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Abstract
Student assessment is one of the most fundamental tasks in
the field of AI Education (AIEd). One of the most common
approach to student assessment is Knowledge Tracing (KT),
which evaluates a student’s knowledge state by predicting
whether the student will answer a given question correctly
or not. However, in the context of multiple choice (polyto-
mous) questions, conventional KT approaches are limited in
that they only consider the binary (dichotomous) correctness
label (i.e., correct or incorrect), and disregard the specific op-
tion chosen by the student. Meanwhile, Option Tracing (OT)
attempts to model a student by predicting which option they
will choose for a given question, but overlooks the correct-
ness information. In this paper, we propose Dichotomous-
Polytomous Multi-Task Learning (DP-MTL), a multi-task
learning framework that combines KT and OT for more pre-
cise student assessment. In particular, we show that the KT
objective acts as a regularization term for OT in the DP-MTL
framework, and propose an appropriate architecture for ap-
plying our method on top of existing deep learning-based
KT models. We experimentally confirm that DP-MTL sig-
nificantly improves both KT and OT performances, and also
benefits downstream tasks such as Score Prediction (SP).

Introduction
The field of AI Education (AIEd) is concerned with devel-
oping AI systems that facilitate human learning, and has the
potential to provide personalized education to a wider audi-
ence at an affordable cost. Student assessment, the process
of evaluating a student’s knowledge level, is one of the most
fundamental tasks in AIEd. Proper student assessment can
then be used for many downstream educational tasks, such
as score prediction (SP) (Su et al. 2018; Yin et al. 2019;
Choi et al. 2021) and personalized content recommendation
(Chen, Lee, and Chen 2005; Wang 2008; Wang et al. 2016;
Ai et al. 2019).

Knowledge Tracing (KT) (Corbett and Anderson 1994)
models a student’s knowledge state by predicting whether
the student will answer a given question correctly or not.
Due to the method’s simplicity and domain-agnosticity, KT
has been extensively used for student assessment in AIEd
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(Choi et al. 2020a; Piech et al. 2015). However, for edu-
cational contents that involve multiple choice (polytomous)
questions, KT only considers the binary (dichotomous) label
of correctness, and does not consider the student’s option of
choice. KT thus fails to distinguish between students who
answered a given question incorrectly, when in reality, one
student’s answer might have been closer to the correct one
than the other student’s.

Option Tracing (OT) (Ghosh, Raspat, and Lan 2021;
Thissen and Steinberg 1984) is an approach that explicitly
models the student’s response, i.e., option choice, to a mul-
tiple choice question. While OT takes into account the stu-
dent’s option choice information, it does not consider the
student’s correctness. As a result, OT may fail to trace the
student’s knowledge state properly. This motivates a multi-
task learning scheme that leverages both correctness labels
and option labels.

In this paper, we propose Dichotomous-Polytomous
Multi-Task Learning (DP-MTL), where the model learns to
predict both the student’s correctness and option choice for
a given question. This way, DP-MTL can track the student’s
knowledge state at a more granular level. In our experiments,
we demonstrate that DP-MTL indeed improves KT, OT, and
SP performances. We expect that DP-MTL will enable a
more accurate student representation learning, which would,
in turn, benefit many other downstream educational tasks.

The main contributions of our paper are as follows:
• We introduce DP-MTL and show that, in this framework,

the KT objective acts as a regularization term for OT.

• Additionally, we propose an architecture design for com-
bining KT and OT on top of existing KT models.

• We experimentally confirm that our method significantly
improves KT, OT, and SP performances when applied on
top of three popular KT models, based on two different
datasets.

To the best of our knowledge, this is the first work that
combines KT and OT for better student assessment.
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Related Works
Knowledge Tracing
Knowledge Tracing (KT) is a student assessment task
that models a student’s knowledge state by predicting
whether a student will answer a given question correctly or
not. Dichotomous Item Response Theory (D-IRT) models
(Kingston and Dorans 1982; Way and Reese 1990; Chen,
Lee, and Chen 2005) predict the student’s answer correct-
ness using extracted user and item parameters, where a user
parameter and an item parameter each corresponds to the
user’s skill and the question’s difficulty, respectively.

