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Abstract

Recent years have witnessed a flurry of research activity in
graph matching, which aims at finding the correspondence of
nodes across two graphs and lies at the heart of many artificial
intelligence applications. However, matching heterogeneous
graphs with partial overlap remains a challenging problem in
real-world applications. This paper proposes the first prac-
tical learning-to-match method to meet this challenge. The
proposed unsupervised method adopts a novel partial optimal
transport paradigm to learn a transport plan and node embed-
dings simultaneously. In a from-one-to-all manner, the entire
learning procedure is decomposed into a series of easy-to-
solve sub-procedures, each of which only handles the align-
ment of a single type of nodes. A mechanism for search-
ing the transport mass is also proposed. Experimental results
demonstrate that the proposed method outperforms state-of-
the-art graph matching methods.

1 Introduction
Graph matching (network alignment), aiming to determine
the correspondence of nodes across two related graphs, lies
at the heart of a wide range of artificial intelligence appli-
cations, including network retrieval (Berretti, Del Bimbo,
and Vicario 2001; Özer, Wolf, and Akansu 2002), machine
translation (Bahdanau, Cho, and Bengio 2014; Chen et al.
2020), and visual tracking (Xiong et al. 2012; Wang and
Ling 2017), to name a few. Two main algorithmic compo-
nents, the node conservation and the matching strategy, con-
stitute the graph matching method, where the former mea-
sures the similarity between pairs of nodes from different
networks, and the later maximizes total node conservation
over aligned nodes and the amount of conserved edges (Gu
et al. 2018).

Mainstream methods of graph matching have followed
two directions that correspond to different matching strate-
gies. (i) One is the seed-and-extend strategy, which re-
cursively matches nodes adjacent to the currently aligned
subgraphs (Narayanan and Shmatikov 2009; Pedarsani and
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Grossglauser 2011; Yartseva and Grossglauser 2013; Sun
et al. 2015). In general, incorrectly matched pairs could
cause more mismatching in future steps, i.e., a cascade of
errors (KAZEMI 2016). (ii) The other is the searching strat-
egy, which explores the entire alignment space and returns
the one with the highest score based on a specific objective.
In this paradigm, a few recent researches have shifted focus
to settings in which the best searching is rephrased in the
framework of optimal transport (OT) and the resulting al-
gorithms have achieved the state-of-the-art performance (Xu
et al. 2019; Titouan et al. 2019; Barbe et al. 2020), compared
with its traditional counterparts such as simulated anneal-
ing (Mamano and Hayes 2017), genetic algorithm (Vijayan,
Saraph, and Milenković 2015), or gradient-based optimiza-
tion (Konar and Sidiropoulos 2020).

Despite this recent activity, the advances in methodol-
ogy have been confined almost exclusively to the match-
ing of homogeneous (containing only one type of nodes)
or fully overlapped graphs, and none of existing methods
has demonstrated its effectiveness on real-world alignment
tasks in which graphs are both heterogeneous and partially
overlapped. Such real-world tasks may include knowledge
graph alignment (Li et al. 2018), matching of biological net-
works (Sharan and Ideker 2006), and disambiguating enti-
ties (Zhang, Swami, and Chawla 2019). We illustrate this
situation in Figure 1 and depict technical details of these two
challenges in the following paragraphs.

Heterogeneity. Most existing methods consider graphs
with only one type of nodes. Directly applying these meth-
ods to heterogeneous graphs leads to inferior performance
and type mismatch. Gu et al. (2018) propose the first prac-
tical heterogeneous graph matching method based on man-
ually designed features, called colored graphlet degree vec-
tors (CGDV), and extend a large body of homogeneous al-
gorithms (Sun et al. 2015; Vijayan, Saraph, and Milenković
2015; Mamano and Hayes 2017) into heterogeneous vari-
ants. The designed features, however, are expensive to obtain
since the computational complexity for generating CGDV is
practically O(V 5), where V is the number of nodes of the
graph. Apparently, as V increases, their performances will
deteriorate rapidly. Besides, these methods cannot guarantee

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4109



Target graphSource graph

a
b

cd

e

f

g

h i
j

k l

m

n
o

p

q

r

a
b

c
p

d

i
g

h j

r

q

e

a
b

c

p

d
f

o
n

m

ke
l

a
b

c

p
d

i
g

h j

r

q

e

ab

c
p

d
f

o
n

m

ke
l

Underlying heterogeneous graph

Figure 1: An illustration of the from-one-to-all matching
strategy for both heterogeneous and partially overlapped
graphs. The right sub-figure depicts an underlying hetero-
geneous graph. The color of each node indicates its type.
The source graph and the target graph pictured in the left
sub-figure are its two partially overlapped sub-graphs. For
example, node r in the source graph does not exist in the
target graph. First, type-green nodes are matched (top row
of the left sub-figure). Then, type-blue nodes are matched
(bottom row of the left sub-figure).

that there is no type mispairing. Thus, efficiently and effec-
tively matching all types of nodes still remains a challenging
problem.

