
Can Machines Read Coding Manuals Yet? – A Benchmark for Building Better
Language Models for Code Understanding

Ibrahim Abdelaziz1, Julian Dolby1, Jamie McCusker2, Kavitha Srinivas1

1 IBM Research, T.J. Watson Research Center
2 Rensselaer Polytechnic Institute (RPI)

ibrahim.abdelaziz1@ibm.com, dolby@us.ibm.com, mccusj2@rpi.edu, kavitha.srinivas@ibm.com

Abstract

Code understanding is an increasingly important application
of Artificial Intelligence. A fundamental aspect of under-
standing code is understanding text about code, e.g., docu-
mentation and forum discussions. Pre-trained language mod-
els (e.g., BERT) are a popular approach for various NLP
tasks, and there are now a variety of benchmarks, such as
GLUE, to help improve the development of such models
for natural language understanding. However, little is known
about how well such models work on textual artifacts about
code, and we are unaware of any systematic set of down-
stream tasks for such an evaluation. In this paper, we derive a
set of benchmarks (BLANCA - Benchmarks for LANguage
models on Coding Artifacts) that assess code understanding
based on tasks such as predicting the best answer to a ques-
tion in a forum post, finding related forum posts, or predict-
ing classes related in a hierarchy from class documentation.
We evaluate performance of current state-of-the-art language
models on these tasks and show that there is significant im-
provement on each task from fine tuning. We also show that
multi-task training over BLANCA tasks help build better lan-
guage models for code understanding.

Introduction
Code understanding is an increasingly important application
of AI, with over 100 papers targeting the area in the last
year alone1. Most research in this area has focused on un-
derstanding code from abstract representations of the pro-
gram such as Abstract Syntax Trees (ASTs) and program
flow. However, there has been little emphasis in utilizing im-
portant semantics about code buried in textual artifacts, such
as documentation or forum discussions. Extracting such in-
formation can significantly enrich code representations. For
example, Figure 1 shows a program where the classes GLM
and SGDClassifier are being used. If one could enrich the
representation of the two classes with their key features from
text, we would understand that both represent linear models,
and hence both code snippets perform similar functions.

To enrich code with textual information, we need to be
able to summarize textual information about classes and
functions into vector representations. Pre-trained language

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://ml4code.github.io/papers.html

models are an obvious choice, but we currently do not know
how applicable they are to text about code, given the special-
ized language of the programming domain. We need a set of
code-related downstream tasks to evaluate these models, just
as GLUE (Wang et al. 2018) and SuperGLUE (Wang et al.
2019) have been used extensively to further language model
development in the natural language understanding domain.
CodeXGLUE (Lu et al. 2021) provides a suite of tasks but
only a single task in it is related to textual code artifacts; it
is translation of documentation about code from one natural
language to another. To our knowledge, we know of no other
tasks that focus on relations between textual artifacts about
code. This paper attempts to fill this gap.

We have three goals in this paper: (a) design a suite of
tasks we refer to as BLANCA (Benchmarks for LANguage
models on Coding Artifacts) that can be used to train lan-
guage models about the semantics of code, (b) evaluate
whether existing models, fine-tuned for different aspects of
natural language processing or different code oriented cor-
pora, can perform well on these tasks, and (c) establish
whether these tasks can be used to build better models for
code understanding.

To construct these tasks, we relied on existing annotations
in large public repositories such as GitHub (for code), Stack-
Overflow, StackExchange and code documentation (for text
about code). We exploited an integration of these sources in
an open source dataset (Abdelaziz et al. 2021) to define the
following five tasks focused on text about code:

• Forum Answer Ranking (R). Some answers on forums
have many votes or are selected as the best relative to
others. Can language models predict the best answers?

• Forum Link Prediction (L). Users of forum posts often
point to other similar posts, which reflect semantically
related posts compared to random pairs. Can language
models predict links?

• Forum to Class Prediction (F). Key features of classes
or functions often get discussed in forum posts. Do lan-
guage models discriminate related posts and class docu-
mentation from unrelated ones?

• Class Hierarchy Distance Prediction (H). Code is often
organized into class hierarchies. Do embedding distances
from language models reflect distances in the hierarchy?

• Class Usage Prediction (U). Similar code is often used

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4415

 elif distr == 'poisson':
 model = sm.GLM(y_train,
 sm.add_constant(X_train),
 family=sm.families.Poisson())

fit-predict-score
statsmodels_res = model.fit()
y_test_hat = model.predict(statsmodels_res.params,
 exog=sm.add_constant(X_test))

Figure 1: Usage in code

in similar ways. Are embedding distances smaller for
documentation about classes that are used similarly, and
larger for dissimilar ones?

