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Abstract

Multi-task learning (MTL) has been widely used in recom-
mender systems, wherein predicting each type of user feed-
back on items (e.g, click, purchase) are treated as individual
tasks and jointly trained with a unified model. Our key ob-
servation is that the prediction results of each task may con-
tain task-specific knowledge about user’s fine-grained prefer-
ence towards items. While such knowledge could be trans-
ferred to benefit other tasks, it is being overlooked under
the current MTL paradigm. This paper, instead, proposes a
Cross-Task Knowledge Distillation framework that attempts
to leverage prediction results of one task as supervised sig-
nals to teach another task. However, integrating MTL and KD
in a proper manner is non-trivial due to several challenges
including task conflicts, inconsistent magnitude and require-
ment of synchronous optimization. As countermeasures, we
1) introduce auxiliary tasks with quadruplet loss functions to
capture cross-task fine-grained ranking information and avoid
task conflicts, 2) design a calibrated distillation approach to
align and distill knowledge from auxiliary tasks, and 3) pro-
pose a novel error correction mechanism to enable and fa-
cilitate synchronous training of teacher and student models.
Comprehensive experiments are conducted to verify the ef-
fectiveness of our framework in real-world datasets.

Introduction
Online recommender systems often involve predicting vari-
ous types of user feedback such as clicking and purchasing.
Multi-Task Learning (MTL) (Caruana 1997) has emerged in
this context as a powerful tool to explore the connection of
tasks for improving user interest modeling (Ma et al. 2018b;
Lu, Dong, and Smyth 2018; Wang et al. 2018).

Common MTL models consist of low-level shared net-
work and several high-level individual networks, as shown
in Fig. 1(a), in the hope that the shared network could trans-
fer the knowledge about “how to encode the input features”
by sharing or enforcing similarity on parameters of different
tasks (Ruder 2017). Most prior works (Ma et al. 2018a; Tang
et al. 2020a; Ma et al. 2019) put efforts on designing dif-
ferent shared network architectures with ad-hoc parameter-
sharing mechanisms such as branching and gating. In these
models, each task is trained under the supervision of its own
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binary ground-truth label (1 or 0), attempting to rank posi-
tive items above negative ones. However, using such binary
labels as training signals, the task may fail to accurately cap-
ture user’s preference for items with the same label, despite
that learning the auxiliary knowledge about these items’ re-
lations may benefit the overall ranking performance.

To address this limitation, we observe that the predictions
of other tasks may contain useful information about how to
rank same-labeled items. For example, given two tasks pre-
dicting ‘Buy’ and ‘Like’, and two items labeled as ‘Buy:0,
Like:1’ and ‘Buy:0, Like:0’, the task ‘Buy’ may not accu-
rately distinguish their relative ranking since both of their
labels are 0. In contrast, another task ‘Like’ will identity the
former item as positive with larger probability (e.g. 0.7), the
latter with smaller probability (e.g. 0.1). Based on the fact
that a user is more likely to purchase the item she likes 1,
we could somehow take advantage of these predictions from
other tasks as a means to transfer ranking knowledge.

Knowledge Distillation (KD) (Hinton, Vinyals, and Dean
2015) is a teacher-student learning framework where the stu-
dent is trained using the predictions of the teacher. As re-
vealed by theoretical analysis in previous studies (Tang et al.
2020b; Phuong and Lampert 2019), the predictions of the
teacher, also known as soft labels, are usually seen as more
informative training signals than binary hard labels, since
they could reflect ‘whether the sample is true positive (neg-
ative)’. On the perspective of backward gradient, KD can
adaptively re-scale student model’s training dynamics based
on the values of soft labels. Specially, in the above example,
we could incorporate predictions 0.7 and 0.1 in the train-
ing signals for task ‘Buy’. Consequently, the gradients w.r.t
the sample labeled ‘Buy:0 & Like:0’ in the example will
be larger, indicating it is a more confident negative sample.
Through this process, the task ‘Buy’ could hopefully give
accurate rankings of same-labeled items. Motivated by these
above observations, we proceed to design a new knowledge
transfer paradigm on the optimization level of MTL models
by leveraging KD. It is non-trivial due to three critical and
fundamental challenges:

• How to address the task conflict problem during dis-
tillation? Not all knowledge from other tasks is use-

1The same applies to other types of user feedback, e.g., click,
collect, forward.
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Figure 1: Illustration of the motivation of CrossDistil.

ful (Yu et al. 2020). Specially, in online recommendation,
the target task may believe that a user prefers itemA since
she bought itemA instead of itemB , while another task
may reversely presume she prefers itemB since she puts it
in the collection rather than itemA. Such conflicting rank-
ing knowledge may be harmful for the target task and
could empirically cause significant performance drop.

