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Abstract

Anomaly detection attempts to find examples in a dataset
that do not conform to the expected behavior. Algorithms for
this task assign an anomaly score to each example represent-
ing its degree of anomalousness. Setting a threshold on the
anomaly scores enables converting these scores into a discrete
prediction for each example. Setting an appropriate threshold
is challenging in practice since anomaly detection is often
treated as an unsupervised problem. A common approach is to
set the threshold based on the dataset’s contamination factor,
i.e., the proportion of anomalous examples in the data. While
the contamination factor may be known based on domain
knowledge, it is often necessary to estimate it by labeling data.
However, many anomaly detection problems involve monitor-
ing multiple related, yet slightly different entities (e.g., a fleet
of machines). Then, estimating the contamination factor for
each dataset separately by labeling data would be extremely
time-consuming. Therefore, this paper introduces a method
for transferring the known contamination factor from one
dataset (the source domain) to a related dataset where it is
unknown (the target domain). Our approach does not require
labeled target data and is based on modeling the shape of the
distribution of the anomaly scores in both domains. We theo-
retically analyze how our method behaves when the (biased)
target domain anomaly score distribution converges to its true
one. Empirically, our method outperforms several baselines
on real-world datasets.

Introduction
Anomaly detection (Chandola, Banerjee, and Kumar 2009) is
a data mining task that aims to automatically identify exam-
ples in a dataset that do not correspond to typical or expected
behavior. This is a significant and important problem because
anomalies often represent unwanted behaviors such as excess
water usage (Vercruyssen et al. 2018), abnormal web traf-
fic (Robberechts et al. 2018), or malfunctions in unmanned
aerial vehicles (Khan et al. 2019) that have an associated cost.
Anomaly detection is particularly challenging as one often
lacks labeled examples, especially for the anomalies, because
collecting them may be infeasible (e.g., intentionally break
equipment to observe anomalies) or because anomalies are
scarce (e.g., one often has to inspect 100s of examples before
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encountering an anomaly) among other reasons. Hence, clas-
sic approaches (Breunig et al. 2000; Goldstein and Dengel
2012; He, Xu, and Deng 2003; Kriegel et al. 2009; Li et al.
2020; Liu, Ting, and Zhou 2008; Pevnỳ 2016; Ramaswamy,
Rastogi, and Shim 2000; Zhao et al. 2019) treat anomaly
detection as an unsupervised problem. They exploit heuris-
tic intuitions that the anomalies in a dataset are both rare
and somehow different from the normal examples in order
to assign a real-valued score to each example denoting how
anomalous it is. This enables ranking the examples from
most to least anomalous. The practical question is deciding
how many and which anomalies to flag to a user by con-
verting such a ranking into discrete predictions. While this
is a complicated issue, the common approach would be to
use a dataset’s contamination factor, that is the expected
proportion of anomalies in the dataset (Perini, Vercruyssen,
and Davis 2020b), to set a threshold on the anomaly scores
such that the proportion of examples with an anomaly score
greater than the chosen threshold equals the contamination
factor (Bandaragoda et al. 2018; Bergman and Hoshen 2020;
Vikram et al. 2020). Examples with an anomaly score be-
low the threshold are considered normal, those with a score
larger than the threshold are the anomalies. The contamina-
tion factor is usually assumed to be known (e.g., from domain
knowledge). The alternative is to estimate it by sampling and
labeling some data (Perini, Vercruyssen, and Davis 2020a).

However, real-world anomaly detection tasks often involve
monitoring a fleet of related entities such as machines (Ran-
dall 2011), windmill farms (Zhao et al. 2018) or retail
stores (Vercruyssen et al. 2018). While the entities’ behaviors
are related in such cases, there are important differences that
will affect the collected data. For example, windmill-specific
properties (e.g., orientation, size, location) or store-specific
properties (e.g, size, services, or opening hours) will affect
the observed data. Consequently, how many anomalies are
present will vary from entity to entity. Given that such tasks
may involve monitoring 100s of entities, estimating the con-
tamination factor for each one separately by labeling data
would be too onerous. Thus, an interesting avenue to explore
is whether it is possible to transfer a known contamination
factor from data about one entity (the source domain) to data
collected from another similar entity (the target domain). If
this were possible, it would significantly decrease the label-
ing burden, as one would no longer need to collect labels for
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all entities.
This paper proposes TRADE (transferring the contami-