Partial Overlapping. Partial overlapping is another chal-
lenging problem, which is generally tackled by adding
dummy nodes that act like wildcards to absorb unmatched
nodes (Swoboda et al. 2017, 2019; Sarlin et al. 2020;
Rolı́nek et al. 2020). However, this kind of methods still
suffer from two intractable issues. First, they are usually
supervised methods and require a large amount of ground
truth node pairs. Second, they cannot constrain the number
of matching pairs even if the prior information about the de-
gree of overlap is already known, which may lead to some
extreme cases. For example, zero matching would be identi-
fied to be an optimal result when dummy nodes are adopted.

To meet these challenges from real-world tasks, we pro-
pose a novel method to match heterogeneous graphs that are
possibly partially overlapped. The proposed method adopts
a novel partial OT scheme to learn a transport plan and
node embeddings simultaneously. For the sake of compu-
tational efficiency, the entire learning procedure is decom-
posed into a series of easy-to-solve sub-procedures. Specif-
ically, each sub-procedure only handles a homogeneous but
possibly partially overlapped alignment problem, with a set
of node pairs which are already matched in the previous
sub-procedures as seeds. Essentially, this method proceeds
by first matching one type of nodes and gradually matching
other types until all types are matched, that is, from one to
all types, so we name it FOTA. To boost robustness against
noise and further reduce the cascade of errors, we also incor-
porate node embeddings which encode the global topology.
Our contributions are summarized as follows.

i. FOTA is the first practical unsupervised method to
match both heterogeneous and partially overlapped
graphs, so far as we know, by using a hybrid strat-
egy that mixes seed-and-extend and searching strate-
gies. Compared to the principled method in (Gu et al.
2018), ours achieves no type mismatch at a very low
cost. The overall complexities for updating the trans-
port plan and the embeddings areO

(
N(T + k+ d)V 2

)
and O(V Bd) respectively1.

ii. A mechanism for searching the transport mass is also
proposed, which endows our method a possibility to
control the number of matching pairs according to some
prior information. Thus the partial OT technique lever-
aged by our method only needs to transport an enough
fraction of the mass with a minimum transportation
cost.

Extensive experimental results demonstrate that the pro-
posed method outperforms the state-of-the-art graph match-
ing methods. The rest of the paper is organized as follows.
In Sec. 2, a comprehensive review of background is given.
The methodology of FOTA is presented in Sec. 3. Empirical
results are demonstrated in Sec. 4. We finally present related
work in Sec. 5.

Notation. We use bold lowercase symbols, bold uppercase
letters, uppercase calligraphic fonts, and Greek letters to de-
note vectors, matrices, spaces (sets), and measures, respec-
tively. 1d ∈ Rd is an all-ones vector. The cardinality of set
A is denoted by |A|. A[i, :] and A[:, j] are the i-th row and
the j-th column of matrix A respectively.

2 Preliminaries
2.1 Graph Matching
A graph is denoted as G = (V, E , φ, T ), where V is the
set of nodes, E is the set of edges, T is the set of node
types, and the type mapping function φ : V → T assigns
each node a type. When graph G contains multiple types of
nodes, i.e., |T | ≥ 2, G is a heterogeneous graph; otherwise,
it is a homogeneous graph. Assigning each node an index
i ∈ {1, . . . , |V|}, the edge set E can also be written as an
adjacency matrix W ∈ R|V|×|V| with entry Wij = 1 if and
only if there is an edge connecting nodes i and j.

Mathematically, graph matching finds a matching matrix
T = [Tii′ ] between the source graph Gs = (Vs, Es, φs, T )
and the target graph Gt = (Vt, Et, φt, T ), where Tii′ = 1 if
node i ∈ Vs is matched to node i′ ∈ Vt, and Tii′ = 0 oth-
erwise. Assuming Gs has fewer nodes than Gt, the matching
matrix is generally identified by minimizing the following
loss function (Caetano et al. 2009)

min
T∈Pf

[ |Vs|∑
i,j=1

|Vt|∑
i′,j′=1

dii′jj′Tii′Tjj′ +

Vs|∑
i=1

|Vt|∑
i′=1

kii′Tii′

]
, (1)

1Here N , T , k, d and B denote the number of main iterations,
the number of iterative projections, the rank of approximation to
the proximity matrix, embedding dimension, and the batch size re-
spectively. See Sec. 3.4 for detail.
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where kii′ is the cost for the unary matching i → i′, dii′jj′
is the cost for the pairwise matching (i, j) → (i′, j′), and
the feasible domain is

Pf =
{
T ∈ {0, 1}|V

s|×|Vt|
∣∣∣T1|V

t| = 1|V
s|,T>1|V

s| ≤ 1|V
t|
}
.

