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Abstract

Bundle recommendation aims to recommend the user a bun-
dle of items as a whole. Previous models capture the user’s
preferences on both items and the association of items. Never-
theless, they usually neglect the diversity of the user’s intents
on adopting items and fail to disentangle the user’s intents in
representations. In the real scenario of bundle recommenda-
tion, a user’s intent may be naturally distributed in the dif-
ferent bundles of that user (Global view), while a bundle may
contain multiple intents of a user (Local view). Each view has
its advantages for intent disentangling: 1) From the global
view, more items are involved to present each intent, which
can demonstrate the user’s preference under each intent more
clearly. 2) From the local view, it can reveal the association
among items under each intent since items within the same
bundle are highly correlated to each other. To this end, we
propose a novel model named Multi-view Intent Disentangle
Graph Networks (MIDGN), which is capable of precisely and
comprehensively capturing the diversity of the user’s intent
and items’ associations at the finer granularity. Specifically,
MIDGN disentangles the user’s intents from two different
perspectives, respectively: 1) In the global level, MIDGN dis-
entangles the user’s intent coupled with inter-bundle items;
2) In the Local level, MIDGN disentangles the user’s intent
coupled with items within each bundle. Meanwhile, we com-
pare the user’s intents disentangled from different views un-
der the contrast learning framework to improve the learned
intents. Extensive experiments conducted on two benchmark
datasets demonstrate that MIDGN outperforms the state-of-
the-art methods by over 10.7% and 26.8%, respectively.

Introduction
Recently, the blossom of Internet Technology has revolu-
tionized our routine activities by providing a tremendous
amount of valuable contents, which however lead to the se-
rious information overload problem(Zhao et al. 2019; Wei
et al. 2019). To alleviate this problem, recommendation sys-
tem (Zheng et al. 2010) has been an effective tool to help
the user quickly discover items of potential interest to them-
selves. In general, conventional recommendation systems
(Wu et al. 2019; Wang et al. 2020b,c,e,d) aim to recommend
individual items to users, but in practice (e.g., E-commerce),
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Figure 1: An example of the user’s multi-intent pattern for
bundle recommendation.

items bundling is also a widely-adopted solution to increase
the exposure of items that are seldom purchased in isola-
tion. To this end, the problem of bundle recommendation
(BR)(Zhu et al. 2014) is proposed to recommend a bundle
of items that the user has interest to purchase together.

Similar to conventional recommendation system, learning
the user’s preferences is the main theme for bundle recom-
mendation. Existing methods mainly focus on capturing the
user’s preferences on both items and the bundle of items.
Liu et al. (2014) and Cao et al. (2017) simultaneously uti-
lize the user’s interactions with both items and bundles un-
der the Bayesian Personalized Ranking(BPR) (Rendle et al.
2014) framework. Chen et al. (2019) jointly model user-
bundle and user-item interactions in a multi-task manner,
but they may neglect the user’s preference over the associa-
tion of items within bundles, which is also of crucial impor-
tance to bundle recommendation. Chang et al. (2020) unify
user-bundle-item affiliation into a heterogeneous graph and
uses graph convolution networks (GCN) to learn the user
and bundle’s representation, capturing item level semantics,
however these works may neglect the diversity of the user’s
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intents on adopting items and fail to disentangle the user’s
intents in representations. Wang et al. (2020a) consider user-
item relationships at the finer granularity of the user’s intents
and generate disentangled representations for the item rec-
ommendation problem. Nevertheless, the real scenarios of
bundle recommendation are more complicated (as shown in
Figure 1), a user’s intent may be naturally distributed in the
different bundles of that user. (Global view), while a bundle
may contain multiple intents of a user (Local view). There
are two obvious drawbacks when neglecting the diversity of
the user’s intents: 1) from the global view, the inter-bundle
items under different intents can interfere with each other.
As illustrated in Figure 1(b), the egg can be noisy for con-
structing the intent of cooking. 2) from the local view, the as-
sociation of inter-intent items may have a negative rating on
the user’s interest for each bundle. For the example in Figure
1(b), bundle b1 may not be recommended because bread and
pan are rarely purchased together. Each view has its own ad-
vantages for intent disentangling: 1) In the global view, more
items are involved to present each intent, which can demon-
strate the user’s preference under each intent more clearly.
2) The local view can reveal the association among items
under the user’s each intent since the items within the same
bundle are highly correlated to each other. Disentangling the
user’s intent from both views, we can better represent the
user’s preference and the association among items at a finer
grain of the user’s intent.