• How to align the magnitude of predictions for differ-
ent tasks? Distinct from vanilla KD where teacher and
student models have the same prediction target, different
tasks may have different magnitude of positive ratio. Di-
rectly using another task’s predictions as training signals
without alignment could mislead the target task to yield
biased predictions (Zhou et al. 2021).

• How to enhance training when teacher and student
are synchronously optimized? The vanilla KD adopts
asynchronous training where the teacher model is well-
trained beforehand. However, MTL inherently requires
synchronous training, where each task is jointly learned
from scratch. This indicates the teacher may be poorly-
trained and provide inaccurate or even erroneous train-
ing signals, causing slow convergence and local op-
tima (Wen, Lai, and Qian 2019; Xu et al. 2020).

In this paper, we propose a novel framework named
as Cross-Task Knowledge Distillation (CrossDistil). Differ-
ent from prior MTL models where knowledge transfer is
achieved by sharing representations in bottom layers, Cross-
Distil also facilitates transferring ranking knowledge on the
top layers, as shown in Fig. 1(c). To solve the aforemen-
tioned challenges: First, we introduce augmented tasks to
learn the knowledge of the ranking orders of four types
of samples as shown in Fig. 1(b). New tasks are trained
based on a quadruplet loss function, and could fundamen-
tally avoid conflicts by only preserving the useful knowl-
edge and discarding the harmful one. Second, we consider
a calibration process that is seamlessly integrated in the KD
procedure to align predictions of different tasks, which is ac-
companied with a bi-level training algorithm to optimize pa-
rameters for prediction and calibration respectively. Third,

teachers and students are trained in an end-to-end manner
with a novel error correction mechanism to speed up model
training and further enhance knowledge quality. We conduct
comprehensive experiments on a large-scale public dataset
and a real-world production dataset that is collected from our
platform. The results demonstrate that CrossDistil achieves
state-of-the-art performance. The ablation studies also thor-
oughly dissect the effectiveness of its modules.

Preliminaries and Related Works
Knowledge Distillation (Hinton, Vinyals, and Dean
2015) is a teacher-student learning framework where the stu-
dent model is trained by mimicking outputs of the teacher
model. For binary classification, the distillation loss func-
tion is formulated as

LKD = CE(σ(rT /τ), σ(rS/τ)), (1)

where CE(y, ŷ) = y log(ŷ) + (1 − y) log(1 − ŷ) is binary
cross-entropy, rT and rS denote logits of the teacher and stu-
dent model, and τ is the temperature hyper-parameter. Re-
cent advances (Tang et al. 2020b; Yuan et al. 2020) show
that KD performs instance-specific label smoothing regular-
ization that re-scales backward gradient in logits space, and
thus could hint to the student model about the confidence of
the ground-truth, which explain the efficacy of KD for wider
applications apart from traditional model compression (Kim
et al. 2021; Yuan et al. 2020).

Existing works in recommender systems adopt KD for its
original purpose, i.e., distilling knowledge from a cumber-
some teacher model into a lightweight student model target-
ing the same task (Tang and Wang 2018; Xu et al. 2020;
Zhu et al. 2020). Distinct from theirs or other KD works in
other fields, this paper leverages KD to transfer knowledge
across different tasks, which is non-trivial due to the afore-
mentioned three major challenges.

Multi-Task Learning (Zhang and Yang 2021) is a ma-
chine learning framework that learns task-invariant repre-
sentations by a shared bottom network, and yields predic-
tions for each individual task by task-specific networks.
It has received increasing interests in recommender sys-
tems (Ma et al. 2018b; Lu, Dong, and Smyth 2018; Wang
et al. 2018; Pan et al. 2019) for modeling user interests
by predicting different types of user feedback. A series of
works seek for improvements by designing different shared
network architectures, such as adding constraints on task-
specific parameters (Duong et al. 2015; Misra et al. 2016;
Yang and Hospedales 2016) and separating shared and task-
specific parameters (Ma et al. 2018a; Tang et al. 2020a; Ma
et al. 2019). Different from theirs, we resort to KD to transfer
ranking knowledge across tasks on top of task-specific net-
works. Notably, our model is a general framework and could
be leveraged as an extension of off-the-shelf MTL models.