Such formulation matches every node in Gs to exact one
node in Gt and hence is referred to as full matching (Kazemi,
Yartseva, and Grossglauser 2015). For partial matching,
generally Pf is replaced with the relaxed feasible domain

Pp =
{
T ∈ {0, 1}|V

s|×|Vt|
∣∣∣T1|V

t| ≤ 1|V
s|,T>1|V

s| ≤ 1|V
t|
}
,

see e.g. (Kazemi, Yartseva, and Grossglauser 2015; Sarlin
et al. 2020; Wang et al. 2020). Such formulation, however,
may lead to matching no pairs in extreme cases. For exam-
ple, when dii′jj′ > 0 and kii′ > 0 for all i, i′j, j′, matching
no nodes (T = 0) is the optimal solution. Matching two het-
erogeneous graphs further requires φs(i) = φt(i′) if node i
is matched to i′.

2.2 Optimal Transport
Optimal Transport (OT) addresses the problem of transport-
ing one measure toward another measure with the minimum
cost (Villani 2008). The induced cost defines a distance be-
tween the two measures. A discrete measure α can be de-
noted by α =

∑m
i=1 piδxi

where δx is the Dirac at position
x, i.e., a unit of mass infinitely concentrated at x. With slight
abuse of notation, we also use p = [pi] to refer to α.

Wasserstein distance. The p-Wasserstein distance (Vil-
lani 2008; Cuturi 2013) between discrete measures p and
q is defined as

W p
p (p,q) = minT∈Π(p,q)

∑m
i=1

∑n
i′=1K

p
ii′Tii′ ,

where Kii′ is the `p distance between xi and yi′ and the
feasible domain of transport plan T = [Tii′ ] is given by
the set Π(p,q) = {T ∈ Rm×n+ |T1n = p,T>1m = q}.
The Wasserstein distance requires the supports of the two
measures to be in the same space.

Gromov-Wasserstein distance. Gromov-Wasserstein
(GW) distance extends Wasserstein distance to compare
measures supported in different spaces (Mémoli 2011). Let
X and Y be two sample spaces. Endowing the spaces X and
Y with metrics (distances) dX and dY , the GW distance is
defined as

GW p
p (p,q) = minT∈Π(p,q)

∑m
i,j=1

∑n
i′,j′=1D

p
ii′jj′Tii′Tjj′ ,

where Dii′jj′ = |dX (xi,xj) − dY(yi′ ,yj′)| with x1, x2,
. . ., xm ∈ X and y1, y2, . . ., yn ∈ Y .

OT-based graph matching. By associating each graph
with a discrete probability measure, OT can be applied to
graph matching. Xu et al. (2019) propose a GW learning
framework called GWL for graph matching. They corre-
spond two graphs Gs and Gt to discrete probability mea-
sures µs = [µs

i ] and µt = [µt
i] respectively, where µzi =∑|Vz |

j=1 W
z
ij∑|Vz |

i=1

∑|Vz |
j=1 W

z
ij

for z = s, t. By replacing the strict dis-

tances with dissimilarity functions, GWL relaxes the GW

distance and the Wasserstein distance to the GW discrepancy
and the Wasserstein discrepancy separately. Such relaxation
allows GWL to incorporate node embeddings to parameter-
ize the discrepancies and improve the robustness to the noise
of edges. GWL uses the learned transport plan to indicate
the node correspondence, i.e., i′ ∈ Vt that receives the most
mass from i ∈ Vs is the estimated counterpart of i.

Both the Wasserstein distance and the GW distance re-
quire the two marginals p and q to have the same total mass,
that is, ‖p‖1 = ‖q‖1, thus all the mass has to be transported.
By contrast, the partial OT problem focuses on transport-
ing only a fraction 0 ≤ b ≤ min{‖p‖1, ‖q‖1} of the mass
with the minimum transportation cost (Figalli 2010; Caf-
farelli and McCann 2010; Chapel, Gasso et al. 2020), that
is, the set of admissible couplings is given by

Πb(p,q) =
{
T ∈ Rm×n+

∣∣∣T1 ≤ p,T>1 ≤ q,1>T1 = b
}
.

By adding a dummy node into the target graph, the mass of
the nodes which have no counterparts in the target graph can
be considered as being transported to the dummy node.

3 Methodology
We first introduce the underlying model in real-world sce-
narios for matching graphs that are heterogeneous and par-
tially overlapped. Next, we derive a practical from-one-to-
all model by decomposing the learning procedure into a se-
ries of interrelated sub-procedures. A recursive line search
mechanism is then proposed to search for the transport mass
in order to conduct partial matching. Finally, we analyze the
overall complexity of the proposed method.