In this work, we propose a novel model, Multi-view
Intents Disentangle Graph Networks (MIDGN), to disen-
tangle the user and bundle representations at the granularity
of the user ’s intents. Specifically, we disentangle the rep-
resentations of the user and the bundle into chunks, each
chunk represents a latent intent. A graph neural network
equipped with neighbour routing is applied both to disen-
tangle the user-item and the bundle-item graph, where such
two types of graphs can provide different views of users’ in-
tent for recommendation. Furthermore, a contrast learning
module comparing the user’s intents under different views is
also employed for enhancing the learning of user intent rep-
resentations. Extensive experiments conducted on NetEase
and Youshu demonstrate that our proposed model MIDGN
outperforms the state-of-the-art methods by over 10%.

In a nutshell, this work makes the following contributions:
• We emphasize the importance of disentangling the user

’s intent in bundle recommendation problem and explore
two views for the user ’s intents disentangling.

• We propose the model MIDGN, which disentangles the
user and bundle’s representation by modeling and con-
trasting the user’s intents under global and local views.

• We conduct extensive experiments on two benchmark
datasets and MIDGN achieves over 10 percents improve-
ment over the state-of-art methods.

Related Work
The early work (Chen et al. 2005; Garfinkel et al. 2006)
on bundle recommendation mainly focus on mining a group
of common items from historical user-item interactions for
users to consume together, while ignoring the relevance of

the selected items. For example, (Liu et al. 2011; Xie, Lak-
shmanan, and Wood 2010) formalize the bundle recommen-
dation task as a (linear) knapsack problem and no item-
to-item dependency is considered. (Parameswaran, Venetis,
and Garcia-Molina 2011) models the curriculum recommen-
dation as a constraint satisfaction problem and make use of
cross-item dependencies as general hard-constrains for rec-
ommendation. However, previous bundle recommendation
methods are incapable of discovering the items of common
interest, and thus cannot accurately capture a use’s person-
alized preference for recommendation.

In recent years, many studies have been devoted for bun-
dle recommendation, which can be roughly categorized into
two classes, (1) Intra-basket recommendation (Le, Lauw,
and Fang 2017), which recommends items to be added to
the current basket. There exist several attempts on this prob-
lem, for example, Le et al. (2017) propose a factorization
based model (named CBFM) to identify the correlations of
items within basket to integrate constraints for the given bas-
ket with similar intent. Liu et al. (2017) employ a proba-
bilistic graphical model to infer users’ preferences over bun-
dle via introducing two latent factors, i.e., node-type (items)
and edge-type (the associations between pairs of items).
(2) Inter-basket (a.k.a., next-basket), which offers multiple
items for sale as a bundle (a.k.a., bundle list recommenda-
tion (Sar Shalom et al. 2016; Bai et al. 2019)). Generally,
bundle recommendation is formalized as a top-K optimiza-
tion problem, which can be solved with learning-to-rank
based approaches. For instance, Xie et al. (2014) take ac-
count of sampling and preference elicitation based method
to generate top-K bundles for users, in which an additive
utility function with a combination of the corresponding fea-
ture values is employed for tackling the problem, but may
fail to capture the complicated dependencies of user-item-
bundle interactions. Further efforts are conducted to cap-
ture the complicated dependencies. Cao et al. (2017) si-
multaneously utilize the users’ interactions with both items
and bundles under the Bayesian Personalized Ranking(BPR)
(Rendle et al. 2014) framework. Chen et al. (2019) jointly
model user-bundle and user-item interactions in a multi-task
manner. These methods, however, fail to learn multi-hop
connectivity from user-bundle-item interaction and neglect
user’s preference over the association of items within bun-
dles which is also crucial for bundle recommendation.