We compare performance on these tasks for seven lan-
guage models, chosen for differences in architecture, train-
ing tasks, and corpora, as outlined in Section . Our main
findings are as follows:

• Out of the box, language models trained on general cor-
pora perform reasonably well on most BLANCA tasks,
compared to models trained on code specific corpora like
CodeBERT (Feng et al. 2020) or BERTOverflow (Tabas-
sum et al. 2020), attesting to these models’ generality.

• However, on every task, fine tuning on code specific
models resulted in significant boost in performance,
highlighting the usefulness of BLANCA tasks for build-
ing better language models.

• Multi-task training produced better performance on
many BLANCA tasks, suggesting the tasks do help mod-
els learn code semantics that transfers across tasks.

To aid further research in code understanding, the code,
datasets, the fine-tuned models and the leaderboard are pub-
licly available2 under an open source license (Eclipse for the
code and Creative Common with Attribution for the data),
and we hope they prove useful to the code understanding
community to enrich representations of programs with tex-
tual information about classes and functions.

Related Work
There have been numerous benchmarks for code summa-
rization or generation of code from natural language, and
hence they have focused on collecting code and textual doc-
umentation that characterize the code. For these tasks, most
have used the approach of generating code and its associated
documentation strings, e.g., (LeClair and McMillan 2019),
(Movshovitz-Attias and Cohen 2013). Similarly, code and

2https://github.com/wala/blanca/

corresponding textual documentation have been used for nu-
merous tasks involving searching for code, e.g., (Li, Kim,
and Chandra 2019), (Husain et al. 2019), or searching for
posts given code, e.g., (Ponzanelli et al. 2014).

While such benchmarks are useful for joint embeddings
of code and their associated text, they are restricted to tasks
around code summarization, code generation, comment gen-
eration or code search; i.e., they do not directly help with
the evaluation of language models for textual artifacts about
code. Furthermore, most of the datasets in the literature do
not correlate textual artifacts around code with code usage,
with the exception of (Hu et al. 2018), which does link the
generation of API sequence information from their usage
in code to the problem of code summarization. The work
in (Yang et al. 2017) connects code on GitHub to Stack-
Overflow posts, but the latter dataset is not available. Again,
their datasets are targeted to the task of code summarization,
and code search respectively. Similarly StackOverflow posts
have been used for tasks such as answer summarization (Cai
et al. 2019), program repair (Liu and Zhong 2018) or gen-
erating code, e.g., (Liu and Zhong 2018). Finding directly
related or duplicate posts is a recent task and dataset pro-
posed in (Shirani et al. 2019), but there is no evaluation of
any language model in that work.

Recently, (Tabassum et al. 2020) provided a BERTOver-
flow model for an in-domain representation of text about
code. BERTOverflow is trained on 152 million StackOver-
flow questions over a BERT architecture, and has been fined
tuned for software named entity recognition (e.g., finding
mentions of operating systems in text). We use BERTOver-
flow as one of the models for the BLANCA tasks. There has
also been work building structural language models from
the abstract syntax trees, e.g., (Alon et al. 2019), which
is clearly a related task, but the focus is once again on
code. CodeXGLUE (Lu et al. 2021) provides a novel text-
text benchmark which involves translation of documentation
about code from one language to another, but that is arguably
closer to natural language processing than code.

Thus, to the best of our knowledge, no work so far has
examined how language models perform on a set of code
related tasks for textual program artifacts, nor has there been
much emphasis on building benchmarks to build better text
representations for code understanding. BLANCA is built to
address this gap.

Models
In choosing models for our experimentation, we needed lan-
guage models to encode paragraphs in either class documen-
tation or posts. We relied largely on the sentence transform-
ers library (Reimers and Gurevych 2019), which provides a
wide range of transformer models that have been fine-tuned
for tasks such as information retrieval, paraphrase detec-
tion, and sentence similarity detection. These models have
been shown to be effective in sentence and paragraph en-
coding style tasks. We also chose models with a different
base, such as BERT (Devlin et al. 2019), XLM-RoBERTa
(Conneau et al. 2020) and DistilBERT(Sanh et al. 2020). We
also added a non-transformer style model (Google’s Univer-
sal Sentence Encoder (Cer et al. 2018)), and models fine-

4416

Model name Fine-tuning task

Universal Sentence Encoder‡ N/A
BERT-NLI† Sentence similarity
DistilBERT-paraphrasing† Paraphrase detection
xlm-r-paraphrase-v1† Paraphrase detection
mmsmarco-DistilRoBERTa† Information Retrieval
BERTOverflow† StackOverflow/NER
CodeBERT-mlm† NL-PL pairs in 6 languages

Table 1: Models used as baselines. Sources were tensorflow-
hub, and SBERT. bert-base-nli-stsb-mean-tokens,
distilroberta-base-paraphrase-v1, xlm-r-distilroberta-
base-paraphrase-v1, msmarco-distilroberta-base-v2 and
microsoft/codebert-base-mlm are their corresponding
names in SBERT.