Collaborative filtering (CF) method, which is equivalent
to the multi-dimensional D-IRT method (except for the ab-
sence of sigmoid function) (Vie and Kashima 2019), models
each user (item) as a user (item) vector, instead of a scalar
value. Though CF was originally developed for recommen-
dation systems (Koren, Bell, and Volinsky 2009), CF has
been extensively used for KT (Khosravi, Cooper, and Kitto
2017; Vie and Kashima 2019). Recently, Neural Matrix Fac-
torization (NMF) methods proposed to replace the conven-
tional dot product used in CF with neural network computa-
tions (He et al. 2017; Xue et al. 2017).

Sequential KT approaches model the student’s learning
trajectory, as opposed to modeling the interactions at an
atomic level as done in D-IRT and CF. Bayesian Knowledge
Tracing (BKT) (Corbett and Anderson 1994) is the origi-
nal KT method, which traces the student’s knowledge state
based on hidden Markov model. Recently, a lot of research
effort went into applying various deep learning architectures
for sequential KT, including RNN-based models (Piech et al.
2015; Minn 2020), Dynamic Key-Value Memory Networks
(DKVMN) (Zhang et al. 2017), and transformer-based mod-
els (Pandey and Karypis 2019; Choi et al. 2020a).

All the aforementioned methods consider KT exclusively,
and do not perform OT. We apply our proposed method DP-
MTL on top of three popular KT methods, namely, (1) D-
IRT, (2) collaborative filtering, and (3) LSTM-based KT,
and demonstrate that DP-MTL consistently improves the KT
performance across all models considered.

Option Tracing
Option Tracing (OT) (Ghosh, Raspat, and Lan 2021) is a
student assessment task that traces a student’s knowledge
state by predicting the student’s exact answer choice given
a multiple choice question. Polytomous IRT (P-IRT), in an
analogous manner to D-IRT, predicts the student’s option
choice using the extracted user parameters and item option
parameters. Recently, Ghosh, Raspat, and Lan (2021) pro-
posed to perform OT based on modified deep KT models for
a more accurate student assessment. However, (1) they did
not consider a multi-task learning setup that simultaneously
performs both KT and OT; and (2) their architecture cannot
take account of subtle details when performing OT (e.g., per-
muting the options (A,B,C) to (B,A,C) will not change the
prediction from (pA, pB , pC) to (pB , pA, pC)). We not only
consider the multi-task learning of KT and OT, but also pro-
pose an appropriate deep learning architecture accordingly.

Score Prediction
Student score prediction (SP) is another important student
assessment task we consider in this work (Sweeney, Lester,
and Rangwala 2015; Iqbal et al. 2017; Loh, Chae, and
Hwang 2020). Prior SP methods rely on collaborative fil-
tering (Elbadrawy and Karypis 2016; Sweeney et al. 2016),
and regression models (Morsy and Karypis 2017; Ren et al.
2019). Other recent methods utilize KT algorithms, and ad-
dress SP as a downstream task (Liu et al. 2019; Choi et al.
2021). We also treat SP as a downstream task, and show that
DP-MTL leads to improved SP performance.

Multi-Task Learning
Multi-Task Learning (MTL) (Caruana 1997) is a machine
learning approach that trains a model to perform several re-
lated tasks simultaneously. MTL posits that training signals
from a particular domain help form inductive bias for other
related tasks. In this work, we demonstrate that KT and OT
are an example of such related tasks that, when performed
simultaneously, are mutually beneficial.

Methodology
In this section, we propose Dichotomous-Polytomous Multi-
Task Learning (DP-MTL) that learns to perform both KT
and OT simultaneously. In particular, we show that in the
DP-MTL framework, the multi-task learning objective has
an explicable interpretation: the KT loss acts as a regular-
ization term for OT. Also, we propose an architecture design
necessary for applying DP-MTL on top of existing KT mod-
els.