Recently, graph convolution networks (GCN) (Kipf and
Welling 2016) has been extensively used for recommenda-
tion due to its superior ability in learning of the graph struc-
ture. Berg et al. (2017) first applie GCN to recommendation
to factorize several rating matrices. Wang et al. (2019) em-
ploy GCN to encode the collaborative signal in the form of
high-order connectivities. Graph convolution networks are
also adopted to solve the problem of bundle recommenda-
tion. Liu et al. (2020) designs three types of aggregators
with GCN specifically for users, bundles and items. Chang
et al. (2020) unify user-bundle-item affiliation into a hetero-
geneous graph and uses GCN to learn user and bundle repre-
sentation capturing item level semantics. These works, how-
ever, neglect the diversity of user’s intents on adopting items
and fail to disentangle user’s intents in representations.
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Disentangling user’s intents has been a topic in the prob-
lem of item recommendation. Wang et al. (2020a) consid-
ers user-item relationships at the finer granularity of user’s
intents and generates disentangled representations. But for
the problem of bundle recommendation, where the user’s
intents are distributed inter-and intra-bundles, disentangling
user’s intents is more complicated and new methods should
be studied.

Preliminaries
Let U = {u1, u2, · · · , uM} be the user set, and B =
{b1, b2, · · · , bO} and I = {i1, i2, · · · , iN} be the associated
bundle set and item set, where M, O, N denote the number of
users, bundles and items. According to the history of bundles
user consumed, we can define the user-bundle interaction
matrix, bundle-item affiliation matrix and user-item interac-
tion matrix as YM×O = {yub|u ∈ U , b ∈ B}, HO×N =
{hbi|b ∈ B, i ∈ I} and RM×N = {rui|u ∈ U , i ∈ I}, in
which yub = 1, hbi = 1 and rui = 1 means user u once in-
teracted bundle b, bundle b contains item i, and user u once
bought item i, respectively.

The task of bundle recommendation is to predict the prob-
ability of user u potentially interacting with a given bundle
never seen before. Specifically, our goal is to learn a pre-
dict function ŷ = F(u, b|θ,H), where ŷ is the estimation
probability and θ implies the parameters of function F .

The Proposed Model
In this section, we present Multi-view Intent Disentangle
Graph Networks (MIDGN)(shown in Figure 2), which is
composed of four different components: 1) Gaph disen-
tangling module, which disentangles user-item interactions
and bundle-item interactions coupling with the user’s intents
from global and local perspectives, respectively; 2) Cosss-
view propagating module that propagates collaborative sig-
nal coupling with the user’s intents under different views
through user-bundle interactions; 3) Intent contrasting mod-
ule, which employs InfoNCE (Oord, Li, and Vinyals 2018)
to encourage the correlation of the user’s intents under dif-
ferent views; and predicting module, which predicts the rat-
ing with the learned user and bundle embeddings.

Graph Disentangling Module
In this module, we first slice each user/bundle embedding
into K chunks and couple each chunk with the user’s one
intent. Then a graph neural networks incorporated with
neighbor routing mechanism is devised to disentangle the
user-item/bundle-item graph and refine the intent-aware
user/bundle representation.

Initialization of intent-aware embeddings and graphs.
We assume the user has K intents and slice each user/bun-
dle’s embedding into K chunks in different feature space.
Coupling with each intent, a chunk of the user and bun-
dle’s embedding is independently initialized respectively.
Formally, the user and bundle’s embedding are represented
as:

u = (u1,u2, · · · ,uK),

b = (b1,b2, · · · ,bK),
(1)

where u ∈ Rd and b ∈ Rd are embedding of the user and
bundle. uk ∈ R

d
K , bk ∈ R

d
K are the embedding chunks of

the user and bundle under the k-th intent, respectively. As
each item is bought by the user under one intent, there is
no need to divide it’s embedding. So the item embedding is
presented as i ∈ R d

K and randomly initialized.
We assume each intent k is likely to be the reason why

the user/bundle connects with a certain subset of its neigh-
bour items. To present user/bundle-item interactions moti-
vated by different intents, a set of intent-aware graphs G =
{G1,G2, · · · ,GK} is built. For each intent-aware graph Gk,
a weighted adjacent matrix Ak is built, where Ak(c, i) de-
notes the confidence that the interaction between c and item
i is motivated by the k-th intent. Here c1 is a uniform place-
holder for user symbol u and bundle symbol b. Intuitively,
each interaction within user/bundle-item graph is associated
with the user’s K intents to different degree as follows:

A(c, i) = (A1(c, i),A2(c, i), · · · ,AK(c, i)), (2)

We uniformly initialize the confidence of each interaction
under the user’s intents as:

A(c, i) = (1, 1, · · · , 1), (3)

which denotes intents contributes equally to the each inter-
action.