3.1 Proposed Model
Our model is a learning-to-match model which estimates the
transport plan and the node embeddings simultaneously. The
optimization formulation can be phrased as follows:

min
Zs,Zt

min
T∈Ω(b,Gs,Gt)

|Vs|∑
i,j=1

|Vt|∑
i′,j′=1

(Cs
ij − Ct

i′j′)
2Tii′Tjj′︸ ︷︷ ︸

partial GW discrepancy

+ α

|Vs|∑
i=1

|Vt|∑
i′=1

−κ(zs
i , z

t
i′)Tii′︸ ︷︷ ︸

partial Wasserstein discrepancy

+β
(
R(Zs) +R(Zt)

)︸ ︷︷ ︸
regularizers

,

(2)
where Zs = [zs

i ] and Zt = [zt
i′ ] are node embeddings of Gs

and Gt respectively, b = [br] specifies the transport mass for
each type. The feasible domain Ω(b,Gs,Gt) is defined as

Ω(b,Gs,Gt) =
{
T ∈ R|V

s|×|Vt|
+

∣∣∣T1 ≤ µs,T>1 ≤ µt,

Tii′ = 0 if φs(i) 6= φt(i′)∀(i, i′) ∈ Vs × Vt,∑
i:φs(i)=r

∑|Vt|
i′=1 Tii′ = br ∀r ∈ T

}
,

where the third constraint guarantees that nodes of differ-
ent types are not matched and the fourth indicates that the
transport mass for type r is br. α and β are constant scalars
and the three components of the objective are described as
follows.
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Partial GW Discrepancy. The partial GW discrepancy
is adopted to measure the sum of the pairwise matching
costs. In heterogeneous graphs, nodes may not be adjacent
to nodes of its own type. To take into account the in-type
topological structure, we consider multi-hop connections.
Specifically, we calculate a matrix that characterizes the
K th-order proximity as

Bz =
∑K
l=1

(
(Dz)−1Wz

)l
+
(
Wz(Dz)−1

)l
, (3)

where z = s, t and Dz = [Dz
ij ] is the diagonal degree matrix

with the ith entry given by Dz
ii =

∑|Vz|
j=1 W

z
ij . The (i, j)th

entry of matrix
(
(Dz)−1Wz

)l
is the probability that, at the

lth step, j is visited by a random walk starting from i (Qiu
et al. 2018). Similar explanation applies to the (i, j)th entry
of
(
Wz(Dz)−1

)l
. We use proximity matrix Cz = [Czij ] to

model the proximity between nodes i and j where

Czij =

{
Bzij , if i 6= j,

C̄, otherwise,
(4)

where z = s, t and C̄ is a large enough constant.

Partial Wasserstein Discrepancy. The partial Wasser-
stein discrepancy is the sum of the unary matching costs
based on the learned node embeddings. Herein, κ(zs

i , z
t
i′) =

(zs>
i zt

i′)/(‖zs
i‖‖zt

i′‖) is the normalized inner-product be-
tween node embeddings zs

i and zt
i′ and measures the simi-

larity between nodes i and i′. By incorporating node embed-
dings, we improve the robustness to the structure noise. Note
that, for attributed graphs in which each node is associated to
a feature vector, heterogeneous graph neural networks (e.g.,
(Zhang et al. 2019)) can be used to incorporate attributes in-
formation and parameterize the node embeddings. For sim-
plicity, this paper only considers unattributed graphs.

Regularizers. R(Zz) for z = s or t, regularizes the
embedding by penalizing the distance between the inner-
product of node embeddings and the proximity, and is de-
fined as

R(Zz) =
∑|Vz|
i=1

∑
j:φz(i)=φz(j),j 6=i

(
Czij − zz>i zzj

)2
.

The regularizers guarantee that node embeddings capture the
global topological structure via preserving the total high-
order proximity (Tang et al. 2015; Cao, Lu, and Xu 2015).

With the composition of the above three components, an
appropriate algorithm can learn embedding vectors and node
correspondence in a simultaneous manner. This joint learn-
ing formula has been shown to substantially improve the ro-
bustness to the noise (Xu et al. 2019; Karakasis, Konar, and
Sidiropoulos 2021).

3.2 Model Decomposition: From One to All
We decompose the learning procedure into a series of easy-
to-solve sub-procedures due to the following facts. (i) The
complicated constraint Ω(b,Gs,Gt) makes the model cor-
responding to (2) difficult to train. (ii) In several scenarios
such as user alignment (Wang et al. 2019b), the matching of
only a few primary types are of interest.

Before delving into the decomposition of the learning pro-
cedure, we first introduce some additional notations. With-
out loss of generality, we assume the node types are rep-
resented by integers, i.e., type r ∈ {1, 2, . . . , |T |}. ζz,r =[
ζz,ri

]
is the mask vector for type r and is defined as

ζz,ri =

{
1, if φz(i) = r,

0, otherwise.