Notations
This section introduces the notations that will be used
throughout this paper.

Users Within the total population of n students, each stu-
dent u, 1 ≤ u ≤ n, has a d dimensional user parameter
θu ∈ Rd. Each dimension should model a user’s skill level
in a particular knowledge component (KC).

Choices/Options The possible choice set for each ques-
tion i with j total multiple choice options is denoted by
Oi = {o1i , o2i , . . . , o

j
i}. In other words, user u’s choice for

given item i is ou,i ∈ Oi. The correct choice o∗i for given
item(question) i must always be within the set of choices
(o∗i ∈ Oi).

Items For a standardized multiple choice question exami-
nation with a total of m questions, each question i (1 ≤ i ≤
m) with choice k (1 ≤ k ≤ j) has d dimensional item pa-
rameters per each choice, ai,k = (a1i,k, a

2
i,k, . . . , a

d
i,k) ∈ Rd.

For simplicity, we denote ai to be the set of item parameters
with each choice ai = (ai,1, ai,2, . . . , ai,j)

DP-MTL Training
Dichotomous Option Correctness (D) The conventional
dichotomous model is trained by minimizing the negative
log likelihood of observing the interactions that consists of
the user, item, and the pair’s corresponding correctness. This
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Figure 1: Illustration of DP-MTL. When the student chooses the correct answer, KT, OT, and DP-MTL are equivalent (Upper).
However, when the student chooses the incorrect answer, DP-MTL interpolates between KT and OT. (Lower).

is equivalent to maximizing the conditional probability of
the user responding correctly/incorrectly to the item, based
on the student interaction data. In other words,

LD(yu,i;θu, ai) = yu,ilogP (ŷu,i = 1|θu, ai)
+ (1− yu,i)logP (ŷu,i = 0|θu, ai)

(1)

is minimized, where ŷu,i is the prediction for u getting the
question i correctly, and yu,i is the correctness label included
in {0, 1}.

Polytomous Option Choice (P) Training of a polytomous
model is done by minimizing the negative log likelihood
LP (θu,ai) of a user u responding to a question i with choice
ou,i:

LP (ou,i;θu, ai) = logP (ôu,i = ou,i|θu, ai). (2)

Here, ôu,i is the predicted categorical variable that repre-
sents the option choice of student u for the given question i,
and ou,i is the option label.

Substituting P (ŷu,i = 0|θu,ai) from Equation 1 with the
sum of probabilities of incorrect choices

∑
oji ̸=o∗i

P (ôu,i =

oji |θu,ai), LD becomes

LD =yu,ilogP (ôu,i = o∗i |θu, ai)

+ (1− yu,i)log[
∑

oji ̸=o∗i
P (ôu,i = oji |θu, ai)]

(3)

DP-MTL DP-Multi Task Learning (DP-MTL) is a com-
bined version of option correctness (D) and option choice

(P) with a ratio of λ : 1− λ where 0 ≤ λ ≤ 1. Abbreviating
notations for simplicity’s sake, we define DP-MTL’s training
objective as follows:

LDP = λLD + (1− λ)LP (4)
The objective function of DP-MTL could be thus derived

by simply combining the two objective functions.
That is, for all u, i such that ou,i = o∗i , given the user

answer was correct,

LDP (yu,i, ou,i;θu, ai) = logP (ôu,i = o∗i |θu, ai), (5)

and for all u, i such that oi,j ̸= o∗i , given the user answer
was incorrect we have:

LDP (yu,i, ou,i;θu, ai) =λlog[
∑

o
j
i ̸=o∗i

P (ôu,i = oji |θu, ai)]

+ (1− λ)logP (ôu,i = ou,i|θu, ai).
(6)

Note that the objective function is equivalent to that of
Equation 1 when the user chooses the correct option o∗i , re-
gardless of λ value, as shown in Equation 5. However, if the
user answers incorrectly ou,i ̸= o∗i for a given item, not only
does the likelihood that the user selects the specific choice
increase, but also does the likelihood corresponding to the
other incorrect options, proportional to λ. Figure 1 provides
a schematic of how DP-MTL controls likelihood for each
option.