Intent-aware interaction graph disentangling. Each in-
tent k is specialized with embedding chunk ck as well as
a specific interaction graph Gk. When describe user/bundle
c under intent k, we should construct ck with neighbours
that connect to user/bundle c due to intent k. To realize this,
a graph disentangling layer is employed to user-item and
bundle-item graph as follows:

e
(1)
ck = g(ck, {i, i ∈ Nc}), (4)

where g(·) denotes the graph disentangling layer. i ∈ Nc

denotes items that have interaction with user/bundle c. e(1)ck
is to capture the collaborative signal related to the user’s kth
intent within node c’s neighbor. The super-index (1) denotes
the first-order neighbors.

As illustrated in Figure 2, the neighbor routing mecha-
nism is adopted in the graph disentangling module, which
iteratively updates the user/bundle’s embedding chunks ck
and the adjacent matrix Ak for graph Gk. For each iteration,
ctk and At

k are used to memorize the update of ck and Ak.
Update within each iteration. For each interaction (c, i),

we have its confidence under K intents {At
k(c, i)|∀k ∈

{1, 2, · · · ,K}} . To calculate it’s distribution over intents,
softmax function is applied to the confidence:

Ãt
k(c, i) =

expAt
k(c, i)∑K

k′=1expA
t
k′(c, i)

, (5)

which indicates the extent to which interaction (c, i) is mo-
tivated by each intent.

1This paper uses symbol c as a uniform placeholder for user
symbol u and bundle symbol b, since the calculation and formu-
lation for the user and bundle in this article are similar in many
scenarios
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Cross-view propagating module that propagates collaborative signal coupling with the user’s intents under different views; (c)
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Then the embedding propagation is employed to each
intent-aware graph Gk, to update node c’s embedding chunk
under different intents with its neighbor items. Specifically,
the weighted aggregation is defined as:

ctk =
∑
i∈Nc

Ãt
k(c, i)√

Dk
t (c) ·Dk

t (i)
· i, (6)

where Dk
t (c) =

∑
i∈Nc

Ãt
k(c, i) and Dk

t (i) =
∑

c∈Ni

Ãt
k(c, i)

are degrees of node c and item respectively. This normal-
ization is to deal with the influence of varying numbers of
nodes on the training process.

Then for each node c, we should update its confidence of
connections with items At

k(c, i). To realize this, the confi-
dence At

k(c, i) of interaction (c, i) under each intent is up-
dated through:

At+1
k (c, i) = At

k(c, i) + ctk
T · i. (7)

If the item’s embedding i are similar with the node c’s em-
bedding chunk ctk under intent k, the confidence of their con-
nection Ak(c, i) will be enhanced.

Layer combination. e1ck involve one-hop information
within node c’s neighbour. To incorporate multi-hop, more
disentangle graph layer is employed as:

elck = g(el−1ck , {i, i ∈ Nc}). (8)
The intent-aware representation from different layers is
summed to get the final representation:

eck =
∑
l

elck (9)

The graph disentangling module learns the user’s intents
distributed in different bundles (global view) from user-
item graph. And from bundle-item graph, the graph disen-
tangling module learns the user’s multiple intents within
each bundle (local view). Coupling with intents from global
and local views, we disentangle the representation of user
and bundle, respectively. Specifically, this module disentan-
gles the representation of user and bundle into chunks as
eu = (eu1, eu2, · · · , euK) and eb = (eb1, eb2, · · · , ebK).

Cross-View Propagating Module
The user’s representation eu and bundle’s representation eb
couple with the user’s intents from global view and local
view, respectively. To exchange intents under different views
between the chunks of user and bundle, the LightGCN (He
et al. 2020) is employed to the user-bundle graph:

vu =
∑
b∈Nu

1√
|Nu|

√
|Nb|

eb,

vb =
∑
u∈Nb

1√
|Nb|

√
|Nu|

eu.

(10)

Through exchanging views, the chunks vu and vb represent
the user and bundle coupling with intents under local and
global view respectively.