Task Pair Data Type Train (K) Test (K)

Answer Ranking Question-Answer 450 50
Link Prediction Question-Question 23.5 5.9
Forum to Class Question-Class 11.5 1.3
Usage Prediction Class-Class 75.9 8.4
Hierarchy Pred. Class-Class 16,215 1,801

Table 2: BLANCA’s tasks and dataset statistics

tuned on StackOverflow posts (BERTOverflow (Tabassum
et al. 2020)) and code documentation (CodeBERT (Feng
et al. 2020)) to see if domain-specific training is helpful. We
did not consider models, such as CuBERT (Kanade et al.
2020), designed only for code, and not text about code. The
reason is that cuBERT’s vocabulary is based on program-
ming language tokens for Java or Python, which is only par-
tially useful for text about code. Table 1 shows the types of
base models used in our evaluation, using the names from
the sentence-transformers (SBERT3) library.

We also tested if fine-tuning on each task would enhance
performance, to establish whether the tasks can be used to
build a better language model. For fine-tuning, we started
either with BERTOverflow or CodeBERT, with the assump-
tion that an in-domain representation would provide some
advantage. We also examined whether multi-task training
would improve performance, to see if better models could
be built from using a combination of BLANCA tasks.

Tasks
All our datasets describe code artifacts in Python, and are
derived from GraphGen4Code4, which links 1.3 million
programs of Python code to associated posts and class-
documentation (Abdelaziz et al. 2021). For multi-task fine
tuning, we report, for each task, the model with the best per-
formance, and we outline its characteristics. In Section , we
discuss more general findings for multi-task training. Per-
formance on tasks is encoded as follows in tables: (1) Fo-
rum Answer Ranking (R), (2) Forum Link Prediction (L), (3)

3https://github.com/UKPLab/sentence-transformers
4https://wala.github.io/graph4code/

Forum Class Prediction (F), (4) Class Hierarchy Prediction
(H), and (5) Class Usage Prediction (U). Table 2 lists each
BLANCA task and the corresponding train/test data sizes.

Dataset Annotation Quality Two of BLANCA tasks are
based on manually curated datasets by millions of users such
as ranking answers in StackOverflow forums (Forum An-
swer Ranking) and manually linking similar posts (Forum
Link Prediction). These data are high quality, in the sense
that they are crowd annotated by humans, which is how
most gold standards get constructed. Class Hierarchy and
Class Usage Prediction tasks are both based on objective
properties of code artifacts (class hierarchy and similarities
among classes in terms of their methods, respectively), so
once again, the issues of data quality do not arise. The only
task where we did not have explicit human labeling for ev-
ery example is Forum to Class Prediction. In this task, we
relied on heuristics to automatically label the data. Further-
more, to assure quality, we performed a manual evaluation
of a sample with three human annotators (see Section).

Hyperparameter Search for Finetuning We started with
the default parameters of our base models; CodeBERT
and BERTOverflow. We also tried to use Population Based
Training from RayTune5 to perform hyper-parameter search
for the Forum Answer Ranking (R) and Forum Link Predic-
tion (L) tasks. However, we did not get better performance
compared to using the default parameters from the corre-
sponding base models.

We describe below how we formulated each task, the
dataset definition process and the performance of various
language models on it.

Forum Answer Ranking (R)
Task Description StackOverflow and StackExchange
contain questions and answers. Accepted answers are manu-
ally annotated and most answers have a vote count. The core
task here is to predict the best answer to each question, and
order the answers by their popularity.

Dataset We generated a dataset of 500K questions such
that each question comes with at least three answers. The
average number of answers per question in this dataset is
4.9 answers, and the average number of votes per question
is 23.5 and per answer is 12.74. The train and test tasks were
split 90-10, so the train set had 450,000 questions and test
had 50,000 questions. To build the fine tuning model, we
modeled this as a task similar to training on the Semantic
Textual Similarity Benchmark (STSB) adopted by SBERT.
Each answer was ranked according to popularity, and ties
were broken by adding only one of the answers that were
tied. The ranks were then converted to a score between 0
(worst rank) and 1 (best rank), with a cosine similarity loss,
and an embedding similarity evaluator from the SBERT li-
brary. Fine tuning was performed on BERTOverflow and
CodeBERT models, with the 90% of training data for train-
ing, 10% of the training data for validation, for 10 epochs.

