ cq,

(16)

before recomputing S1 and S2 and perturbing B until a valid
solution for Equation (8) is found. We iteratively improve δk
by alternating between optimizing Equation (6) and Equa-
tion (8) as seen in Algorithm 1.

Intra-block Perturbation Reduction
The block constrained perturbation, δk, is targeted at mini-
mizing the number of hardware blocks perturbed by the wa-
termarking algorithm. However, it does not constrain the to-
tal perturbation within these groupings. Thus, it is likely that
redundant perturbations that contribute little to the water-
mark’s performance are contained in δk. Thus, the next step
in the algorithm removes these redundant perturbations find-
ing a minimal subset of the perturbations from δk required
to embed the watermark.

We can mathematically define ρk “ Rdδk, an operation
reduced perturbation, where R P t0, 1uN specifies which
perturbations to keep. We solve for R using:

minimize
R

}1TR},

subject to FRdδk
k pxkq “ yk.

(17)

We solve this problem by iteratively selecting the elements
of δk with the greatest impact on the objective function and

Algorithm 2: Reducing Intra-block Perturbations

Require: δk, Lp¨q, F p¨q, C
1: Rρ “ t0u
2: RN “ tRn| }Rn}8 “ 1, 1TRn “ 1, Rn d δk ‰ 0u

3: while FRrdδk
k pxkq ‰ yk @Rr P Rρ do

4: RρN “ tRr `Rn|Rr dRn “ 0,Rr P Rρ,Rn P RNu

5: Loss “ r s
6: for Rrn P RρN do
7: lrn “ LpF

Rrndδk
k pxkq, ykq

8: Loss.append( (Rrn, lrn) )
9: end for

10: sort by loss(Loss)
11: Rρ “ tLossr0 : C ´ 1sr0su
12: end while
13: R “ argmin

RrPRρ

LpFRrdδk
k pxkq, ykq

14: return R

including them in the ρk by enabling them with R. The al-
gorithm used to search for the ρk is inspired by the beam
search algorithms commonly seen in natural language pro-
cessing (Meister, Cotterell, and Vieira 2020).

The search algorithm begins with two sets: Rρ “ 0 and
RN “ tRn| }Rn}8 “ 1, 1TRn “ 1, Rn d δk ‰ 0u.
We can understand RN as the set of all meaningful single
bit iterations of R. The algorithm’s goal is to iteratively in-
corporate members from RN into Rρ by selecting the most
efficient choice at each step of the algorithm. We do this
by generating the cartesian sum of both sets and determine
which the choice of Rr P Rρ and Rn P RN best minimizes
the loss function, LpF pR

r
`Rn

qdδk
k pxkq, ykq. These choices

are then used to populate Rρ during the next iteration of
the algorithm iteratively increasing the number of bits se-
lected by the members of Rρ. Further, so that we don’t sac-
rifice finding a superior solution by selecting the best choice
at each iteration, we incorporate beam search techniques by
keeping the top C choices for Rρ rather than only the best.
Algorithm 2 presents our implementation of this process.

Hardware Watermark Modifications
It has been demonstrated that the hardware Trojans can be
successfully leveraged to embed watermarks into a hardware
design for conventional circuits (Shayan, Basu, and Karri
2019). Inspired by this, we convert the operation reduced
perturbation, ρk, to a hardware modification set, µk. Rather
than a static perturbation applied to all inputs, it identifies the
perturbation as a target trigger signal for activating the wa-
termark and a target signal that the payload functionality that
should be induced in the operation. A trigger and payload
can then be designed around this information and embedded
in the target functional block to produce the watermarked
hardware Hµkp¨q. The specific design depends on the target
hardware block and the stealth objectives of the designer.
As a case study in this paper, our implementation embeds
small combinational logic circuits into the target hardware,
as shown in Figure 3. In our example, µk contains observed
binary input patterns to an operation when computing, xk,
and bit flip patterns that can produce the perturbation.
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Dataset Model (Acc%) ρk%˘ SD ESR%˘ SD ∆Acc% ˘SD ∆Fid% ˘SD ∆Area% ˘SD