Intent Contrasting Module
From the disentangling module and cross-view propagating
module, we obtain the user and bundle’s embedding chunks
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ec = (ec1, · · · , ecK) and vc = (vc1, · · · ,vcK) coupling
with intents from global and local view, respectively. In the
global view, more items are involved to present each intent,
which can demonstrates user’s preference under each in-
tent more clearly. The local view can reveal the association
among items under the user’s each intent. By contrasting,
intents from different views complement each other and can
better present the user’s preference as well as items’ associ-
ations at a finer grain of the user’s intent. Hence we intro-
duce another module which applies InfoNCE(Oord, Li, and
Vinyals 2018) to contrast the user and bundle’s embedding
capturing intents from different views:

Lcontrast = −log(
exp(eck · vck+)∑
k′ exp(eck · vck′)

), (11)

where for each chunk of user/bundle’s embedding eck, the
positive sample vck+

is the chunk of the same intent within
embedding from the different view, while all other chunks
are the negative samples.

Prediction and Optimization
Having obtained the presentation of the user and bundle
from both global and local views, we concatenate represen-
tations from two views to get the final representation and use
inner product to estimate the likelihood of their interactions,
ŷub as:

ŷub = (eu ⊕ vu)� (eb ⊕ vb), (12)
where ⊕ denotes the concatenation and � denotes dot prod-
uct. Then for model optimization, we adopt the Bayesian
Personalized Ranking loss (Rendle et al. 2012):

Lpred =
∑

(u,b,d)∈Q

− lnσ(ŷub − ŷud) + λ · ||θ||2, (13)

where Q = {(u, b, d)|(u, b) ∈ y+, (u, d) ∈ y−} denotes
the training data that involves observed interaction y+ and
unobserved interaction y−. To avoid over-fitting, we adopt
L2 regularization on the model’s parameter θ which is con-
trolled by the coefficient λ. During training, we alternatively
optimize the prediction loss in eq. (12) and contrast loss in
eq. (11).

Experiments
To answer the following questions, we conduct experiments
on two public datasets.
• RQ1: How does MIDGN perform compared with previ-

ous approaches?
• RQ2: How do different components (Graph Disentan-

gling module in global view, Graph Disentangling mod-
ule in local view, intent contrast module) affect the results
of MIDGN?

• RQ3: How do parameters (layer number of Graph Disen-
tangling module, number of intents) influence the results
of MIDGN?

Datasets and metrics Two datasets are used to evaluate
our proposed method. The one is NetEase provided by the
work(Cao et al. 2017). NetEase is constructed by crawling

Dataset NetEase Youshu
User 18,528 8,039

Bundle 22,864 4,771
Item 123,628 32,770

User-Bundle 302,303 51,337
Bundle-item 1,778,838 176,667

User-item 1,128,065 138,515
User-bundle density 0.07% 0.13%
Bundle-item density 0.06% 0.11%

User-item density 0.05% 0.05%

Table 1: Statistics of two utilized datasets

data from Netease Cloud Music, which enables users to se-
lect preferred user-generated playlists or individual songs.
Within NetEase, each bundle contains at least 10 songs ap-
pearing at least in 5 bundles. Each user consumes at least 10
songs and 10 playlists. The other dataset is named Youshu
provided by the work (Chen et al. 2019). Youshu is con-
structed by crawling data from Youshu, a Chinese book re-
view site. Youshu contains the user’s preference for both in-
dividual books and bundles of books. The statistic of these
two datasets is shown in Table 1.

We select Recall@K and NDCG@K as evaluation met-
rics to judge the ranking list performance. Recall@K means
the ratio of test bundles within the top-K ranking list.
NDCG@K assigning higher scores to the hits at a higher
position on the ranking list.

Baselines To demonstrate the effectiveness of the pro-
posed MIDGN, state-of-art methods are chosen for com-
parison. Specifically, we first chose two matrix factorization
based methods, and several graph based methods as follows:

• MFBPR (Rendle et al. 2009): This work applies a
Bayesian Personalized Ranking learning framework to
the matrix factorization method.

• DAM (Chen et al. 2019): This work uses the factorized
attention mechanism and multi-task framework to cap-
ture bundle-level association and collaborate signals.

• GCN(Berg, Kipf, and Welling 2017): The GCN method
is applied to the user-bundle-item unified graph to predict
the user-bundle relations.

• GCNBG(Berg, Kipf, and Welling 2017): The GCN
method is applied to the user-bundle graph.

• NGCF (Wang et al. 2019): This work uses GCN based
method to capture high-order collaborative signals for
prediction.