Proposed Model
Task Augmentation for Ranking
This paper focuses on multi-task learning for predicting
different user feedback (e.g. click, like, purchase, look-
through), and considers two tasks denoted as task A and
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Figure 2: Illustration of computational graph for CrossDistil.

task B to simplify illustration. As shown in the left panel of
Fig. 2, we first split the set of training samples into multiple
subsets according to combinations of tasks’ labels:

D+− = {(xi, y
A
i , y

B
i ) ∈ D | yAi = 1, yBi = 0},

D−+ = {(xi, y
A
i , y

B
i ) ∈ D | yAi = 0, yBi = 1},

D−· = D−− ∪ D−+, D+· = D+− ∪ D++,

D·− = D−− ∪ D+−, D·+ = D−+ ∪ D++,

(2)

where x is an input feature vector, yA and yB denote hard
labels for task A and task B respectively. The goal is to
rank positive samples before negative ones, which can be
expressed a bipartite order x

+· ≻ x−· for task A and
x·+ ≻ x·− for task B, where x+· ∈ D+· and so forth. Note
that these bipartite orders may be contradictory among dif-
ferent tasks, e.g., x+− ≻ x−+ for task A while x+− ≺ x−+

for task B. Due to the existence of such conflicts, directly
conducting KD by treating one task as teacher and another
task as student may cause inconsistent training signals and
is empirically harmful for the overall ranking performance.

To enable knowledge transfer across tasks via KD, we
introduce auxiliary ranking-based tasks that could essen-
tially avoid task conflicts while preserving useful rank-
ing knowledge. In specific, we consider a quadruplet
(x++ ,x+− ,x−+ ,x−−) and the corresponding multipartite
order x++ ≻ x+− ≻ x−+ ≻ x−− for task A. In contrast
with the original bipartite order, the multipartite order re-
veals additional information about the ranking of samples,
i.e., x

++
≻ x

+− and x−+
≻ x−− without introducing con-

tradictions. Therefore, we refer such order as fine-grained
ranking. Based on this, we introduce a new ranking-based
task called augmented task A+ for enhancing knowledge
transfer by additionally maximizing

ln p(Θ| ≻)
= ln p(x

++
≻ x

+− |Θ) · p(x−+
≻ x−− |Θ) · p(Θ)

=
∑

(x
++

,x
+− ,

x−+
,x−− )

lnσ(r̂++≻+−) + lnσ(r̂−+≻−−)−Reg(Θ),

(3)

where r is the logit value before activation in the last layer,
r̂
++≻+− = r̂

++
− r̂

+− , and sigmoid function σ(x) = 1/(1+

exp(−x)). The loss function for augmented task A+ is

LA+ =
∑

(x
++

,x
+− ,

x−+
,x−− )

−βA
1 lnσ(r̂++≻+−)− βA

2 lnσ(r̂−+≻−−)

+
∑

(x
+· ,x−· )

− lnσ(r̂
+·≻−·),

(4)

which consists of three terms that respectively correspond
to three pair-wise ranking relations of samples, where co-
efficients β1, β2 balance their importance. The loss func-
tion for augmented task B+ could be defined in a simi-
lar spirit. These augmented ranking-based tasks are jointly
trained with original regression-based tasks in MTL frame-
work as shown in the second panel of Fig. 2. The original
regression-based loss function is formulated as:

LA =CE(yA, ŷA), LB = CE(yB , ŷB),

CE(y, ŷ) =
∑
xi∈D

−yi ln ŷi − (1− yi) ln(1− ŷi),
(5)

where ŷ = σ(r) is the predicted probability.
The introduced auxiliary ranking-based tasks could avoid

task conflicts and act as prerequisites for knowledge trans-
fer through KD. Besides, the task augmentation approach it-
self is beneficial for the generalizability of main tasks (Hsieh
and Tseng 2021) by introducing more related tasks that may
provide hints about what shall be learned and transferred in
shared layers.