Although the underlying motivation is a simple weighted
average between the two tasks’ losses within a multi-
task learning framework, the resulting objective Equation 6
shows that the two tasks connect intuitively in a form of reg-
ularization. From an option tracing perspective, increasing
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Figure 2: (a) Previous Option Tracing does not use any option information and relies on pre-defined positions for each choice.
(b) Our proposed architecture instead uses option embeddings directly to output logits for each option, independent of positions.

λ from 0 to 1 gradually limits the model’s discrimination
among the incorrect options.

As an example where such regularization might help, con-
sider an exam consisting of questions with incorrect option
choices that do not discriminate students’ skill level to any
significant degree (i.e. an exam with low discrimination be-
tween student cohorts). Under such circumstances, the op-
timal λ value will be large, and thus the DP-MTL model
will be reduced down to a dichotomous option correctness
model.

Applying DP-MTL to KT Models
In this subsection, we explain how to apply our proposed
DP-MTL framework to existing KT models.

DP-IRT is the application of DP-MTL to a CF-based op-
tion tracing model extended from Vie and Kashima (2019).
Using Equation 4 as the objective function, we can combine
KT and OT in a straightforward manner.

DP-NMF is the application of DP-MTL to NMF (He et al.
2017) with some tweaks, as applying DP-MTL to NMF is
less trivial than the case of the above DP-IRT. Recently,
Ghosh, Raspat, and Lan (2021) proposed to perform OT
with NMF. However, they treated OT as a multi-class clas-
sification problem without giving option information as the
input. For instance, given a set of 5-choice problems, to gen-
erate the predictions they share a 5-class Softmax layer as in
Figure 2. This approach may encounter two issues:

• Positional Bias - Prone to learning noises that we do not
want to model. For example, information like “a user
may habitually guess for option C” or “the real answer
was often option B” can be modeled.

• Functionality - Unable to handle cases when the number
of choices differ for each question, or when the multiple
choice order of each question is mixed for different users.

To address these issues, in DP-NMF, we provide option in-
formation to the input and generate separate output repre-
sentations for each option.

DP-BiDKT is the application of DP-MTL to DKT (Piech
et al. 2015) with similar tweaks based on the same reasoning
as in the above DP-NMF (Figure 2). Note that for datasets
we consider, we use a Bidirectional LSTM (Hochreiter and
Schmidhuber 1997), hence the name BiDKT. We would also
like to point out that we can easily apply similar modifi-
cations to Transformer-based (Vaswani et al. 2017) models
(Pandey and Karypis 2019; Choi et al. 2020a).

Experiment Setup
The proposed DP-MTL framework is evaluated on the three
models explained in Section 3 (DP-IRT, DP-NMF, DP-
BiDKT) and three tasks (KT, OT, SP), based on two differ-
ent datasets (ENEM, TOEIC). KT and OT serve as primary
tasks, while Score Prediction (SP) serves as a downstream
task, where we evaluate the quality of the student represen-
tation obtained from KT and OT. For KT, we measure the
performance with ROC-AUC (Area under the ROC) as it is
a binary classification task, while for OT, we use Accuracy
as performance measure. For SP, a regression task of predict-
ing the student’s exam score, we use Mean Absolute Error
(MAE) as performance measure.

In our experiments, we first obtain student and question
representations via DP-MTL framework, then fit a simple
score prediction model based on training user/student split.
The score prediction module consists of user representation
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Dataset Num. Users Num. Questions Sparisty Type Description

ENEM 10k 185 0% Exam Brazil’s standardized national college entrance exam.
TOEIC 9877 13399 4% Snapshot User’s 2-week snapshot from Choi et al. (2020b)

Table 1: A summary of the two datasets used in our experiments: ENEM and TOEIC.