• NGCFBG (Wang et al. 2019): The NGCF method is ap-
plied to the user-bundle graph for prediction.

• RGCN (Schlichtkrull et al. 2018): RGCN is GCN based
method developed to deal with the multi-relational graph.

• BasConv (Liu et al. 2020): This work devises heteroge-
neous aggregators to learn the embedding of each node
within the user-bundle-item graph.

• BGCN (Chang et al. 2020): BGCN proposes a graph
neural network model to explicitly model complex rela-
tions between users, items, and bundles.
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Method
NetEase Youshu

Metrics@20 Metrics@40 Metrics@80 Metrics@20 Metrics@40 Metrics@80
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

MFBPR 0.0335 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658

GCNBG 0.0378 0.0257 0.0625 0.0255 0.1000 0.0342 0.1982 0.1141 0.2661 0.1322 0.3633 0.1541
NGCFBG 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524

GCN 0.0402 0.0204 0.0657 0.0272 0.1051 0.0362 0.2032 0.1175 0.2770 0.1371 0.3804 0.1605
NGCF 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561
RGCN 0.0407 0.0210 0.0670 0.0280 0.1112 0.0378 0.2040 0.1069 0.3017 0.1330 0.4169 0.1595

BasConv 0.0470 0.0244 0.0786 0.0327 0.1241 0.0429 0.2121 0.1204 0.2978 0.1434 0.3988 0.1548
BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851

MIDGN 0.0678 0.0343 0.1085 0.0451 0.1654 0.0578 0.2682 0.1527 0.3712 0.1808 0.4817 0.2063
%Improv. 38.2% 33.1% 30.9% 30.3% 26.8% 27.5% 14.2% 13.8% 14.2% 13.6% 10.7% 11.3%

Table 2: Performance comparisons on two real-world datasets

The negative sampling is set to 1, the learning rate is se-
lected from 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, and we adopt
BPR loss for all methods and employ Adam optimizer with
the 4096-size mini-batch and fit the embedding size as 64.
We make use of Nvidia Titan RTX graphics card equipped
with AMD r9-5900x CPU (32GB Memory). For MIDGN,
the number of intents and the number of layers are selected
from 1, 2, 4, 8 and 1, 2, 3, 4, respectively

Performance Comparison(RQ1)
The results of all the methods are reported in Table 2. For
the results, we have the following observations.

• Our proposed MIDGN achieves the best results.
MIDGN significantly outperforms all the baselines
both on the metrics of Recall@K and NDCG@K. On
NetEase, MIDGN improves the performance over the
best baseline by 26.8%-38.2%. And MIDGN outper-
forms the best result by 10.7%-14.2% on Youshu. We
contribute the improvement to the following aspects:1)
By grouping the items to model the user’s intents,
MIDGN reduces the noise from individual items and thus
better learns the user’s preference. 2) Disentangling the
embedding of user and bundle according to the user’s
intents presents the user and bundle at a more granular
level. and 3) By learning and contrasting the user’s in-
tents under global and local views, MIDGN clearly cap-
tures the user’s intents.

• Graph models are effective in personalized bundle
recommendation. Graph models (GCN, NGCF, RGCN)
are effective in bundle recommendation, which can be
proved by their better performance than MFBPR. We at-
tribute this to their superiority in capturing graph struc-
ture and multi-hop collaborative information. Among
these models, RGCN performs the best, which denotes
the importance of distinguishing the different relation-
ships for the problem of personalized bundle recommen-
dation.

• Capturing the user’s preference on items’ associa-
tions is important. Failing to capture bundle-level as-
sociation, graph models (GCN, NGCF, RGCN) can not
even surpass DAM, which employs attention mechanism
and multi-tasks framework. By being devised to capture
the user’s preference on items’ associations, BasConv
and BGCN significantly improve the performance of per-
sonalized bundle recommendation and performs the best
among baselines.

Study of MIDGN (RQ2&RQ3)
Next we investigate the underlining mechanism of our
MIDGN with three ablated models: MIDGNw / o contra. that
removes the contrast module, MIDGNw / o local that replaces
the graph disentangling module in the local view with GCN,
and MIDGNw / o global that removes the graph disentangling
module in the global view and uses GCN instead. From the
results in 3, we have the following observations:
• MIDGN outperforms MIDGNw / o global significantly.