Calibrated Knowledge Distillation
We next design a cross-task knowledge distillation approach
that can transfer fine-grained ranking knowledge for MTL.
Since the prediction results of another task may contain the
information about unseen rankings between samples of the
same label, a straightforward approach is to use soft labels
of another task to teach the current task by the vanilla hint
loss (i.e. distillation loss) as in Eqn. (1). Unfortunately, such
naive approach may be problematic and even imposes neg-
ative effects in practice. This is because the labels of differ-
ent tasks may have contradictory ranking information that
would harm the learning of other tasks as mentioned previ-
ously. To avoid such conflicts, we instead treat augmented
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ranking-based tasks as teachers, original regression-based
tasks as students, and adopt the following distillation loss
functions:

LA−KD = CE(σ(r̂A+/τ), σ(r̂A/τ)),

LB−KD = CE(σ(r̂B+/τ), σ(r̂B/τ)).
(6)

Note that soft labels ŷA+ = σ(r̂A+/τ) and ŷB+ =
σ(r̂B+/τ) are invariant when training the student model,
and hence the student will not mislead the teacher. The loss
functions for students are formulated as

LA−Stu = (1− αA)LA + αALA−KD,

LB−Stu = (1− αB)LB + αBLB−KD,
(7)

where αA ∈ [0, 1] is the hyper-parameter to balance two
losses. The soft labels output by augmented ranking-based
tasks are more informative training signals than hard la-
bels. As an example, for samples x

++
,x

+− ,x−+
,x−− , the

teacher model for augmented task A+ may give predictions
0.9, 0.8, 0.2, 0.1 which intrinsically contains auxiliary rank-
ing orders x++ ≻ x+− and x−+ ≻ x−− that are not revealed
in hard labels. Such knowledge is then explicitly transferred
through the distillation loss and can meanwhile regularize
task-specific layers from over-fitting the hard labels.

However, an issue of the aforementioned approach is that
augmented tasks are optimized with pair-wise loss functions
and thus are not predicting a probability, i.e., the prediction
σ(r̂A+) does not agree with the actual probability that the
input sample is a positive one. Directly using the soft labels
of teachers may mislead students and cause performance de-
terioration. To solve this problem, we propose to calibrate
the predictions so as to provide numerically sound and un-
biased soft labels. Platt Scaling (Niculescu-Mizil and Caru-
ana 2005; Platt et al. 1999) is a classic probability calibra-
tion method. We adopt it for calibration in this work. Still,
one can replace it with any other more complex methods in
practice. Formally, to get calibrated probabilities, we trans-
form the logit values of teacher models through the follow-
ing equation:

r̃A+ = PA · r̂A+ +QA, ỹA+ =
1

1 + exp r̃A+
(8)

where r̃ and ỹ are the logit value and probability after cali-
bration, respectively. The same process is also used for task
B+. P , Q are learnable parameters specific to each task.
They are trained by optimizing the calibration loss

LCal = LA−Cal+LB−Cal = CE(yA, ỹA+)+CE(yB , ỹB+).
(9)

We fix MTL model parameters when optimizing LCal as
shown in the third panel of Fig. 2. Note that, since the cal-
ibrated outputs of the teacher model are linear projections
of the original outputs, the ranking result is unaffected so
that the latent fine-grained ranking knowledge in soft la-
bels is preserved during the calibration process. Distillation
losses in Eqn. (6) are then revised by replacing r̂A+, r̂B+

with r̃A+, r̃B+.

Algorithm 1: Training Algorithm for CrossDistil
Input: Training dataset D, learning rate γ1 and γ2, initial

parameters Θ and Ω.
1 Construct set
D++,D+−,D−+,D−−,D+·,D−·,D·+,D·−;

2 while Not converged do
3 Sample x uniformly at random from D;
4 Sample x++ ,x+− ,x−+ ,x−− uniformly at random

from D++,D+−,D−+,D−− respectively;
5 Sample x+· ,x−· ,x·+ ,x·− uniformly at random from