Based on the mask vectors, T can be written as the sum of
|T | matrices T =

∑|T |
r=1 T

r where Tr = T�
(
ζs,rζt,r>

)
is the matching for type-r nodes and � is the element-wise
multiplication. Similarly, µs and µt can be written as the
sum of type measures, i.e., µz =

∑|T |
r=1 µ

z,r where the type-
r measure is µz,r = µz � ζz,r. We further denote the set of
type-r nodes and the corresponding embeddings by Vz,r =
{i|φz(i) = r} and Zz,r = {zzi |φz(i) = r} respectively.

We now decompose the learning procedure for (2) into
|T | sub-procedures, which is formally stated in the follow-
ing proposition.
Proposition 1. The learning procedure (2) can be decom-
posed into |T | sub-procedures. The rth sub-procedure cor-
responds to the learning of type-r matching Tr and the
embeddings Zs,r and Zt,r. The optimization problem is
minZs,r,Zt,r minTr fr(Tr,Zs,r,Zt,r) and the objective is
given by

fr(Tr,Zs,r,Zt,r)

=

|Vs|∑
i,j=1

|Vt|∑
i′,j′=1

(Cs
ij − Ct

i′j′)
2T rii′

(
T rjj′ + 2

r−1∑
a=1

T̂ ajj′
)

+α
∑
i∈Vs,r

∑
i′∈Vt,r

−κ(zs
i , z

t
i′)T

r
ii′ + β

(
Rr(Zs,r) +Rr(Zt,r)

)
,

(5)
where Tr ∈ Πbr

(
µs,r,µt,r

)
, T̂a = [T̂ ajj′ ] is the ob-

tained matching for type-a nodes, and the regularizers are
Rr(Zz,r) =

∑
i,j∈Vz,r,i6=j

(
Czij − zz>i zzj

)2
, z = s, t.

The proof is deferred to the long version due to the
limit of space. Intuitively, to match each type, the nodes al-
ready matched serve as seeds. Node embeddings that encode
global topology are incorporated to enhance robustness to
edge noise and reduce the cascade of errors.

Πbr
(
µs,r,µt,r

)
is a relatively simpler feasible domain.

Hence, the sub-problem can be practically solved via alter-
nating optimization, that is, alternatingly updating the trans-
port plan and node embeddings, which is detailed as follows.

Updating the transport plan. Given current node embed-
dings Zs,r,(m) and Zt,r,(m), we solve the following problem,

min
Tr∈Πbr

(
µs,r,µt,r

) fr(Tr,Zs,r,(m),Zt,r,(m)
)
. (6)

Minimization (6) is a partial OT problem and can be effec-
tively solved using off-the-shelf OT algorithms.

Updating the embeddings. Given the calculated transport
plan T̂r,(m), we update the embeddings. The sub-problem
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for updating embeddings is

min
Zs,r,Zt,r

α
∑
i∈Vs,r

∑
i′∈Vt,r −κ(zs

i , z
t
i′)T

r,(m)
ii′

+β
(
Rr(Zs,r) +Rr(Zt,r)

)
,

(7)

which can be solved by SGD or its variants.
We summarize FOTA in Algorithm 1 and make some im-

portant remarks as follows.
1. Extended transport plan. The final learned transport

plan T̂ is used to construct an extended transport plan
T̃ = [T̂,µs − T̂1] ∈ R|Vs|×(|Vt|+1). Nodes matched to
the dummy node are considered to have no counterpart
in the target graph. By choosing the largest T̃ij for each
i, we find the correspondence.

2. Refinement. The current algorithm uses |T | iterations to
obtain the matching of each type, which is analogous to
that of a single round of block coordinate descent. Since
approximation errors exist in each iteration, empirically,
we can repeat Line 6 to 12 in Alg 1 to refine the matching.

Algorithm 1: FOTA

1: Input: M rounds, K, α, β, graphs Gs and Gt.
2: Output: Correspondence set D.
3: Calculate Cs and Ct as Eq. (4).
4: Obtain transport mass for each type b via Algorithm 2.
5: Initialize Zs and Zt via SVD for Cs and Ct respectively.
6: for r = 1, . . . , |T | do
7: for m = 1, . . . ,M do
8: Update transport plan by solving (6).
9: Update node embeddings by solving (7).