5https://docs.ray.io/en/latest/tune/index.html

4417

MRR NDCG

DistilBERT-paraphrasing 0.5937 (.001) 0.8393 (.001)

BERT-NLI 0.5972 (.001) 0.8407 (.001)

msmarco-DistilRoBERTa 0.5992 (.001) 0.8427 (.001)

xlm-r-paraphrase-v1 0.5977 (.001) 0.8411 (.001)

USE 0.6114 (.001) 0.8483 (.001)

BERTOverflow 0.5910 (.001) 0.8375 (.001)

CodeBERT 0.5926(.001) 0.8375 (.001)

FT-BERTOverflow 0.6743 (.001) 0.8823(.001)

FT-CodeBERT 0.6671(.001) 0.8790(.001)

RFLHU-BERTOverflow 0.6879 (.001) 0.8893 (.001)

Table 3: Performance of language models on answer rank-
ing (R). Numbers in parentheses are standard errors of the
sample mean. FT indicates fine tuning on R alone, RFLHU-
BERTOverflow is the best multi-task training model.

Evaluation To capture how well the embeddings of differ-
ent language models identified the ranking of answers, we
computed the cosine distances between the question embed-
ding and the embedding of each of the answers, and ranked
answers by nearest in cosine distance to furthest. We report
standard information retrieval metrics of average Mean Re-
ciprocal Rank (MRR) and average Normalized Discounted
Cumulative Gain (NDCG) on this predicted ranking.

Table 3 shows that most language models do reasonably
well on this task, which is not surprising because text in fo-
rum posts is mostly natural language. Surprisingly though,
there is no benefit for the base BERTOverflow model that
has been tuned on StackOverflow posts compared to the rest
of non-finetuned models. However, fine-tuned BERTOver-
flow does much better, which is consistent with our hy-
pothesis that it is possible to use these tasks for build-
ing better language models. Across many tasks, fine-tuning
on BERTOverflow produced better performance than fine-
tuning on CodeBERT, which suggests that forum discus-
sions contain in most cases, the right mixture of explana-
tions in natural language along with code. Moreover, the
best performance was achieved with multi-task finetuning
(RFLHU-BERTOverflow), which suggests that use of mul-
tiple BLANCA tasks builds better language models for tex-
tual code artifacts.

Forum Link Prediction (L)
Task Description Forum posts with links to one another
are usually related compared to unlinked posts; we investi-
gate if language models place such related post pairs closer
in vector space. We focus on embedding distance because it
is a more direct metric for assessing the quality of the em-
bedding rather than classification accuracy.

Dataset For this task, we generated 23,516 pairs of posts
for training (11,758 positive and 11,758 negative), 5,854
pairs (2,727 positive and 2,727 negative) for testing. Fine-
tuning was set up as a classification task in SBERT, with
the use of contrastive loss along with a binary classification
evaluator from the SBERT library. All other training details
were similar to the forum answer ranking task.

Model Linked Unlinked T

DistilBERT-paraphrasing 0.38 0.71 112.49
BERT-NLI 0.31 0.53 74.92
msmarco-DistilRoBERTa 0.34 0.74 110.42
xlm-r-paraphrase-v1 0.37 0.70 105.02
USE 0.34 0.74 142.04
BERTOverflow 0.20 0.31 59.52
CodeBERT 0.03 0.04 19.39
FT-BERTOverflow 0.09 0.52 180.42
FT-CodeBERT 0.08 0.50 147.21
RFLHU-BERTOverflow 0.08 0.58 198.10

Table 4: Cosine distance between linked and unlinked posts
(L). FT represents fine-tuning on L alone.

Relevant to this task, (Shirani et al. 2019) recently in-
troduced a similar benchmark for predicting relatedness in
StackOverflow posts focused on Java code, as opposed to
our dataset which is language agnostic. Their dataset con-
tains 300K of linked pairs categorized into 1) duplicates:
questions in StackOverflow marked by moderators as dupli-
cates, 2) direct: explicitly linked posts, 3) indirectly or tran-
sitively connected posts through a direct or a duplicate link
and 4) isolated or unlinked posts. Direct and isolated links
are similar to our positive and negative examples. We eval-
uate all our models’ ability to differentiate these link types.
Note that we did not use this data for fine-tuning a model
which discriminates the different categories; but one might
expect direct links and duplicates to be closer in embedding
distance, and isolated links to be the furthest, with indirect
links in the middle. Shirani et al. (2019) did not evaluate this
with any of the language models, so we examine whether
these categories of relatedness of posts is reflected in em-
beddings of pre-trained models.