D+·,D−·,D·+,D·− respectively;
6 Model parameter Θ optimization:
7 Calculate LA+(x+· ,x−· ,x++ ,x+− ,x−+ ,x−− ; Θ);
8 Calculate LB+(x·+ ,x·− ,x++ ,x+− ,x−+ ,x−− ; Θ);
9 Calculate LA−Stu(x; Θ),LB−Stu(x; Θ);

10 LModel ←
wightedSum(LA+,LB+,LA−Stu,LB−Stu);

11 Θ← Θ− γ1∇ΘLModel;
12 Calibration parameter Ω optimization:
13 Calculate LCal(x; Ω);
14 Ω← Ω− γ2∇ΩLCal;
15 end

Model Training
Conventional KD adopts a two-stage training process where
the teacher model is trained in advance and its parameters
are fixed when training the student model (Hinton, Vinyals,
and Dean 2015). However, such asynchronous training pro-
cedure is not favorable for industrial applications such as
online advertising. Instead, due to simplicity and easy main-
tenance, synchronous training procedure where teacher and
student models are trained in an end-to-end manner is more
desirable as done in (Xu et al. 2020; Anil et al. 2018; Zhou
et al. 2018). In our framework, there are two sets of parame-
ters for optimization, namely, parameters in MTL backbone
for prediction (denoted as Θ) and parameters for calibration
including PA, PB , QA and QB (denoted as Ω). To jointly
optimize prediction parameters and calibration parameters,
we propose a bi-level training procedure where Θ and Ω are
optimized in turn for each iteration as shown in the training
algorithm. For sampling, it is impractical to enumerate ev-
ery combination of samples as in Eqn. (4). Instead, We adopt
bootstrap sampling strategy as used in (Rendle et al. 2012;
Shan, Lin, and Sun 2018) as unbiased approximation.

Error Correction Mechanism
In KD-based methods, the student model is trained accord-
ing to predictions of the teacher model, without considering
if they are accurate or not. However, inaccurate predictions
of the teacher model that is contradictory with the hard label
could harm the student model’s performance in two aspects.
First, at early stage of training when the teacher model is not
well-trained, frequent errors in soft labels may distract the
training process of the student model, causing slow conver-
gence (Xu et al. 2020). Second, even at later stage of train-
ing when the teacher model is relatively well-trained, it is
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still likely that the teacher model would occasionally pro-
vide mistaken predictions that may cause performance dete-
rioration (Wen, Lai, and Qian 2019). A previous work (Xu
et al. 2020) adopts a warm-up scheme by removing distilla-
tion loss in the earliest k steps of training. However, it is not
clear how to choose an appropriate hyper-parameter k, and
it cannot prevent errors after k steps.

In this work, we propose to adjust predictions of the
teacher model ỹ to align with the hard label y. Specifically,
we clamp logit values for the teacher model (if the prediction
is inconsistent with the ground truth) as follows:

rTeacher(x)← 1[y] ·Max
{
1[y] · rTeacher(x),m

}
(10)

where rTeacher could be r̃A+ or r̃B+, 1[y] is an indica-
tor function that returns 1 is y = 1 else returns −1, and
m is the error correction margin, a hyper-parameter. This
procedure could accelerate convergence by eliminating in-
accurate predictions at the early stage of training, and fur-
ther enhance knowledge quality at the later stage to improve
student model’s performance. The proposed error correction
mechanism has the following properties: 1) It does not affect
the predictions of the teacher model if they are sufficiently
correct (that predicts the true label with at least probability
σ(m)); 2) It does not affect training of the teacher model
since the computation of distillation loss has no backward
gradient for teachers as shown in Fig. 2.

Experiments
We conduct experiments on real-world datasets to answer
the following research questions: RQ1: How do CrossDis-
til performs compared with the state-of-the-art multi-task
learning frameworks; RQ2: Are the proposed modules in
CrossDistil effective for improving the performance; RQ3:
Does error correction mechanism help to accelerate conver-
gence and enhance knowledge quality; RQ4: Does the stu-
dent model really benefit from auxiliary ranking knowledge;
RQ5: How do the hyper-parameters influence the perfor-
mance?