nation factor between anomaly detection domains by shape
similarity), the first algorithm for transferring the known con-
tamination factor from a source domain to a target domain
where it is unknown. TRADE’s key assumption is that if the
distributions over the anomaly scores of the normal examples
computed by a given anomaly detection algorithm, are simi-
lar in shape in both the source and target domain, the target
anomaly score threshold can be derived from the (known)
source threshold. First, we use the known source contamina-
tion factor to construct a proper distribution over the normal
examples in the source domain. Then, we find a threshold
on the target domain anomaly scores that makes the distribu-
tion over the anomaly scores of the resulting “normal” target
examples as similar as possible to the earlier-derived source
distribution. This is constructed as an optimization problem.
Finally, we use the resulting threshold to infer the target do-
main’s contamination factor. We theoretically analyze our
approach and prove that the estimated target contamination
factor converges to its true value when the distribution of the
target scores becomes closer to their ground-truth distribution.
Empirically, we performed an extensive evaluation on 206
source-target pairs arising from three real-world domains:
detecting anomalous water usage in retail stores, detecting
blade icing on windmills, and detecting botnets on IoT traffic
data. We find that TRADE outperforms multiple competitors.

Related Work
A first related research line looks at combining transfer learn-
ing with anomaly detection in different application domains.
For instance, time series anomaly detection (Wen and Keyes
2019), detecting dangerous aircraft test flight actions (Xiong
et al. 2018), hyperspectral image anomaly detection (Li, Wu,
and Du 2017), or video anomaly detection (Bansod and
Nandedkar 2019; Liu et al. 2020). Some authors focus on
instance-transfer for anomaly detection (Vercruyssen, Meert,
and Davis 2017, 2020), others on feature-based transfer (Ku-
magai, Iwata, and Fujiwara 2019; Yamaguchi, Koizumi, and
Harada 2019), or model-based transfer (Wang et al. 2019;
Idé, Phan, and Kalagnanam 2017; Du et al. 2013). The goal
is almost always to improve a target model using source
domain label information, i.e., deriving better estimates for
the anomaly scores. However, no work looks at transferring
the contamination factor between domains in the anomaly
detection setting, allowing us to set a prediction threshold on
these anomaly scores.

A second related research line revolves around convert-
ing anomaly scores into calibrated probabilities (Gao and
Tan 2006). Although calibration usually requires either la-
beled examples or a known contamination factor, Kriegel et
al. (2011) introduce UNIFY, a method to obtain calibrated
probabilities from anomaly scores without such requirements.
In absence of labeled data, Marques et al. (2020) develop
an internal measure to evaluate the quality of an anomaly
detector, while Schubert et al. (2012) and Perini et al. (2020)
develop rank similarity measures to compare the anomaly
rankings of different detectors. However, none of these works
propose a method to find an appropriate decision threshold

De
ns

ity
 Fu

nc
tio

n

store1-hour1 store1-hour2 store1-hour3 store1-hour4

store2-hour1 store2-hour2 store2-hour3 store2-hour4

0.25 0.75

store3-hour1

0.25 0.75
Anomaly Scores

store3-hour2

0.25 0.75

store3-hour3

0.25 0.75

store3-hour4

Figure 1: Illustration of how the distribution anomaly scores
produced by the same anomaly detection algorithm h on
related real-world water exhibit a similar shape.

for the anomaly scores in an (unlabeled) dataset. On the other
hand, TRADE proposes a concrete algorithm for deriving the
contamination factor of an unlabeled target dataset given the
relevant source information.

Preliminaries
Let (Ω,=,P) be a probability space. Let XS , XT : Ω→ Rd
be two multivariate real random variables with values in the
feature space Rd, and Y S , Y T : Ω → {0, 1} be the related
class label (i.e., normal or anomalous). Assume that DS and
DT
m are respectively the source and target dataset. DS can

be seen as an i.i.d. sample drawn from the joint distribution
(XS , Y S), while DT

m (|DT
m| = m) is a small (and therefore

potentially biased) sample drawn from (XT , Y T ). From now
on, every target domain variable is indicated with the index
m, referring to the number of target examples. An anomaly
detection problem is the setting where there exists a mea-
surable function h : Rd → R that maps the examples in
a dataset to a real-valued anomaly score. We focus on the
anomaly score random variables S, T and Tm referring to
the ground-truth anomaly scores of, respectively, the source
domain, the target domain, and the sampled target dataset.
We indicate their distributions with s, t and tm. We linearly
normalize the distributions s, t and tm to have support in
[0, 1]. Formally, we define their contamination factors as
γS = P

(
Y S = 1

)
, γT = P

(
Y T = 1

)
, γTm = P

(
Y Tm = 1

)
,

where 1 is the anomaly class.