Cifar10 ResNet18 (93) 0.18˘ 0.09 100.0˘ 0.00 0.68˘ 0.14 0.12˘ 0.80 0.22˘ 0.39
Cifar100 ResNet18 (77) 1.29˘ 0.86 100.0˘ 0.00 0.30˘ 0.42 0.25˘ 0.39 1.72˘ 0.72
ImageNet ResNet18 (89) 0.15˘ 0.07 100.0˘ 0.00 0.67˘ 0.47 0.68˘ 0.47 0.99˘ 0.44

Table 1: Performance of the Proposed Hardware Watermarking on DNN Accelerators
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Figure 3: (a) A convolutional neural network hardware ac-
celerator derived from (Zhang and Li 2017). (b) We can em-
bed small combinational circuits into the hardware blocks
of the IP. These circuits detect the target input combinations
and flip the corresponding output bits as specified by µk.

Experimental Evaluation
Experimental Setup
We conduct these experimental evaluations on multiple im-
age classification models for the Cifar10, Cifar100, and Im-
ageNet datasets. The software simulations are developed us-
ing the deep learning package, Pytorch. All software sim-
ulations are utilized for evaluating the impact of the hard-
ware modifications on the algorithmic functionality of DNN
benchmarks consistent with the prior work on hardware-
assisted deep learning model obfuscation (Chakraborty,
Mondal, and Srivastava 2020). We implemented a target
hardware centered around a Matrix Multiply Unit (MMU)
composed of a 32 ˆ 32 MAC array, similar to the TPU ar-
chitecture. We composed H for all of the experiments using
this hardware architecture which utilizes a weight stationary
hardware mapping scheme. For our hardware experiments,
we implement this design in Verilog on an Ultrascale+ Kin-
tex using the Xilinx Vivado and an ASIC design using Syn-
opsys Design Compiler by mapping to a 32nm technology
node. We embed the watermark modifications into the de-
sign to determine their cost from the hardware perspective.

Evaluation Metrics
We evaluate the embedded hardware watermarks from both
the algorithm and hardware perspectives. To do this, we uti-
lize various metrics that help quantify different aspects of
the embedded watermarks efficacy. To help in this evalua-
tion, we define the following metrics.

• Embedding Success Rate (ESR) quantifies the suc-
cess rate of producing modifications that can alter the

key DNN’s functionality on the modified hardware. For-
mally, we define this metric as:

ESR “
1

K

K
ÿ

k“1

pF δk
k pxkq ““ ykq ˆ 100%. (18)

K is the number of key samples used in the evaluation.
• Accuracy Difference (∆Acc) measures the effect of em-

bedded modifications on the key DNN’s functionality on
a subset of its natural inputs. We calculate this value with
the following equation over on a set of validation data.

∆AccpFkp¨qq “ |AccpF δk
k p¨qq ´ AccpFkp¨qq|. (19)

This metric is used to evaluate the scenario in which the
key DNN is executed on the modified hardware, but the
key sample is not present.

• Fidelity Difference (∆Fid) measures the fidelity in the
hardware’s algorithmic functionality. We quantify this
characteristic using:

∆FidpF p¨qq “ |AccpF δkp¨qq ´ AccpF p¨qq|. (20)

This metric evaluates the modified hardware’s function-
ality on alternative benchmark models F p¨q that were not
used as Fkp¨q on a validation dataset.

• Triggering Ratio (Tratio) is a metric used in quantify
how active the modifications embedded in a design are.
The triggering ratio is defined as:

Tratio “
# of times triggered

# of evaluations
ˆ 100%. (21)

The more active the hardware modifications are in a cir-
cuit, the more likely it is for them to produce abnormal
effects like increased power draw. Ideally, Tratio should
be as small as possible.

Efficacy
In Table 1, we evaluate the efficacy of embedding water-
marks by using the proposed framework and its impact on
the system from both the algorithmic and hardware perspec-
tives. It should be noted that in computing ∆Fid, we calcu-
late the metric for multiple benchmark DNNs and average
the results. The break down of the individual results, along
with the models Tratio, for Cifar10 are shown in Table 3.
The value of ρk% represents the percentage of operations
in the key DNN that are targeted for modification, which is
quite small for all the models. As each of these operations
needs to be represented in the hardware modifications and
contribute to functional changes in the DNN, we observe
that this value tends to correlate with the impact of the em-
bedded modifications. It can be seen from these results that
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Design LUT FF DSP Power (W)
Watermark-free 4427 (2%) 27808 (6.4%) 512 (28%) 0.592
Watermarked 4435 (2%) 27808 (6.4%) 512 (28%) 0.593

Overhead 0.18% 0% 0% 0.17%

Table 2: FPGA Hardware Overhead. Utilization is reported inside the parenthesis.