Evaluation As shown in Table 4, all language models
showed a statistically significant difference (p ≤ .01) on in-
dependent sample t-tests between linked and unlinked posts.
BERTOverflow with fine-tuning (both versions tuned on L
only and RFLHU) performs the best in terms of pulling apart
linked and unlinked posts. We note that the size of T value
normalizes the distance between linked and unlinked posts
by their variance; that is, T value captures not only the aver-
age distance but also the separation between the two distri-
butions. Our focus then is on the absolute value of that sepa-
ration as provided by T’s value. Figure 2 shows this visually.
Note that BERTOverflow and CodeBERT as base models
discriminated least between linked and unlinked posts, but
fine-tuning clearly helped. This is evident in the solid and
dashed lines for RFLHU-BERTOverflow where it shows lit-
tle overlap between linked and unlinked posts.

Figure 3 shows the results of a variety of language mod-
els for question relatedness variant of this task (Shirani et al.
2019). We ensured that none of Shirani et al. (2019)’s test
set examples were used in our training set. Across all mod-
els, directly related questions are closest in embedding space
followed by indirectly related questions. Questions marked
duplicate posts were similar to the indirect questions only in

4418

Figure 2: Linked versus unlinked pair distances (L).

Figure 3: Direct, indirect, duplicate and isolated pair dis-
tances models.

the RFLHU model, which seemed to be picking up related-
ness in both indirect and duplicate questions. We note that
questions marked duplicates in forums are only duplicates
at a level of coding abstraction. For example, the two ques-
tions “How to return multiple objects from a Java method?”
and “Java how to return two variables?” are a duplicate pair.
Although the two questions talk about the same problem, the
discussions and even the solutions are different. Therefore,
cosine similarity between them is not as close as one would
expect. Finally, isolated question pairs are the most distant
compared to all other pairs across all models (all differences
from isolated pairs to direct, indirect and duplicate pairs
were statistically significant at the .01 level). Multi-task fine-
tuning (RFLHU-BERTOverflow) clearly helped the best in
getting semantically related posts closer and pulling apart
the unrelated ones.

Forum to Class Prediction (F)
Task Description Forum posts often describe specific
code artifacts in text, where they discuss key features of a
class or a function. A key question is whether a model can
predict if a post about a class and documentation of the same
class are related.

Dataset In order to find posts that were more focused on
discussions of a specific class or function’s features, we

Model Related Unrelated T

DistilBERT-paraphrasing 0.55 0.68 16.61
BERT-NLI 0.45 0.60 14.73
msmarco-DistilRoBERTa 0.45 0.66 20.37
xlm-r-paraphrase-v1 0.53 0.67 17.15
USE 0.53 0.74 20.67
BERTOverflow 0.33 0.47 18.31
CodeBERT 0.06 0.09 12.23
FT-BERTOverflow 0.07 0.77 46.88
FT-CodeBERT 0.08 0.82 50.07
RFLHU-CodeBERT 0.11 0.66 53.98

Table 5: Cosine distance between documentation-post pairs
(F) that are related and unrelated. FT represents fine-tuning
on F alone.

queried an ElasticSearch index of posts with a query per
class as in GraphGen4Code (Abdelaziz et al. 2021), insisting
that the class and its package be both mentioned in the ques-
tion. These constituted our positive class-post examples. For
negative examples, we chose hard negatives, requiring that
both class name and its package not be mentioned anywhere
within the question and its answers; but nevertheless the post
matched either class or package names. To ensure the quality
of this data, we asked 3 annotators to label a random sample
of 100 examples; 50 positive and 50 negative. This manual
inspection revealed that negatives were in fact negatives, in
the sense that even if the class was mentioned, it was usually,
from a different package, or very often from different pro-
gramming languages (e.g. Java, Javascript, etc). The average
hit and miss rates from the three annotators were 96.7% and
3.3%, respectively. In this task, we created 8,827 negative
examples and 2,661 positives for training, and 980 negative
examples and 295 positive examples for testing. Fine-tuning
the model was analogous to the forum link prediction task.