Transferring the Contamination Factor by
Shape Similarity

This paper tackles the following problem:

Given: an unlabeled source dataset DS with a known con-
tamination factor γS , an unlabeled target dataset DT

m, and
an anomaly detection algorithm h;

Estimate: the contamination factor γTm of the target domain.

Our method TRADE estimates γTm and works as follows.
First, TRADE trains two separate anomaly detectors. It trains
one on the source data and uses it to assign an anomaly
score to each example in DS . It trains the other one on the

4129



target data and uses it to assign an anomaly score to each
example in DT . Because the domains are related and nor-
mal behaviors are similar, the key insight is that the source
and target distributions of the normal examples’ anomaly
scores will be similar (but not necessarily equal). That is,
there may be scales, offsets or shifts but not fundamental
changes in the underlying distribution. Figure 1 motivates
this assumption, showing that anomaly scores produced by
algorithm h on multiple related domains follow a similar
distribution when looking only at the low scores, which by
construction correspond to the normal examples. However,
because both datasets are unlabeled, we do not know the
distribution of the normal examples’ anomaly scores. Second,
TRADE uses the known source contamination factor γS to
set a threshold λS on the source anomaly scores. Examples
with an anomaly score lower than λS are considered normal,
yielding the distribution over their anomaly scores, which
we call the λcut distribution. Third, TRADE derives the tar-
get threshold λTm by solving an optimization problem: λTm is
chosen such that shapes of the resulting λTmcut distribution
and the λScut distribution are as similar as possible. This
leverages our earlier insight. Finally, TRADE predicts the
target contamination factor γTm as the proportion of target
examples with an anomaly score above the value of λTm. The
following subsections describe each of these steps in details.
Next, we explore the theoretical properties of TRADE.

Modeling the Distribution of the Anomaly Scores
of the Normal Examples in DS

Modeling the distribution of anomaly scores assigned to the
source normal examples is challenging because we lack la-
bels. Instead, we exploit the fact that the source domain’s
contamination factor γS is known. First, we set a threshold
λS on the source anomaly scores such that the proportion of
examples with score > λS is equal to γS . Then, we model
the distribution of normal scores as the distribution of scores
≤ λS by performing a normalization such that the support
of the new distribution is again [0, 1] and its area is equal to
1. More generally, for an arbitrary threshold value λ, we call
this derived distribution the λcut distribution and define it as
follows:
Definition 1. Let X be a random variable on the probability
space (Ω,=,P) with distribution p(x) and support in [0, 1].
Then, for any λ ∈ [0, 1], we define the λcut distribution as:

pλ(x) := p(λx) · λ∫ λ
0
p(y) dy

.

Proposition 1. For any λ ∈ [0, 1], pλ(x) is a distribution.

Proof. See the online Appendix1 for the formal proof.

This step assumes that the anomaly detection algorithm
yields a reasonably ranking of the examples from least to
most anomalous. However, even if the ranking is not perfect,
the subsequent transfer step can still be accurate because
the same algorithm is used to derive both the source and
target λcut distributions. Thus, incorrect predictions are likely
similarly distributed in both domains.

1https://github.com/Lorenzo-Perini/TransferContamination

Finding the Target Threshold λTm via Transfer
If we knew the threshold λTm on the target anomaly scores that
separates the normal examples from the anomalies, we could
trivially estimate the target contamination factor. Therefore,
we attempt to derive λTm by exploiting our assumption that
the source and target distributions of the normal examples’
anomaly scores are similar (given they are derived using the
same anomaly detector). This can be solved by attempting to
find a value λTm that yields a λTmcut distribution in the target
domain that is similar to the source’s λScut distribution. We
can measure the similarity between two distributions S and
T using the Kullback-Leibler (KL) divergence:

KL (S ||T ) =

∫ 1

0

s(x) log

(
s(x)

t(x)

)
dx,

where s and t are continuous distributions. Intuitively, the
KL divergence quantifies the amount of information lost
when approximating S with T with small KL divergence
scores corresponding to little lost information, and hence
similar shapes. We selected the KL divergence for three rea-
sons. First, its theoretical properties enables a convergence
study (Garrido 2009). Second, it is a widely used measure
in the literature (Belov and Armstrong 2011). Third, it is
stronger than several other similarity measures (e.g., maxi-
mum gap) as they are upper boundaries of KL (Gibbs and Su
2002).