Model Hyper-parameter Search Space

Common Mixing Ratio λ {0.0, 0.1, ...1.0}
Embedding Dimension {1, 4, 8, 16, 32, 64}

NMF Num. Layers {1, 2, 3, 4}Bi-DKT

Table 2: The table shows the hyper-parameter search space
for all models and datasets considered in our experiments.

fed into a simple linear regression model followed by iso-
tonic regression. The model’s performance is measured by
the test MAE metric, which also serves as a quality measure
for the student representation θ from DP-MTL framework.

Datasets
ENEM ENEM dataset in our experiment consists of
10000 students’ question solving record on 185 questions
from 2019 Exame Nacional do Ensino Medio (ENEM) ex-
amination. In ENEM, every student solved all 185 questions,
thus providing a dense matrix of students and questions.
For score prediction task label, we use sum of the 4 section
scores for each student1.

TOEIC 9877 active users’ interaction dataset within an
online Intelligent Tutoring System for preparing Test of En-
glish for International Communication (TOEIC) exam was
used as an additional real-life dataset. The students solved
different sets of questions within a question bank of 13399
questions. The score dataset consists of the students’ self-
reported official TOEIC score out of a total score of 9902.

Sparsity Ablation
Due to the large number of questions in TOEIC, the orig-
inal dataset EdNet (Choi et al. 2020b) is extremely sparse.
For inference performance and sparsity ablation, three dif-
ferent versions of the original dataset is created. Only top
N% of questions (columns) solved by most students and N%
of students (rows) who solved most questions are preserved,
where N is set to be 10, 25, and 50. Thus, Top 10% version
yields smallest and most dense (4% sparsity) interaction ma-
trix, while Top 50% version yields largest and most sparse
(74% sparsity) one.

Hence, to verify our methodology’s robustness against sit-
uations with data sparsity, different versions of ENEM train-
ing interaction dataset were also created by randomly drop-

1The entire code, ENEM, and TOEIC datasets are available at:
https://github.com/godtn0/DP-MTL

2Due to privacy issues, we do not release score prediction
dataset for TOEIC.

ping the student-question interaction pair at different ratios
(0%, 10%, ..., 70%). In the following section, we report all
three tasks’ results based on all imposed sparsity ratios.

Results and Discussion
In order to evaluate the performance of the proposed DP-
MTL framework, two sets of evaluation results are reported.
First, the performance difference based on different values
of λ is reported to demonstrate the value of multi-task learn-
ing in creating a holistic student representation. Second, the
individual performances of individual models on various
sparsity levels is reported to determine the most effective
MTL model for the tasks of KT and SP.

Impact of DP-MTL: λ Ablation
Since different tasks and datasets yield significantly differ-
ent scales of performance metrics, configuration-wise per-
formance rank of eleven λ values (0.0, 0.1, ..., 1.0) were
averaged across different datasets and models. The result is
shown in Figure 3. Each line corresponds to different tasks
of SP, KT, and OT. Smaller y-axis value of average rank in-
dicates that the performance is relatively superior. For in-
stance, using λ value of either 0 or 1 performs significantly
worse than λ values closer to 0.5, consistently for all three
tasks. This convexity serves as a strong empirical evidence
of our proposed DP-MTL framework’s advantage over the
two extreme baseline approaches of KT and OT. We high-
light that the multi-task learning of task A (KT) and B (OT)
not only improved metrics on the down-stream task C (SP),
but also improved the metrics of the original tasks A and B.

Score Prediction All three individual models separately
show the desired convex shape of rank average metric with
respect to λ parameter, as shown in Figure 4. The degree of
improvement from KT and OT baselines is largest in DP-
NMF model, which has relatively larger number of trainable
parameters than the other two models.