Datasets We conduct experiments on a publicly accessi-
ble dataset TikTok 2 and our WeChat dataset. Tiktok dataset
is collected from a short-video app with two types of user
feedback, i.e., ‘Finish watching’ and ‘Like’. WeChat dataset
is collected on WeChat Moments platform through sampling
user logs during 5 consecutive days with two types of user
feedback, i.e., ‘Not interested’ and ‘Click’. For Tiktok, we
randomly choose 80% samples as training set, 10% as val-
idation set and the rest as test set. For WeChat, we split
the data according to days and use the data of the first four
days for training and the last day for validation and test. The
statistics of datasets are given in Table ??.

Evaluation Metrics We use two widely adopted metrics,
i.e., AUC and Multi-AUC, for evaluation. AUC indicates the
bipartite ranking (i.e., x+ ≻ x−) performance of the model.

AUC =
1

N+N−

∑
xi∈D+

∑
xj∈D−

(I(p(xi) > p(xj))) (11)

2https://www.biendata.xyz/competition/icmechallenge2019/data/

Datasets #Samples #Fields #Features Density(A) Density(B)

WeChat 9,381,820 10 447,002 1.510% 9.975%
TikTok 19,622,340 9 4,691,483 37.994% 1.101%

Table 1: Statistics of two datasets.

where p(x) is the predicted probability of x being a positive
sample and I(·) is the indicator function. The vanilla AUC
measures the performance of bipartite ranking where a data
point is labeled either as a positive sample or a negative one.
However, we are also interested in multipartite ranking per-
formance since samples have multiple classes with an order
x

++
≻ x

+− ≻ x−+
≻ x−− (for task A). Therefore, follow-

ing (Shan, Lin, and Sun 2018; Shan et al. 2017), we adopt
multi-class area under ROC curve (Multi-AUC) to evaluate
multipartite ranking performance on test set. Note that we
use the weighted version which considers the class imbal-
ance problem (Hand and Till 2001) and is defined as:

Multi-AUC =
2

c(c− 1)

c∑
j=1

c∑
k>j

p(j∪k)·AUC(k, j), (12)

where c is the number of classes, p() is the prevalence-
weighting function as described in (Ferri, Hernández-Orallo,
and Modroiu 2009), AUC(k, j) is the AUC score with class
k as the positive class and j as the negative class.

Baseline Methods We choose the following MTL models
with different shared network architectures for comparison:
Shared-Bottom (Caruana 1997), Cross-Stitch (Misra et al.
2016), MMoE (Ma et al. 2018a), PLE (Tang et al. 2020a).
We use two variants of our method: TAUG incorporates aug-
mented tasks on top of MTL models, and CrossDistil ex-
tends TAUG by conducting calibrated knowledge distilla-
tion. Despite that Both TAUG and CrossDistil could be im-
plemented on most state-of-the-art MTL models, we choose
the best competitor (i.e. PLE) as the backbone.

RQ1: Performance Comparison Table 2 and 3 show
the experiment results of our methods versus other competi-
tors on WeChat and TikTok datasets respectively. The bold
value marks the best one in one column, while the under-
lined value corresponds to the best one among all the base-
lines. To show improvements over the single-task counter-
part, we report results of Single-Model which uses a sep-
arate network for learning each task. As is shown in the
tables, the proposed CrossDistil achieves the best perfor-
mance improvements over Single-Model in terms of AUC
and Multi-AUC 3. These results manifest that CrossDistil
could indeed better leverage the knowledge from other tasks
to improve both bipartite and multipartite ranking abilities
on all tasks. Also, TAUG model alone, without calibrated
KD, achieves better performance compared with the back-
bone model PLE, which validates the effectiveness of task
augmentation.

3For large-scale datasets in online advertisement, the improve-
ments of AUC in the table is considerable because of its hardness.
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Methods TaskA-Student TaskB-Student TaskA-Teacher TaskB-Teacher

AUC Multi-AUC AUC Multi-AUC AUC Multi-AUC AUC Multi-AUC

Single-Model .7528 .6270 .7597 .6024 .7535 .6708 .7604 .6705
Shared-Bottom .7540(+.0012) .6378(+.0108) .7587(−.0010) .6145(+.0121) - - - -

Cross-Stitch .7582(+.0054) .6360(+.0090) .7600(+.0003) .6195(+.0171) - - - -
MMoE .7619(+.0091) .6431(+.0161) .7605(+.0008) .6226(+.0202) - - - -

PLE .7625(+.0097) .6394(+.0124) .7607(+.0010) .6240(+.0216) - - - -

TAUG .7632(+.0104) .6432(+.0162) .7612(+.0015) .6394(+.0370) .7625(+.0090) .6853(+.0145) .7608(+.0004) .6768(+.0063)

CrossDistil .7644(+.0116) .6879(+.0609) .7618(+.0021) .6861(+.0837) .7618(+.0083) .6910(+.0202) .7609(+.0005) .6850(+.0145)

Table 2: Experiment results of CrossDistil and competitors on WeChat dataset.