We formulate our task as finding the threshold λTm such that
the KL divergence between the corresponding target λTmcut
distribution and the source’s λScut distribution is minimal:

λTm = arg min
λ∈[δ,1]

{
KL

(
Sλ

S
∣∣∣∣∣∣ Tλm)} , (1)

where Sλ
S

and Tλm are the random variables that follow,
respectively, the λScut and λcut distributions. The δ > 0 is
a small value which depends on the detector h and on the
datasets, and represents the lower boundary for the choice
of λTm. The contamination factor is usually small such that
λTm > 0. If λTm = 0, all the examples would be anomalous.

Theoretically, there may be more than one solution to Equa-
tion 1 because the objective might not be smooth such that
arg min returns a set of solutions. However, in practice this
is unlikely to occur and it did not happen in our experiments.

Deriving the Target Contamination Factor
Mirroring the reasoning for setting the source threshold λS ,
a reasonable estimate of the target domain’s contamination
factor can be derived by looking at the proportion of ex-
amples in the target domain with an anomaly score greater
than λTm. Theoretically, given the target threshold λTm ∈
[δ, 1] we should estimate the contamination factor through
the continuous score variable Tm as P

(
h
(
XT
)
≥ λTm

)
=

P
(
Tm ≥ λTm

)
. However, because in practice we can only use

a finite number of examples, we estimate the contamination
factor as the discrete proportion of examples with anomaly
scores greater than λTm:

γ̂Tm :=

∣∣{h(x) ≥ λTm
∣∣x ∈ DT

m

}∣∣
m

=

∑m
i=1 X{h(x)≥λT

m}(xi)

m
(2)
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where | · | indicates the cardinality of a set, X is the indicator
function, h(x) is the anomaly score of the example x ∈ DT

m
and λTm is the transferred target predictive threshold. In the
following proposition, we prove that if the target threshold
λTm is correct, our estimator γ̂Tm is unbiased, meaning that it
recovers the target domain’s true contamination factor γTm.

Proposition 2. Given the target threshold λTm ∈ [δ, 1] such
that P

(
Y Tm = 1

)
= P

(
Tm ≥ λTm

)
, the contamination fac-

tor’s estimator defined in Eq. 2 is unbiased.

Proof. See the online Appendix for the formal proof.

Choice of Anomaly Detection Algorithm h

In theory, TRADE can use any anomaly detection algorithm
h to estimate γ̂Tm. In practice, we find that using an ensem-
ble of anomaly detectors yields better results.2 First, each
detector i in the ensemble produces an estimate of the tar-
get contamination factor as described above. Then, TRADE
computes the final estimate γ̂Tm as a weighted average of each
ensemble member’s estimate. The weight of each member wi
is inversely proportional to its obtained KL divergence KLi:

wi =
1

|E| − 1
×

(
1− KLi(S, Tm)∑|E|

j=1KLj(S, Tm)

)
,

where |E| is the number of detectors in the ensemble. This
weighting scheme awards ensemble members that produce
similar score distributions for the source and target domain.

Theoretical Convergence Analysis
Our main theoretical result is Theorem 3, which states that
our approach for estimating the contamination factor will con-
verge to the theoretical target value in the limit. This theorem
rests on making the following two theoretical assumptions.

Assumption 1. We assume that the sample of scores from
the source domain is an i.i.d. sample drawn from the real
distribution S. This is coherent with a practical setting, where
the source sample is large enough to represent the ground
truth distribution. On the other hand, we assume that there
may be some bias in the distribution of scores Tm with respect
to T , and that the bias gradually fades out when adding
examples. Formally, we require that, for m→ +∞, tm → t
uniformly in [0, 1], which means that, for every ε > 0, there
exists M ∈ N such that, for all m ≥ M and x ∈ [0, 1], the
inequality |t(x) − tm(x)| < ε holds. We also indicate this
assumption by Tm → T .

Assumption 2. We assume that the normal scores distribu-
tion of the theoretical target distribution T shares exactly the
same shape with the normal scores distribution of the source
domain. Formally, we require that KL(Sλ

S ||TλT

) = 0,
where Sλ

S

and Tλ
T

represents the distribution of normal
scores of the two domains. This assumption is a theoretical
generalization of what Figure 1 shows.

Formally, our main theoretical result is stated as:

2We provide empirical evidence in the experimental section.