Evaluation As shown in Table 5, all language models
showed a statistically significant difference (p ≤ .01) on
independent sample t-tests between positive and negative
class-post examples. Again, fine-tuning helps improving the
performance on this task significantly; e.g. single task tuning
of FT-CodeBERT vs. CodeBERT and FT-BERTOverflow
compared to BERTOverflow. Fine-tuning on multiple tasks,
e.g. RFLHU-CodeBERT, gave better performance compared
to the single-task tuned models, FT-CodeBERT and FT-
BERTOverflow. As shown in Figure 4, the distance was
greatly enhanced by fine-tuning e.g. BERTOverflow vs. fine-
tuned RFLHU-BERTOverflow.

Class Hierarchy Distance Prediction (H)
Task Description Semantically related classes tend to be
linked by developers in a hierarchy, so its reasonable to ask if
neural embeddings of related classes cluster closer together
in a class hierarchy. We structured this as a class distance
prediction task, with class distances ranging from 1 to 10.

Dataset We collected the documentation associated with
257,655 classes in GraphGen4Code (Abdelaziz et al. 2021),
but many of these represent different names that resolve to

4419

Figure 4: Related and unrelated documentation-post pair dis-
tances for some fine-tuned and non-fine-tuned models (F).

Figure 5: Number of class-pairs by class distance.

the same class. We aliased the classes to its canonical version
by loading the class dynamically to obtain its runtime name,
and added in classes that we could not load for some reason,
which resulted in 90,464 classes.

To get classes related by distance, we created an undi-
rected graph of class to superclass relations for every mod-
ule, being careful not to add edges from any class to the class
object. For each module graph, we computed distances
between every pair of classes using an all pairs shortest paths
algorithm. We eliminated pairs with distances greater than
10, and this resulted in a set of pairs that we split randomly
such that 16,215,400 million pairs of classes were in train,
and 1,801,716 million pairs were in test. For fine-tuning, we
structured this similar to the forum ranking task, with dis-
tances translated to scores between 0 (least related) and 1
(most related), and we used cosine similarity loss, coupled
with a embedding similarity evaluator from SBERT. Train-
ing on 16.2 million pairs was computationally expensive so
we trained it on a random sample of 100,000 training ex-
amples, 10,000 of which was used for validation. Figure 5
shows the distribution of embedding distances for each class
distance (1-10) to show the dataset characteristics.

Evaluation Since this is a regression task, we evaluated
the Pearson r correlation, shown in Table 6 which var-
ied from 0.17 (for BERTOverflow) to 0.34 (for Fine-tuned-

Model Pearson r

DistilBERT-paraphrasing 0.26
BERT-NLI 0.20
msmarco-DistilRoBERTa 0.23
xlm-r-paraphrase-v1 0.27
USE 0.28
BERTOverflow 0.17
CodeBERT -0.01
FT-BERTOverflow 0.34
FT-CodeBERT 0.24
HU-BERTOverflow 0.29

Table 6: Correlation of class hierarchy (H) distance to em-
bedding distance. FT represents fine-tuning on H alone.

Figure 6: Prediction of embedding distance from class dis-
tance (H) for all models. Standard error of regression was
less than 0.0002 for all models.

BERTOverflow); all are statistically significant at p ≤ 0.01.
Regression for each model is shown in Figure 6. The im-
provement from fine-tuning for BERTOverflow showed that
the task is useful for building better embeddings. Some
other models showed reasonable performance with no tun-
ing (xlm-r-paraphrase at 0.27, and USE at 0.28 respectively),
so there is a room to improve these different base models as
well, but we leave this for future work, since our goal is more
on task development rather than building better models.

Class Usage Prediction (U)
Task Description GitHub contains millions of programs,
where classes are used in code to achieve some purpose.
Classes that are used in the same way; i.e., same set of meth-
ods get invoked on them, might be expected to be rated as
more similar than classes that do not share any methods. We
structured this as a similarity rating task.

Dataset To construct this dataset, we used the Graph-
Gen4Code knowledge graph (Abdelaziz et al. 2021) which
has data flow graphs for 1.3 million GitHub programs.
Dataflow tracks the flow of data through return values and
parameters within a program. As an example, for the pro-
gram snippet in Figure 1, dataflow would show that fit
and predict calls occur on objects returned by calls to the
constructors of SGDClassifier and GLM. In this exam-

4420

Model Pearson r

DistilBERT-paraphrasing 0.35
BERT-NLI 0.17
msmarco-DistilRoBERTa 0.34
xlm-r-paraphrase-v1 0.36
USE 0.41
BERTOverflow 0.37
CodeBERT 0.33
FT-BERTOverflow 0.52
FT-CodeBERT 0.30
HU-BERTOverflow 0.61

Table 7: Correlation of class usage similarity (U) with em-
bedding distance. FT represents fine-tuning on U alone.