Methods TaskA-Student TaskB-Student TaskA-Teacher TaskB-Teacher

AUC Multi-AUC AUC Multi-AUC AUC Multi-AUC AUC Multi-AUC

Single-Model .7456 .6335 .9491 .7966 .7453 .7140 .9481 .8297
Shared-Bottom .7375(−.0081) .6344(+.0009) .9489(−.0002) .8101(+.0135) - - - -

Cross-Stitch .7468(+.0012) .6445(+.0110) .9488(−.0003) .7985(+.0019) - - - -
MMoE .7479(+.0023) .6474(+.0139) .9490(−.0001) .7980(+.0014) - - - -

PLE .7485(+.0029) .6464(+.0129) .9495(+.0004) .7983(+.0017) - - - -

TAUG .7491(+.0035) .6743(+.0408) .9498(+.0007) .8081(+.0115) .7485(+.0032) .7408(+.0268) .9501(+.0020) .8335(+.0038)

CrossDistil .7494(+.0038) .7411(+.1076) .9513(+.0022) .8341(+.0375) .7487(+.0034) .7403(+.0263) .9502(+.0021) .8324(+.0027)

Table 3: Experiment results of CrossDistil and competitors on TikTok dataset.

Variants AUC Multi-AUC

w/o AuxiliaryRank .7488 (−.0006) .6510 (−.0901)
w/o Calibration .7478 (−.0016) .7396 (−.0015)
w/o Correction .7486 (−.0008) .7399 (−.0012)
KD (same task) .7489 (−.0005) .6901 (−.0510)
KD (cross task) .7269 (−.0225) .6120 (−.1291)
Baseline .7494 .7411

Table 4: Ablation analysis for Task A on TikTok dataset.

Variants AUC Multi-AUC

w/o AuxiliaryRank .9501 (−.0012) .8005 (−.0336)
w/o Calibration .9504 (−.0009) .8312 (−.0029)
w/o Correction .9508 (−.0005) .8310 (−.0031)
KD (same task) .9505 (−.0008) .8014 (−.0327)
KD (cross task) .9184 (−.0329) .7520 (−.0821)
Baseline .9513 .8341

Table 5: Ablation analysis for Task B on TikTok dataset.

Besides, there are several observations in comparison ta-
bles. First, Single-Model on augmented ranking-based tasks
(teacher) achieves better results in Multi-AUC compared
with Single-Model on original regression-based task (stu-
dent). It verifies that the proposed augmented tasks are capa-
ble of capturing task-specific fine-grained ranking informa-
tion. Second, the student model exceeds the teacher model
both in AUC and Multi-AUC performance in most cases,
which is not strange since the student benefits from addi-
tional training signals that could act as label smoothing regu-

larization and the teacher does not have such advantage. The
same phenomenon is observed in many other works (Yuan
et al. 2020; Tang et al. 2020b; Zhang and Sabuncu 2020)

RQ2: Ablation Study We design a series of ablation stud-
ies to investigate the effectiveness of some key components.
Four variants are considered to simplify CrossDistil by: i)
removing BPR losses for learning auxiliary ranking rela-
tions, ii) directly employing the teacher model outputs for
knowledge distillation without any calibration, iii) not ap-
plying the error correction mechanism, vi) using regression-
based teacher models that learn the same task as students
and using the vanilla knowledge distillation that is similar
with (Zhou et al. 2018), v) directly using the predictions of
another task for distillation. Table 4 and 5 show the results
for these variants on TikTok dataset and performance drops
compared with the baseline (i.e. CrossDistil).