Theorem 3. Let S and Tm be two continuous random
variables representing the anomaly scores produced by an
anomaly detector h on, respectively, the source (DS) and
the target (DT

m) domains. Assume that T is the random vari-
able with the ground-truth distribution of the target domain
scores. Let γS be the contamination factor of the source
domain. Let us fix δ > 0 small enough and let λS and λT
be the real predictive thresholds of S and T . Let’s assume
that s, t and tm are the positive distributions of S, T and
Tm such that tm → t uniformly in [0, 1] (Assumption 1) for
m → +∞ and that KL(Sλ

S ||TλT

) = 0 (Assumption 2).
Also, let λTm ∈ [δ, 1] be the estimate of the target predictive
threshold through Eq. 1. Then,

lim
m→+∞

λTm = λT .

Furthermore, let γ̂Tm be the estimate of the target contamina-
tion factor by the estimator defined in Eq. 2. Then,

E
[
γ̂Tm
]
→ γT for m→ +∞.

Proof. We now sketch the proof for this theorem. The de-
tailed proofs are in the online Appendix along with the sup-
porting theorems used in the sketch.3 In order to prove the
first part, we need to motivate the transition of the limit sym-
bol through the functions, following these steps:

λT
(i)
= arg min

λ∈[δ,1]

{
KL

(
Sλ

S
∣∣∣∣∣∣Tλ)}

(ii)
= arg min

λ∈[δ,1]

{
KL

(
Sλ

S
∣∣∣∣∣∣ lim
m→+∞

Tλm

)}
(iii)
= arg min

λ∈[δ,1]

{
lim

m→+∞
KL

(
Sλ

S
∣∣∣∣∣∣Tλm)}

(iv)
= lim sup

m→+∞
arg min
λ∈[δ,1]

{
KL

(
Sλ

S
∣∣∣∣∣∣Tλm)} (v)

= lim
m→+∞

λTm.

(3)
The first (i) and the last (v) equalities come from the unique-
ness of the solution shown in Theorems 4 and 5; the second
step (ii) is motivated by the convergence of λcut distributions
proved in Theorem 6; the third equality (iii) holds by Theo-
rem 7; the fourth result (iv) is guaranteed by Theorems 8 and
9. Note that the equal in (iv) is not an inclusion because of
the uniqueness of the solution λT (shown in Theorem 5).

Once we proved that the threshold converges as expected,
the second part of this theorem focuses on the contamination
factor’s convergence, which comes directly as follows:

lim
m→+∞

E
[
γ̂Tm
] (i)

= lim
m→+∞

E

[∑m
i=1 X{h(x)≥λT

m}(xi)

m

]
(ii)
= lim

m→+∞

∑m
i=1 E

[
X{h(x)≥λT

m}(xi)
]

m

(iii)
= lim
m→+∞

∑m
i=1 E

[
X{Tm≥λT

m}
]

m

(iv)
= E

[
lim

m→+∞
X{Tm≥λT

m}

]
(v)
= E

[
X{T≥λT }

]
(vi)
= P

(
T ≥ λT

)
= γT .

3https://github.com/Lorenzo-Perini/TransferContamination
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The first equality (i) holds by our definition of the estimator
(Eq. 2); the second step (ii) exploits the properties of the ex-
pectation; the third equality (iii) follows from the fact that xi
is i.i.d.; the interchange between the expectation and the limit
(iv) is allowed by the theorem of dominated convergence; the
result of the limit (v) is motivated by both the assumptions
of uniform convergence convergence (Tm → T ) and the first
part of this theorem (λTm → λT ); finally, the last step (vi) is
a property of the characteristic function.

Experiments
We address the following four experimental questions:

Q1. Does TRADE accurately estimate the true target con-
tamination factor?

Q2. Does a more accurate estimate of the target contamina-
tion factor improve the performance of the anomaly detector?

Q3. Does an ensemble of anomaly detectors produce a
more accurate estimate of the target contamination factor
than a single detector h?

Q4. How does TRADE perform when varying the source
contamination factor?

Experimental Setup
Methods. We compare TRADE4 against five baselines.
SOURCEγ simply assumes the target contamination factor to
be equal to the source contamination factor. SOURCEλ first
uses an ensemble to estimate λTm through a simple average
of the ensemble members’ estimates. Then, it estimates the
target contamination factor as the proportion of target ex-
amples with anomaly score > λTm. CORAL (Sun, Feng, and
Saenko 2017) is an unsupervised domain adaptation tech-
nique that transforms the source distribution to be similar to
the target distribution. After applying this transformation, it
uses SOURCEλ approach to estimate the target contamination
factor. Finally, UNIFY (Kriegel et al. 2011) and OTSU (Otsu
1979) are unsupervised approaches that can be applied to the
target anomaly scores. The former transforms the anomaly
scores into posterior probabilities and estimates the contami-
nation factor as the proportion of target examples with pos-
terior anomaly probability > 0.5. The latter selects the best-
separating threshold by minimizing the intra-class variance
and estimates the contamination factor as the proportion of
scores above the threshold.