Model Acc% Tratio% ∆ Fid%
VGG11 91.95 0.67 0.206
VGG13 94.03 0.67 0.218
VGG16 93.70 0.75 0.262
VGG19 93.63 0.78 0.234

ResNet34 92.92 0.14 0.009
ResNet50 93.86 0.26 0.009
Dense121 93.30 0.17 0.019

Table 3: Impact on the Functional Fidelity.

the ESR of the proposed scheme is 100% for all the sce-
narios evaluated. This is possible because we can relax the
carnality constraint, c, in Equation (4) until we can mod-
ify enough of the hardware blocks to ensure a solution is
found. Our experimental results demonstrate that the overall
impact of the modifications on both the hardware overhead
and algorithmic functionality is minor. Note that the hard-
ware performance is evaluated based on FPGA/ASIC accel-
erators. For example, we observe that both the ∆Acc and the
average ∆Fid are under 0.7% for all scenarios. Likewise, the
embed watermark only increases the hardware overhead of
the device by 1% for the ImageNet classifier. We can also
conclude that the proposed methodology generalizes well to
hardware intended for large-scale datasets.

Trade-offs
In the previous experiments, we ensured a 100% ESR by
relaxing the limitation on the cardinality constraint, c. Now
we study the relationship between ESR and the methodol-
ogy’s impact on the target hardware under smaller values of
c. We plot ESR against ∆Acc and ESR verse δk%, the
number of functional hardware blocks modified for the Ci-
far10 ResNet18 classifier, in Figure 4. These plots exhibit
an obvious trade-off between ESR and the yield impact,
in terms of both ∆Acc and δk%. Nevertheless, the overall
modifications generated by the hardware watermark from
both algorithmic and hardware perspectives are small. On
the other hand, we can also effectively reduce such modifi-
cations if a smaller ESR is acceptable, as long as there is
sufficient entropy for IP ownership verification. Both ∆Acc
and δk% are halved if ESR can be relaxed to 80%.

Hardware Overhead
Finally, we evaluate the overhead required for embedding a
watermark into a target DNN hardware accelerator. As we
noted above, we use a target hardware with a 32 ˆ 32 Ma-
trix Multiply Unit(MMU) similar to (Chakraborty, Mondal,
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Figure 4: Algorithmic and Hardware Trade-offs

and Srivastava 2020). We select a random modification set
from the experiments above. We implement a combinational
circuit that can embed the targeted functionality into the Ver-
ilog design. The results of the hardware overhead on Ultra-
scale+ Kintex FPGA are summarized in Table 2. It can be
seen that the magnitude of hardware modification is min-
imal. For instance, there is only a 0.18% increase in the
number of LUTs used, while the utilization for FF and DSP
remain the same. The power overhead is also only 0.17%,
which further verify the transparency of the proposed hard-
ware watermarking method. In addition, we present the re-
sults from ASIC implementation in Table 4, which is based
on TinyTPU (Shinn 2019), a small scale version of Google’s
TPU processor. We also extend the FPGA MMU design to
ASIC. We can directly apply the watermark modifications to
these designs with little complication. We also observe very
little overhead in this scenario with only a 0.054% increase
in area and a 0.038% increase in power consumption.

Area Cells Power Time
TinyTPU 0.144% 0.119% 0.169% 0.00%

MMU 0.054% 0.058% 0.039% 0.00%

Table 4: ASIC Hardware Overhead: TinyTPU.

Conclusion
In this paper, we proposed an algorithm-hardware co-
optimized watermarking methodology for DNN accelera-
tors. Based on the mapping from DNN operations to hard-
ware, the algorithm can generate the perturbations that are
both limited in the number of hardware blocks that need
to be modified and the degree of modifications within each
block, allowing for minimal overhead costs when embed-
ding watermarks. Our experimental results have demon-
strated the efficacy of the proposed scheme and the preser-
vation of the intended functionality, and the minimal effect
of the embedded modifications on the design.
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