For the first variant, teacher loss function degrades to tra-
ditional BPR loss with no auxiliary ranking information.
Such auxiliary ranking information that contains cross-task
knowledge is a key factor for good performance in AUC
and Multi-AUC. The second variant without calibration may
produce unreliable soft labels and result in performance de-
terioration. Also, it is worth mentioning that the calibra-
tion process could significantly improve the performance of
LogLoss, which is a widely used regression-based metric.
Concretely, LogLoss reduces from 0.5832 to 0.5703 for task
A, and 0.0623 to 0.0337 for task B by using calibration. The
results of the third variant indicate that the error correction
mechanism can also bring up improvements for AUC and
Multi-AUC. Another benefit of error correction is to accel-
erate model training, which will be further discussed. For
the fourth variant, we can see that the proposed CrossDistil
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(d) Distillation loss weight α

Figure 3: Multi-AUC performance on TikTok dataset for TaskA and Task B w.r.t. different hyper-parameters.
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Figure 4: Learning curves of CrossDistil with and without
error correction mechanism on TikTok dataset.
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Figure 5: Impact of corrupted auxiliary ranking information
on the student model performance for TikTok dataset.

is better than the vanilla KD since it transfers fine-grained
ranking knowledge across tasks. For the last variant, directly
conducting KD could cause performance drop because of
the ranking conflicts of tasks.

RQ3: Does Error Correction Mechanism Help to Ac-
celerate Convergence and Enhance Knowledge Quality?
To answer this question, we plot the learning curves of test
loss with (blue line) and without (red line) error correction
in Fig. 4. As we can see, for both tasks, the test loss of Cross-
Distil with error correction significantly goes down faster at
the beginning of the training process when the teacher is not
well-trained. Plus, at later stage of training when the teacher
becomes well-trained, the test loss of CrossDistil with error
correction slowly keeps going down and achieves better op-
timal results compared with the variant, indicating that the
proposed error correction mechanism could indeed help to
improve knowledge quality.

RQ4: Does the Student Model Really Benefit from Auxil-
iary Ranking Knowledge from Other Tasks? To answer
this question, we conduct the following experiment: For a
target task A, we randomly choose a certain ratio of pos-

itive samples of task B, and then exchange their task B’s
label with the same number of randomly selected negative
samples, to create a corrupted training set. Note that such
data corruption process only has negative effects on the re-
liability of the auxiliary ranking information, so that we can
investigate its impact on the student model’s performance.
Figure 5 shows the results of performance change when in-
creasing the ratio from 10% to 90%. The results indicate that
flawed auxiliary information has considerable negative ef-
fects on the overall performance, which again verifies Cross-
Distil could effectively transfer knowledge across tasks.

RQ5: Hyper-parameter Study This subsection studies
the performance variation of CrossDistil w.r.t. some key
hyper-parameters (i.e. error correction margin m, auxiliary
ranking loss coefficient β1 and β2, distillation loss weight
α). Figure 3(a) shows the Multi-AUC performance with er-
ror correction margin ranges from −4 to 4. As we can see,
the model performance first increases and then decreases.
This is because extremely small m is equivalent to not con-
ducting error correction, while extremely large m makes the
soft labels degrade to hard labels. The results in Fig. 3(b)
and Fig. 3(c) indicate a proper setting for β can help to cap-
ture the correct underlying fine-grained ranking information.
The results in Fig. 3(d) reveal that a proper α from 0 to 1
can bring the best performance, which is reasonable since
the distillation loss plays the role of label smoothing regu-
larization and could not replace hard labels.

Conclusion
In this paper, we propose a cross-task knowledge distilla-
tion framework for multi-task recommendation. First, aug-
mented ranking-based tasks are designed to capture fine-
grained ranking knowledge, which could avoid conflicted
information to alleviate negative transfer problem and pre-
pare for subsequent knowledge distillation. Second, cali-
brated knowledge distillation is adopted to transfer knowl-
edge from augmented tasks (teacher) to original tasks (stu-
dent). Third, an additional error correction method is pro-
posed to speed up the convergence and improve knowledge
quality in the synchronous training process.

CrossDistil could be incorporated in most off-the-shelf
multi-task learning models, and is easy to be extended or
modified for industrial applications such as online adver-
tising. The core idea of CrossDistil could inspire a new
paradigm for solving domain-specific task conflict problem
and enhancing knowledge transfer in broader areas of data
mining and machine learning.
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