Data. Our experiments focus on how anomaly detection
can impact real-world sustainability and security. Specifically,
we look at preventing water loss, preventing blade icing in
wind turbines, and detecting IoT traffic anomalies. For the
first task, we use 12 proprietary water consumption datasets
obtained in collaboration with a large retail company.5 Each
dataset contains the water consumption measured each day
during a particular hour-long segment in one of three retail
stores over the course of 4.5-5 years. The measurement inter-
val is 5 minutes. The raw consumption data of each hour-long

4https://github.com/Lorenzo-Perini/TransferContamination
5The data was provided under an NDA and cannot be shared.

segment are transformed into feature-vectors.6 The goal is to
detect hours of anomalous consumption (e.g., a leak). Accu-
rate detection of the anomalies aids the company in prevent-
ing water losses, which can otherwise easily amount to 1000s
of litres a year. For the second task, we use two public wind
turbine datasets (Zhang et al. 2018). Various measurements
(e.g., wind speed, power, etc.) are collected approximately
every 7 seconds for either two months (turbine 15) or one
month (turbine 21). We construct feature-vectors from the
data as in the original paper, averaging over time segments
of 1 hour. The goal is to detect ice formation on wind turbine
blades, which could potentially damage the turbines and slow
power production. To obtain the wind turbine data, see the
original paper (Zhang et al. 2018). For the third task, we use 9
public7 IoT datasets (Meidan et al. 2018; Mirsky et al. 2018).
Each dataset contains real traffic data, collected from one
commercial IoT device infected by authentic botnets in an
isolated network. The features include statistics on the stream
data (e.g., source IP, MAC, channel jitter, socket), time-frame
(e.g, the decay factor), and statistics extracted from the packet
stream (e.g., weight, mean, std, radius, magnitude) for a to-
tal of 115 attributes. For computational reasons, we use a
random subsample of 2000 examples for each dataset. The
online Appendix contains additional details.

Setup. Each experiment goes as follows: (i) pick a source-
target dataset pair from the benchmark; (ii) train a separate
anomaly detector on both the source and target domains and
use them to compute the anomaly scores; (iii) estimate the
target contamination factor and use it to make the target
anomaly predictions; (iv) evaluate the estimated contamina-
tion factor using the mean absolute error (MAE) and the
predictions using the F1 score; and (v) derive the average
relative improvements:

MAE improvement =
MAEBASELINE −MAETRADE

MAEBASELINE
;

F1 improvement =
F1TRADE − F1BASELINE

F1BASELINE

.

In step (i) we do not mix the three types of datasets, as it
would violate Assumption 2. For the water and wind turbines
tasks, each dataset serves once as the target domain while
the remaining ones serve as a source domain yielding 12×
11 + 2 × 1 = 134 source-target pairs. For the IoT data,
before taking a subsample we set the target contamination
factor to 0.01 and vary the source contamination factor in
[0.03, 0.05, 0.08, 0.10, 0.15, 0.20, 0.25]. This results in 9 ×
8 = 72 source-target pairs.

Hyperparameters. TRADE, SOURCEλ, CORAL, UNIFY,
and OTSU all use an ensemble of 9 unsupervised anomaly
detectors from different families (proximity-based, isolation-
based, density-based, and reconstruction-based): the k-
Nearest Neighbours Detector (KNNO) (Ramaswamy, Rastogi,

6We use 9 statistical (average, standard deviation, max, min,
median, sum, entropy, skewness, curtosis) and 2 binary features
(whether its Friday or Sunday), 11 in total.