10: end for
11: T̂r = T̂r,(M).
12: end for
13: T̂ =

∑|T |
r=1 T̂

r.
14: T̃ = [T̂,µs − T̂1].
15: Initialize correspondence set D = ∅.
16: for i ∈ {1, . . . , |Vs|} do
17: i′ = arg maxi′ T̃ii′ .
18: if i′ 6= (|Vt|+ 1) then
19: D = D ∪ {(i, i′)}.
20: end if
21: end for

3.3 Transport Mass Search
Intuitively, the partial GW discrepancy is very small if
the chosen br is less than the underlying transport mass.
It soars when br begins to exceed the underlying trans-
port mass, since matching more non-overlapped nodes
with disparate topology incurs larger penalty. Therefore,
for each type r, one can conduct a line search over(
0,min{‖µs,r‖1, ‖µt,r‖1}

]
and find the turning point b̂r of

the partial GW discrepancy

A(br) := min
T∈Πbr

∑
i,j,i′,j′

(Cs
ij − Ct

i′j′)
2Tii′Tjj′ . (8)

Algorithm 2: LineSearch

1: Input: type r, line search resolution δ, number n, search
range (bmin, bmax], threshold γ.

2: Output: b̂r.
3: for i = 1, . . . , n do
4: bi = bmin + i

n (bmax − bmin).
5: Obtain the approximation Â(bi) for A(bi).
6: if Â(bi) ≥ 1+γ

i

∑i
j=1 Â(bj) then

7: if bmax − bmin > δ then
8: LineSearch(r,δ, n, (bi−1, bi], γ).
9: else

10: b̂r = bmin.
11: return
12: end if
13: end if
14: end for

Datasets ρ=1.0 ρ=0.8 ρ=0.6 Description

Arenas
Email

|Vs| 1133 986 844
email

network
|Es| 10902 8694 6760
|Vt| 1133 992 868
|Et| 10902 9022 7346

PPI
Yeast

|Vs| 1004 835 628
protein

interaction
|Es| 16646 13406 8474
|Vt| 1004 844 661
|Et| 16646 13270 10396

Arxiv

|Vs| 18772 15667 13757
coauthor
network

|Es| 396160 318846 261206
|Vt| 18772 15933 14073
|Et| 396160 327403 267646

Table 1: Statistics of homogeneous graphs used in our ex-
periments.

Specifically, we adopt a recursive strategy. We search the
range

(
bmin, bmax

]
by evaluating A(bi) where bi = bmin +

i
n (bmax − bmin) and n is a preset number of samples. When
A(bi) >

1+γ
i

∑i
j=1A(bj) where γ is a given threshold, the

optimal b̂r is believed to fall into the range
(
bi−1, bi

]
. Then

we set bmin = bi−1 and bmax = bi, and repeat the above
procedure until bmax − bmin < δ where δ is a small number.
In the beginning of the recursive line search, bmin = 0 and
bmax = min{‖µs,r‖1, ‖µt,r‖1}

]
. We summarize this line

search strategy in Algorithm 2.

3.4 Complexity Analysis

The computational costs can be divided into four parts.
(i) The cost for calculating the K th-order proximity matri-
ces Cs and Ct is O(KV E) where V = max{|Vs|, |Vt|}
and E = max{|Es|, |Et|}. (ii) When updating the transport
plan, the gradient of fr

(
Tr,Zs,(m),Zt,(m)

)
in (6) takes the
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Datasets ρ=1.0 ρ=0.8 ρ=0.6

Movies

|Vs| 0:348, 1:389, 2:257, 3:6 0:300, 1:306, 2:202, 3:3 0:237, 1:234, 2:159, 3:3
|Es| 4618 3476 2612
|Vt| 0:348, 1:389, 2:257, 3:6 0:307, 1:329, 2:212, 3:3 0:261, 1:230, 2:150, 3:4
|Et| 4618 3986 3080

PubMed

|Vs| 0:1059, 1:1096, 2:1176, 3:669 0:908, 1:944, 2:1028, 3:572 0:808, 1:801, 2:908, 3:520
|Es| 18982 15895 13527
|Vt| 0:1059, 1:1096, 2:1176, 3:669 0:925, 1:966, 2:1038, 3:591 0:830, 1:851, 2:935, 3:519
|Et| 18982 16552 13801

DBLP

|Vs| 0:3067, 1:7278, 2:1598, 3:57 0:1558, 1:4035, 2:956, 3:47 0:1416, 1:3385, 2:820, 3:31
|Es| 118063 51415 39016
|Vt| 0:3067, 1:7278, 2:1598, 3:57 0:1654, 1:4083, 2:951, 3:43 0:1453, 1:3559, 2:825, 3:48
|Et| 118063 50847 45727

Table 2: Statistics of heterogeneous graphs used in our experiments. The information of node types is included. For example,
0:348 means 348 nodes in this graph are of type 0.

form (Peyré, Cuturi, and Solomon 2016; Xu et al. 2019)

∇fr(Tr,(m),Zs,(m),Zt,(m)) = h(Cs)Yr,(m)1|V
t|1|V

t|>

+1|V
s|
(
Yr,(m)>1|V

s|
)>
h(Ct)

−2CsYr,(m)Ct − αK(m),
(9)

where h(·) is the element-wise square operation and we
use matrix notations Yr,(m) = Tr,(m) + 2