Figure 7: Prediction of embedding distance by class usage
(U) similarity for all models. Standard error of regression
was less than 1.0e-4 for all models.

ple, SGDClassifier shares 2 methods (denoted as M)
with 1 class (denoted as C), which in this instance is GLM).
The classes are similar, in the sense that they both share the
same methods in usage, but the degree of similarity is depen-
dent on the number of shared methods (M), and the number
of classes that have the same methods (C). The smaller the
C, the more likely it is that a pair is similar, and the larger
the M the more likely it is that the pair is similar. To capture
both dimensions of similarity into a single distance metric
for learning, we defined an ‘ideal’ class pair in terms of our
data - that is a vector with [max(M),min(C)]. We used the
Euclidean distance of each class pair from this ideal vector
as the dissimilarity metric. Given a pair, the task is predicting
if the classes were similar or distant based on their usage.

The train and test tasks contain 75,862 and 8,439 class
pairs, respectively. The average distance for train pairs and
test pairs is 312.21, suggesting the two had similar charac-
teristics. The fine-tuning task was modeled the same as the
class hierarchy prediction task.

Evaluation We frame this task as a regression task
and evaluate the Pearson r correlation for all models,
which varied from 0.17 (for BERT-NLI) to 0.61 (for HU-
BERTOverflow) as shown in Table 7; all results are sta-
tistically significant at p ≤ 0.01. The improvement from
fine-tuning for BERTOverflow (0.37 to 0.52) also shows the

Model R F L H U

RFLHU-BO 0.69/0.89 46.49 198.10 0.15 0.27
RFLHU-CB 0.68/0.88 53.98 148.72 0.12 0.38
RFLH-BO 0.68/0.89 47.56 188.73 0.17 0.14
RFLH-CB 0.67/0.88 49.04 141.97 0.10 0.14
RFL-BO 0.68/0.88 48.81 197.63 0.13 0.25
RFL-CB 0.68/0.89 53.29 144.17 0.09 0.26
HU-BO 0.59/0.84 15.89 68.43 0.29 0.61
HU-CB 0.61/0.85 12.95 45.50 0.05 0.41

Table 8: Performance of various models; BO and CB refer to
BERTOverflow and CodeBERT base models, respectively.
Answer Ranking (R) numbers are MRR/NDCG, Hierarchy
(H) and Usage (U) tasks are correlation whereas Linked
Posts (L) and Forum to Class (F) are T-statistic.

task is useful for building better embeddings. Using hierar-
chy task as well with HU-BERTOverflow further improved
performance to 0.61. This was not the case though for Code-
BERT models with and without fine-tuning where its perfor-
mance dropped to 0.30 from 0.33. We also show in Figure 7
the effectiveness of usage distance as a predictor of cosine
embedding distance.

Multi-Task Training
We focus our multi-task training discussion on BERTOver-
flow, because combining it with training produced the best
performance consistently. As shown in Table 8 tasks that de-
rived from code properties (usage (U) and hierarchy (H)) did
not benefit from training on ranking (R), forum to class (F)
or linked posts (L) tasks on BERTOverflow, which suggests
that tasks derived from code properties require different fea-
tures than those emphasized by RFL tasks. Tasks derived
from code properties (HU) however helped RFL tasks, sug-
gesting the importance of having a diversity of tasks for tun-
ing. We were expecting and found class hierarchy training
to help the usage task, since code that is closely-related in
the type hierarchy tends to have similar usage due to the na-
ture of classes; this was confirmed by our findings. We also
expected usage analysis to help class hierarchy training, be-
cause we expected parameter types of methods to relate to
the class hierarchy; this did not happen, perhaps due to the
dynamically-typed nature of Python, where distinct types
can share method names. We expect this to be different in
typed languages such as Java, and we plan to investigate it
in our future work.

Conclusion
In this paper, we presented BLANCA, a set of benchmarks
to help further research in code understanding from textual
manuals and posts about code. We used BLANCA tasks to
show that one can build better language models for under-
standing code artifacts. We also used multi-task training to
demonstrate better representations of classes and functions
from these models. We hope these will be useful in enriching
code representations with their textual semantics embedding
in natural language artifacts of code.