7https://archive.ics.uci.edu/ml/datasets/detection of IoT
botnet attacks N BaIoT\#
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and Shim 2000), the Clustering Based Local Outlier Factor
(CBLOF) (He, Xu, and Deng 2003), the Histogram-based Out-
lier Detection (HBOS) (Goldstein and Dengel 2012) and the
Subspace Outlier Detection (SOD) (Kriegel et al. 2009), the
Isolation Forest Outlier Detector (IFOREST) (Liu, Ting, and
Zhou 2008), the Copula Based Outlier Detector (COPOD) (Li
et al. 2020), the Lightweight On-line Detector of Anomalies
(LODA) (Pevnỳ 2016), the Locally Selective Combination of
Parallel Outlier Ensembles (LSCP) (Zhao et al. 2019) with
three Local Outlier Factor (LOF) (Breunig et al. 2000) as
density based local detectors, and the Variational AutoEn-
coder (VAE) (Burgess et al. 2018). Their hyperparameters
are set to the default values (Soenen et al. 2021).8

TRADE uses differential evolution (Storn and Price 1997)
(maxit. = 100, mut. = 0.4, rec. = 0.2) as the optimization
solver. We restrict the solution to be in the interval (0, 0.25).

Computational cost. The most expensive step of TRADE
is the optimization algorithm. For a single experiment, the
CPU time is ∼ 10000 seconds. To run all experiments, we
use an internal cluster of six 24- or 32-thread machines (128
GB of memory). The experiments finish in ∼ 24 hours.

Experimental Results
Q1. Estimating the target contamination factor γTm. Ta-
ble 1 (left) summarizes the results of using TRADE and
the baselines to estimate the target contamination factor in
each of the 206 source-target pairs. TRADE obtains the low-
est (best) average MAE rank (computed following (Demšar
2006)). On average, it achieves the lowest MAE of the tar-
get contamination factor’s estimate across all experiments.
TRADE estimates γTm with a lower/similar error than each
baseline in at least ∼ 69.5% of the experiments.

Figure 2 (left) shows TRADE’s average improvement in
MAE compared to the baselines aggregated for each of the 23
target domains. Positive values imply that TRADE achieves a
lower, i.e., better, MAE. TRADE produces better average esti-
mates of the target contamination factor on 13 vs. SOURCEγ ,
17 target domains vs. UNIFY, 21 vs. CORAL, SOURCEλ and
OTSU.

We perform the Friedman rank test to test the null-
hypothesis that all compared methods perform simi-
larly (Demšar 2006; Iman and Davenport 1980). The ob-
tained Friedman corrected statistic of 59 and corresponding
p-value of ≈ 10−16 allow us to reject this null-hypothesis.
Applying the Bonferroni-Dunn post-hoc test (Dunn 1961)
with α = 5, shows that TRADE’s performance is statistically
significantly better than all the baselines.

Q2. Impact of estimating the target contamination fac-
tor correctly on the performance of the anomaly detec-
tor. We evaluate how TRADE’s target contamination factor
estimate (and that of the baselines) affects the target detec-
tor’s anomaly detection performance through the following
experiment: (i) pick one of the 206 source-target pairs; (ii)
use TRADE or one of the baselines to estimate the target
contamination factor; (iii) compute the target anomaly scores
using an anomaly detector on the target domain; (iv) use the

8See the appendix for details.

estimated contamination factor to convert the anomaly scores
to hard predictions and compute the F1 score. To avoid the
results being dependent on one specific anomaly detector, we
repeat the experiment for each of the 9 considered detectors
resulting in 206×9 = 1854 experiments. We compute the F1

score because it strictly depends on using the target contam-
ination factor γTm to make hard predictions. In contrast, the
AUC metric commonly used in anomaly detection (Campos
et al. 2016), only evaluates a detector’s capability to rank
examples correctly and does not change when γTm changes.

Table 1 (right) summarizes the results of the F1 score ob-
tained using the target contamination factor estimated by
TRADE and the baselines in each of the 1854 experiments.
TRADE has the lowest (best) average F1 rank. On average,
TRADE enables the anomaly detector to achieve higher/simi-
lar F1 scores in at least 60% of the experiments.

Figure 2 (right) shows TRADE’s average improvement in
F1 score compared to the baselines aggregated for each of
the 23 target domains. Positive values indicate that TRADE
obtains higher F1 scores. TRADE results in higher average
F1 scores on 17 target domains vs. OTSU, 18 vs. SOURCEλ,
20 vs. UNIFY, 21 vs. SOURCEγ , and 22 vs. CORAL.

Q3. Ensemble versus single anomaly detectors. Our
method uses an ensemble of anomaly detectors to estimate
the target contamination factor and set the threshold. To see
the effect of this choice, we compare TRADE using the en-
semble with variants of TRADE using only one of the nine
detectors. For computational reasons, this experiment only
considers the water and wind turbines data. Compared to
using a single detector, the ensemble results in an equivalent
or better estimate of the contamination factor on between
59% (vs. IFOREST variant) to 85% (vs. HBOS variant) of the
experiments. Overall, the ensemble variant reduces the MAE
from 12% (vs. IFOREST variant) to 50% (vs. KNNO variant).