We also note that different models show different trend
of optimal λ with respect to data sparsity. For DP-NMF,
most λ hyper-parameters are chosen to be 0.6 and 0.7, con-
sistently. Figure 5 shows the heatmap of SP-MAE metrics
from ENEM dataset standardized within each sparsity ratio
setup. Large continuous blue region of smaller MAE em-
phasizes the advantage from introducing λ persists across
stable range and across different data sparsity ratios. As op-
posed to DP-NMF, DP-BiDKT’s optimal λ value gradually
decreases as the dataset sparsity increases. The proposed
DP-MTL framework allows the model to tune its attention
between KT and OT.

Knowledge Tracing and Option Tracing From KT-AUC
block of Table 3, most optimal λ values in ENEM dataset are
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SP-MAE KT-AUC
Dataset Sparsity DP-BiDKT DP-IRT DP-NMF DP-BiDKT DP-IRT DP-NMF

ENEM 0% 43.1(0.8) 48.2(0.9) 50.2(0.7) 0.7373(0.0) 0.7356(0.9) 0.7381(0.1)
10% 52.1(0.8) 60.4(0.7) 62.3(0.6) 0.7374(0.0) 0.73(0.3) 0.7346(0.4)

20% 56.6(0.5) 58.6(0.6) 60.9(0.4) 0.7363(0.5) 0.7324(0.3) 0.7345(0.2)

30% 60.1(0.3) 67.0(0.6) 68.6(0.6) 0.7291(0.1) 0.7233(0.1) 0.7272(0.3)

40% 71.9(0.4) 75.1(0.4) 77.2(0.6) 0.7213(0.1) 0.7228(0.1) 0.7178(0.3)

50% 83.5(0.3) 85.6(0.5) 93.5(0.7) 0.7084(0.0) 0.7113(0.5) 0.7035(0.3)

60% 104.0(0.1) 142.0(0.0) 115.5(0.7) 0.6957(0.0) 0.6647(0.0) 0.6934(0.9)

70% 125.5(0.0) 166.4(0.8) 197.9(0.6) 0.637(0.1) 0.6192(0.9) 0.6161(0.3)

TOEIC Top10 4% 62.2(1.0) 76.7(1.0) 72.9(1.0) 0.7699(0.1) 0.7661(0.9) 0.7481(0.6)

TOEIC Top25 47% 58.2(0.9) 69.2(1.0) 69.5(1.0) 0.7809(0.6) 0.7826(0.9) 0.774(0.9)

TOEIC Top50 74% 59.1(0.6) 69.8(1.0) 69.5(0.6) 0.849(0.6) 0.7961(0.8) 0.7864(0.9)

Table 3: The table represents the test SP-MAE and KT-AUC for each dataset-model configuration. The figures in the brackets
represent the best λ value.

OT-ACC
Dataset Sparsity DP-BiDKT DP-IRT DP-NMF

ENEM 0% 0.3851(0.1) 0.3842(0.6) 0.3818(0.0)
10% 0.389(0.4) 0.3831(0.2) 0.3843(0.3)
20% 0.3854(0.4) 0.3846(0.2) 0.3827(0.2)
30% 0.3824(0.1) 0.3815(0.1) 0.3789(0.5)
40% 0.3769(0.6) 0.3801(0.4) 0.375(0.3)
50% 0.3636(0.5) 0.3656(0.7) 0.3534(0.0)
60% 0.3455(0.2) 0.3422(0.4) 0.3392(0.0)
70% 0.3004(0.3) 0.3131(0.0) 0.279(0.4)

TOEIC10 4% 0.6746(0.3) 0.6679(0.0) 0.6563(0.2)
TOEIC25 47% 0.6992(0.5) 0.6973(0.1) 0.6912(0.2)
TOEIC50 74% 0.7421(0.6) 0.7144(0.2) 0.7142(0.2)

Table 4: The table represents the test OT-ACC for each
dataset-model configuration. The figures in the brackets rep-
resent the best λ value.

closer to 0, as opposed to 1. In other words, tackling OT task
alone yielded better results in terms of KT-AUC for ENEM
dataset. This trend is particularly strong in TOEIC dataset,
as shown in Figure 6. For all three models, focusing on KT
alone (rank 10) yields worse KT-AUC performance than fo-
cusing on OT alone (rank 8). Furthermore, λ value between
0.6 and 0.9 leads to sharp improvement of performance(rank
2-4).