4421

References
Abdelaziz, I.; Dolby, J.; McCusker, J.; and Srinivas, K. 2021.
A Toolkit for Generating Code Knowledge Graphs. In Pro-
ceedings of the 11th on Knowledge Capture Conference, K-
CAP ’21, 137–144. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450384575.
Alon, U.; Sadaka, R.; Levy, O.; and Yahav, E. 2019. Struc-
tural Language Models for Any-Code Generation. CoRR,
abs / 1910.00577.
Cai, L.; Wang, H.; Xu, B.; Huang, Q.; Xia, X.; Lo, D.; and
Xing, Z. 2019. AnswerBot: An Answer Summary Genera-
tion Tool Based on Stack Overflow. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, 1134–1138. New
York, NY, USA: Association for Computing Machinery.
Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.;
St. John, R.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.;
Tar, C.; Strope, B.; and Kurzweil, R. 2018. Universal Sen-
tence Encoder for English. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, 169–174. Brussels, Bel-
gium: Association for Computational Linguistics.
Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.;
Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer,
L.; and Stoyanov, V. 2020. Unsupervised Cross-lingual Rep-
resentation Learning at Scale. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguis-
tics, ACL 2020, Online, July 5-10, 2020, 8440–8451. Asso-
ciation for Computational Linguistics.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171–4186. Min-
neapolis, Minnesota: Association for Computational Lin-
guistics.
Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong,
M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; and Zhou, M.
2020. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. Cite arxiv:2002.08155Comment:
Accepted to Findings of EMNLP 2020. 12 pages.
Hu, X.; Li, G.; Xia, X.; Lo, D.; Lu, S.; and Jin, Z. 2018.
Summarizing Source Code with Transferred API Knowl-
edge. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, 2269–
2275. International Joint Conferences on Artificial Intelli-
gence Organization.
Husain, H.; Wu, H.-H.; Gazit, T.; Allamanis, M.; and
Brockschmidt, M. 2019. CodeSearchNet Challenge: Evalu-
ating the State of Semantic Code Search. arXiv:1909.09436.
Kanade, A.; Maniatis, P.; Balakrishnan, G.; and Shi, K.
2020. Learning and evaluating contextual embedding of
source code. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 12-18 July 2020,
Proceedings of Machine Learning Research. PMLR.

LeClair, A.; and McMillan, C. 2019. Recommendations
for Datasets for Source Code Summarization. In Proceed-
ings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers),
3931–3937. Minneapolis, Minnesota: Association for Com-
putational Linguistics.
Li, H.; Kim, S.; and Chandra, S. 2019. Neural Code Search
Evaluation Dataset. arXiv:1908.09804.
Liu, X.; and Zhong, H. 2018. Mining stackoverflow for pro-
gram repair. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER),
118–129.
Lu, S.; Guo, D.; Ren, S.; Huang, J.; Svyatkovskiy, A.;
Blanco, A.; Clement, C. B.; Drain, D.; Jiang, D.; Tang, D.;
Li, G.; Zhou, L.; Shou, L.; Zhou, L.; Tufano, M.; Gong,
M.; Zhou, M.; Duan, N.; Sundaresan, N.; Deng, S. K.; Fu,
S.; and Liu, S. 2021. CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Genera-
tion. CoRR, abs/2102.04664.
Movshovitz-Attias, D.; and Cohen, W. W. 2013. Natural
Language Models for Predicting Programming Comments.
In Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Pa-
pers), 35–40. Sofia, Bulgaria: Association for Computa-
tional Linguistics.
Ponzanelli, L.; Bavota, G.; Di Penta, M.; Oliveto, R.; and
Lanza, M. 2014. Mining StackOverflow to Turn the IDE into
a Self-Confident Programming Prompter. In Proceedings of
the 11th Working Conference on Mining Software Reposito-
ries, MSR 2014, 102–111. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450328630.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computa-
tional Linguistics.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2020. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv:1910.01108.
Shirani, A.; Xu, B.; Lo, D.; Solorio, T.; and Alipour,
M. 2019. Question Relatedness on Stack Overflow:
The Task, Dataset, and Corpus-inspired Models. ArXiv,
abs/1905.01966.
Tabassum, J.; Maddela, M.; Xu, W.; and Ritter, A. 2020.
Code and Named Entity Recognition in StackOverflow. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 4913–4926. Online: Associ-
ation for Computational Linguistics.
Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.;
Michael, J.; Hill, F.; Levy, O.; and Bowman, S. 2019. Super-
GLUE: A stickier benchmark for general-purpose language
understanding systems. Advances in Neural Information
Processing Systems, 32.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. 2018. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. In

4422

Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, 353–
355. Brussels, Belgium: Association for Computational Lin-
guistics.
Yang, D.; Martins, P.; Saini, V.; and Lopes, C. 2017.
Stack Overflow in Github: Any Snippets There? In 2017
IEEE/ACM 14th International Conference on Mining Soft-
ware Repositories (MSR), 280–290.

4423