Q4. The effect of varying the source contamination fac-
tor γS . In the IoT dataset, the target contamination is al-
ways 0.01. Therefore we explore the effect on performance of
varying the source contamination factor. Figure 3 reports the
TRADE’s average improvement in MAE over the baselines
as a function of the source contamination factor. Because
SOURCEγ and SOURCEλ depend on the source γS , TRADE

achieves better results when γS increases. Compared to these
methods, TRADE’s performance is not as adversely affected
by increasing the difference between the source and the target
contamination factors. Because UNIFY and OTSU are unsu-
pervised methods using only the target domain, their estimate
is constant as it does not depend on the source contamination
factor. TRADE results in (large) gains over UNIFY and OTSU
even for relatively large gaps between the source and target
contamination factor (e.g., 0.01 for the target and 0.10 for the
source). As the gap between the source and target contami-
nation factor grows, TRADE win in performance vs. UNIFY
and OTSU shrinks, with the two baselines outperforming
TRADE at the largest gaps.

Discussion and Conclusion
We proposed a novel method TRADE for estimating the
target domain contamination factor given a source dataset

4133



Error on γ MAE Ranking # times TrADe F1 score Ranking # times TrADe
Method Avg. ± SD Avg. ± SD W D L Avg. ± SD Avg. ± SD W D L
TRADE 0.060± 0.035 2.14± 1.04 - - - 0.32± 0.21 2.72± 1.36 - - -
SOURCEγ 0.075± 0.042 2.90± 1.49 139 4 63 0.29± 0.21 3.03± 1.58 994 114 746
SOURCEλ 0.112± 0.080 3.98± 1.60 158 6 42 0.27± 0.19 3.86± 1.55 1249 125 480
CORAL 0.114± 0.072 4.22± 1.54 173 1 32 0.27± 0.21 3.91± 1.53 1241 158 455
UNIFY 0.095± 0.044 3.53± 1.55 157 2 47 0.27± 0.19 3.87± 1.65 1205 143 506
OTSU 0.137± 0.078 4.23± 1.86 159 2 45 0.26± 0.14 3.61± 1.98 1154 10 690

Table 1: Comparison of TRADE with the baselines. The left-hand side of the table shows the average MAE of each method’s
estimate of the target contamination factor, the average MAE rank ± standard deviation (SD) of each method, and the number of
times TRADE wins (lower MAE), draws, and loses (higher MAE) against each baseline (absolute differences ≤ 0.001 count as
draw). The right-hand side of the table shows similar information for the F1 score, averaged over the 9 considered detectors.
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Figure 2: Average relative improvement in MAE (left) and the F1 (right) of TRADE versus each baseline, aggregated per target
domain (x-axis). Positive values indicate that TRADE performs better than the baseline. For each target domain, TRADE’s
relative improvement in MAE varies between 15% (vs SOURCEγ) and 40% (vs CORAL), while the F1 score improves by at least
22% (vs SOURCEγ) and up to 35% (vs CORAL).
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Figure 3: TRADE’s relative improvement in MAE versus
each baseline as a function of the source contamination factor
on the IoT datasets. As the gap between the source and target
contamination factors increases, TRADE performance gains
versus SOURCEγ , SOURCEλ, and CORAL grow.

with a known contamination factor. The key insight enabling
our approach is that the distribution of the normal examples’
anomaly scores in both domains will be similar if they are
derived using the same anomaly detection algorithm.

Theoretically, we proved that TRADE’s estimate of the
contamination factor converges to its actual value when the
size of the target dataset increases. Empirically, we demon-
strated that TRADE can more accurately estimate the con-
tamination factor than several baselines. More importantly,
more accurate estimates lead to improved anomaly detection
performance as shown by higher F1 scores.

Benefits and limitations. In the experiments we focused
on anomaly detection in a sustainability context (preventing
water losses in retail stores and blade icing in wind turbines)
and security. The potential societal benefits, due to the more
accurate detection models, are manifested in the avoidance of
potentially costly anomalies (e.g., large water leaks). A poten-
tial downside would arise from missed detections and false
alarms, which both result in real-world costs. Moreover, one
could our approach to disadvantage or discriminate against
marginalized groups, indicating them as anomalies.
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