∑r−1
a=1 T̂

a

and K(m) = [κ(z
s,(m)
i , z

t,(m)
i′ )]. Adopting the k-rank

approximations for Cs and Ct, the cost for computing
∇fr(Tr,(m),Zs,(m),Zt,(m)) is O

(
(k + d)V 2

)
(Scetbon,

Peyré, and Cuturi 2021), where d is the dimension of node
embeddings. The complexity for obtaining the k-rank ap-
proximation for Cs and Ct via SVD is O(kV 2) (Golub and
Van Loan 1989; Halko, Martinsson, and Tropp 2011). Prob-
lem (6) can be solved by mirror descent (Bubeck et al. 2015;
Peyré, Cuturi, and Solomon 2016) which involves iterative
Bregman projections (Benamou et al. 2015). If we run mir-
ror descent forN iterations in total for learning the transport
plan, each of which involves T matrix-vector multiplications
in the projection, the complexity for updating the transport
plan is O

(
N(T + k + d)V 2

)
. (iii) For learning the embed-

dings, by selecting the size of node batch as B � V , the
complexity for updating the embeddings is O(V Bd) (Xu
et al. 2019) and can be ignored compared to that of learn-
ing the transport plan. (iv) With reasonable δ and n, the
complexity for line search is of the same order as for learn-
ing the transport plan. Therefore, the overall complexity is
O
(
KV E +N(T + k + d)V 2

)
.

4 Experiments

We compare FOTA with state-of-the-art methods on both
homogeneous and heterogeneous graphs. The experiments
are conducted on a Ubuntu 18.04 server with a 24-core
2.70GHz Intel Xeon Platinum 8163 CPU, an NVIDIA Tesla
V100 GPU, and 92 GB RAM. The source code is written in
Python 3.6 and C++.

4.1 Experimental Setup
Baselines. The baselines can be divided into three fami-
lies: 1) State-of-the-art methods for matching homogeneous
graphs including REGAL (Heimann et al. 2018), GDD
(Scott and Mjolsness 2021), GRAMPA (Fan et al. 2020),
GWL (Xu et al. 2019), MM (Konar and Sidiropoulos 2020),
SpectralPivot (Karakasis, Konar, and Sidiropoulos 2021); 2)
SANA (Gu et al. 2018), which extends Mamano and Hayes
(2017) by adopting colored graphlet degree vector features
to match heterogeneous graphs2; 3) Methods that treat het-
erogeneous graphs as homogeneous attributed graphs, in-
cluding VELSET (Dutta, Nayek, and Bhattacharya 2017)
and G-Finder (Liu et al. 2019). We also conduct ablation
studies. The variants of FOTA include 1) FOTA-GW which
only uses the partial GW discrepancy by setting α = 0 and
thus does not involve the embedding learning, and 2) FOTA-
W which only uses the partial Wasserstein discrepancy.

Metrics. For evaluation of partial graph matching, we
compute the commonly used indicators (see e.g. (Sarlin et al.
2020; Wang et al. 2019b)),

recall =
#{correct matching}

#{ground truth matching}
,

precision =
#{correct matching}

#{total predicted matching}
,

F1 =
2 · recall · precision
recall + precision

.

On experiments of matching heterogeneous graphs, we also
report the ratio of type mismatch

q =
|{(i, î)|φs(i) 6= φt(̂i)}|

#{ground truth matching}
,

where î is the output counterpart of node i predicted by each
method. We run each method for 5 times and report both the
average values and standard deviations.

2Gu et al. (2018) extend three homogeneous graph matching
methods to the heterogeneous variants. SANA is shown to achieve
the best performance among them.
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ρ Methods Arenas Email PPI Yeast Arxiv
recall precision F1 reccall precision F1 recall precision F1

1.0

REGAL 97.3±0.0 97.3±0.0 97.3±0.0 81.1±0.0 81.1±0.0 81.1±0.0 77.9±0.0 77.9±0.0 77.9±0.0
GDD 24.2±0.0 24.2±0.0 24.2±0.0 28.3±0.0 28.3±0.0 28.3±0.0 18.7±0.0 18.7±0.0 18.7±0.0
GRAMPA 40.9±0.0 40.9±0.0 40.9±0.0 32.4±0.0 32.4±0.0 32.4±0.0 / / /
GWL 95.4±0.3 95.4±0.3 95.4±0.3 84.9±0.6 84.9±0.6 84.9±0.6 78.5±0.1 78.5±0.1 78.5±0.1
MM 97.3±0.0 97.3±0.0 97.3±0.0 80.9±0.0 80.9±0.0 80.9±0.0 77.8±0.0 77.8±0.0 77.8±0.0
SpectralPivot 97.4±0.0 97.4±0.0 97.4±0.0 84.0±0.0 84.0±0.0 84.0±0.0 73.5±0.0 73.5±0.0 73.5±0.0
FOTA-GW 97.9±0.0 97.9±0.0 97.9±0.0 85.5±0.0 85.5±0.0 85.5±0.0 79.0±0.0 79.0±0.0 79.0±0.0
FOTA-W 5.1±0.3 5.1±0.3 5.1±0.3 2.6±0.2 2.6±0.2 2.6±0.2 0.5±0.0 0.5±0.0 0.5±0.0
FOTA 98.4±0.0 98.4±0.0 98.4±0.0 86.5±0.1 86.5±0.1 86.5±0.1 79.1±0.0 79.1±0.0 79.1±0.0