This demonstrate the importance of global view in mod-
eling the user’s multiple intents. And involving more
items is helpful to learn the user’s intents.

• MIDGNw / o local is the least competitive. We contribute
this to its failure on learning associations between items
under the user’s each intent.

• MIDGN outperforms MIDGNw / o contra.. This demon-
strates the effectiveness of the intent contrast module
in helping the intents from different views complement
each other.

• All the ablated models significantly outperform the base-
lines. This demonstrates the effectiveness of disentan-
gling multi-view intents for bundle recommendation.

We also conduct parameter studies to further investigate
the influence of some parameters. Specifically, how the num-
ber of disentangling layers, the number of the user’s intents
influence the performance of MIDGN. Impact of Layer
Number The graph disentangling layer disentangles the
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Method
NetEase Youshu

Metrics@20 Metrics@20
Recall NDCG Recall NDCG

MIDGNw / o local 0.0547 0.0287 0.2475 0.1393
MIDGNw / o global 0.0583 0.0303 0.2464 0.1441
MIDGNw / o contra. 0.0609 0.0312 0.2588 0.1471
MIDGN 0.0678 0.0343 0.2682 0.1527

Table 3: Ablated models analysis

Method-L
NetEase Youshu

Metrics@20 Metrics@20
Recall NDCG Recall NDCG

MIDGN-1 0.0442 0.0233 0.2348 0.1348
MIDGN-2 0.0559 0.0295 0.2503 0.1429
MIDGN-3 0.0642 0.0331 0.2682 0.1527
MIDGN-4 0.0678 0.0343 0.2617 0.1472

Table 4: Impact of Layer Number(L)
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Figure 3: Impact of Layer Number(L)

user’s intents and collects groups of items pertinent to in-
dividual intents to learn intent-aware representations. By
stacking more layers, collaborative information from multi-
hop neighbors is distilled. We investigate how the number of
layers influences the performance of MIDGN. Specifically,
we conduct experiments with layer L in range {1, 2, 3, 4}
and the results are shown in Table 4, where MIDGN-L is to
illustrate that L layers are involved in disentangling module.
There are some observations:

• Increasing the number of layers can improve the per-
formance of our model. MIDGN-2 highly outperforms
MIDGN-1. The reason is MIDGN-1 only gains informa-
tion from one-hop neighbor and neglects high-order col-
laborative information.

• When increasing the layer of number, the perfor-
mance does not always improve. MIDGN-3 outperforms
MIDGN-4 on data Youshu. This can be attributed to the
noise which increases along with the hop of neighbor.

Impact of Intent Number To investigate the impact of
intent number, we search the number K of Intent in range
{1, 2, 4, 8}. From the results in Table 5, we have the follow-
ing observations:

• MIDGN performs the worst when the intent number
K = 1. This illustrates the diversity of the user’s intents

Method-K
NetEase Youshu

Metrics@20 Metrics@20
Recall NDCG Recall NDCG

MIDGN-1 0.0579 0.0299 0.2523 0.1442
MIDGN-2 0.0652 0.0340 0.2632 0.1497
MIDGN-4 0.0678 0.0343 0.2682 0.1527
MIDGN-8 0.0587 0.0302 0.2517 0.1439

Table 5: Impact of Intent Number(K)
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Figure 4: Impact of Intent Number(K)

and an unitary intent can not present the user’s preference
effectively.

• When the intent number K increases from 4 to 8, the
performance drops sharply. This suggests the model suf-
fers from too fine-grained intents. The reason may be that
when cluster items into too many groups for individual
intents, each group can not present the intent coupling
with it well.

Conclusion
In this paper, we explore the diversity of the user’s in-
tents in the problem of personalized bundle recommenda-
tion. We propose a novel model named Multi-view Intent
Disentangle Graph Networks(MIDGN) which disentangles
the user’s intents from both the global and local views.
With the help of GNN equipped with the neighbor rout-
ing mechanism, MIDGN disentangles user-item and bundle-
item graph coupling with the user’s intents from global and
local views, respectively. Meanwhile, MIDGN compares the
intents learned from different views to better represent the
user’s preference as well as the items’ associations at a finer
grain of the user’s intent. Extensive experiments on Yoush
and NetEase demonstrate the superiority of the proposed
MIDGN.
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