Model Comparison
Based on the hyper-parameter configuration chosen from
validation set performance, test performance metrics for
ENEM and TOEIC dataset’s are provided in Table 3. First
block represents results on Score Prediction-Mean Abso-
lute Error (SP-MAE), and the second block represents
Knowledge Tracing-Area Under ROC Curve (KT-AUC).

The model entry with best performance is highlighted in
bold for each task, and the figures in brackets represent the
chosen λ parameter in our DP-MTL framework. We reiterate
that λ = 1 corresponds to KT/D-IRT scenario, while λ = 0
corresponds to OT/P-IRT scenario.

Score Prediction We compare the three models in SP task
where the assessment is focused on the quality of the ex-
tracted student representation. DP-BiDKT significantly out-
performs the other models by large margin, consistently
across different datasets of different sparsity ratios. Under
most sparse conditions, SP-MAE reduction is as high as
15.3% and 24.9% for ENEM and TOEIC dataset, respec-
tively. In general, DP-NMF’s capability of fitting into non-
linear patterns beyond DP-IRT is not providing any advan-
tage in the SP task.

Knowledge Tracing and Option Tracing Although DP-
BiDKT model’s outperformance is not as significant as that
in score prediction task, the model achieved top results in
most settings in both knowledge tracing and option tracing
task. (Option tracing result is shown in the Appendix Table
4.) Also, in the most sparse TOEIC Top50 dataset, improve-
ment of DP-BiDKT model over the first-runner-up in both
of KT and OT task metrics are 6.6% and 3.9%.

In summary, the empirical results strongly support the ef-
ficacy of the proposed DP-MTL framework on all three tasks
assessing the quality of user-item representation. The multi-
task learning approach for KT and OT not only yielded op-
timal for the down-stream SP task, but also for KT and
OT themselves. Furthermore, our DP-BiDKT architecture
achieved significant improvement over standard baseline al-
gorithms by efficient parameter reduction/reusing and novel
encoding of user interaction sequence.
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Figure 3: Impact of DP-MTL’s λ parameter on KT, OT, and
SP - y-axis denotes averaged performance rank across all
datasets and models in each task. x-axis denotes λ. Perfor-
mance rank is a convex curve on the space of λ. regardless
of metrics.

Figure 4: Impact of DP-MTL’s λ parameter on SP-MAE
- y-axis denotes averaged performance rank across all of
datasets in SP. x-axis denotes λ.

Conclusion
This study proposed a multi-task learning framework to in-
clude (a) response correctness and (b) the specific response
choice of a student to provide a more holistic student assess-
ment model that outperforms the existing single-task base-
lines. Extensive empirical results from the two datasets and
the three tasks (1) showed significant improvement upon ex-
isting models (IRT, CF, NMF) and (2) revealed intriguing
relationship between KT and OT under various data sparsity
conditions. In addition, customized DP-BiDKT architecture
was proposed to further improve parameter efficiency and
simplify input encoding under our DP-MTL framework,
which yielded best performance in most experiment settings.

Figure 5: Normalized SP-MAE with DP-NMF in ENEM -
Each cell denotes the averaged SP-MAE across all dimen-
sions in conditions with λ and sparsity.

Figure 6: KT-AUC vs λ, TOEIC

Beyond improving KT/OT performance, this work pro-
vides an example where better user-item representation can
benefit separate down-stream tasks such as student score
prediction. Other potential future applications include indi-
vidualized educational content recommendation and weak-
ness identification based on improved representation learn-
ing of students and educational contents.
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