0.8

REGAL 28.4±0.7 25.1±0.6 26.6±0.7 27.4±1.1 24.5±1.0 25.9±1.0 24.1±0.1 21.7±0.1 22.8±0.1
GDD 2.4±0.0 2.1±0.0 2.3±0.0 3.5±0.0 3.1±0.0 3.3±0.0 0.4±0.0 0.3±0.0 0.3±0.0
GRAMPA 9.3±0.0 8.2±0.0 8.7±0.0 15.5±0.0 13.8±0.0 14.6±0.0 / / /
GWL 91.8±0.8 81.5±1.4 86.4±0.9 55.3±1.3 49.3±1.2 52.1±1.2 62.7±0.2 56.2±0.2 59.3±0.2
MM 26.0±0.9 22.9±0.8 24.3±0.9 25.1±1.3 22.3±1.2 23.6±1.3 22.0±0.1 19.7±0.1 20.8±0.1
SpectralPivot 89.3±0.1 78.7±0.1 83.6±0.1 67.6±0.8 60.2±0.7 63.7±0.7 16.4±0.3 14.7±0.3 15.5±0.3
FOTA-GW 89.8±0.0 95.2±0.0 92.4±0.0 68.8±0.0 67.6±0.0 68.2±0.0 70.4±0.0 79.2±0.0 74.6±0.0
FOTA-W 0.8±0.0 0.8±0.0 0.8±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.2±0.1 0.2±0.1 0.2±0.1
FOTA 90.6±0.1 96.8±0.7 93.6±0.3 69.5±0.0 67.7±0.1 68.6±0.0 71.2±0.1 79.2±0.1 75.0±0.1

0.6

REGAL 7.0±0.5 5.3±0.4 6.0±0.5 19.1±0.9 14.7±0.7 16.6±0.8 9.7±0.1 7.4±0.1 8.4±0.1
GDD 1.2±0.0 0.9±0.0 1.1±0.0 1.9±0.0 1.4±0.0 1.6±0.0 0.2±0.0 0.2±0.0 0.2±0.0
GRAMPA 1.1±0.0 0.8±0.0 0.9±0.0 5.8±0.0 4.5±0.0 5.0±0.0 / / /
GWL 4.5±2.7 3.5±1.9 3.5±1.1 34.9±0.6 26.8±0.4 30.3±0.5 53.2±0.6 40.6±0.5 46.1±0.5
MM 4.6±0.5 3.5±0.4 3.9±0.4 17.3±1.0 13.3±0.8 15.1±0.9 7.8±0.1 6.0±0.1 6.8±0.1
SpectralPivot 10.7±1.6 8.1±1.2 9.2±1.4 33.6±0.7 25.8±0.5 29.2±0.6 6.2±0.2 4.7±0.2 5.4±0.2
FOTA-GW 15.0±0.0 15.2±0.0 15.1±0.0 42.1±0.0 41.3±0.0 41.7±0.0 62.6±0.0 68.6±0.0 65.5±0.0
FOTA-W 0.0±0.0 0.0±0.0 0.0±0.0 0.4±0.0 0.4±0.0 0.4±0.0 0.2±0.0 0.2±0.0 0.2±0.0
FOTA 17.3±0.3 17.4±0.3 17.3±0.3 53.0±0.2 50.2±0.2 51.6±0.2 63.2±0.2 70.2±0.0 66.5±0.1

Table 3: Recall, precision and F1 scores with standard deviations on homogeneous graphs (in percent). The similarity matrix in
GRAMPA incurs quadruple computational complexity and takes thousands of hours to obtain on Arxiv. Its performance is thus
not reported on this dataset.

Dataset Preparation. We extract fully or partially over-
lapped subgraphs from benchmark datasets. Mathematically,
the overlap ratio is defined as ρ = |Vs ∩ Vt|/|Vs ∪ Vt|.
As ρ decreases, the matching problem becomes more dif-
ficult. We verify the efficacy of FOTA on graphs extracted
from three homogeneous graphs, including Arenas Email3,
PPI Yeast4, and Arxiv5. We then compare the performance
of FOTA against baselines on heterogeneous graphs, includ-
ing Movie 6, PubMed 7 and DBLP 8. Movie contains four
node types, including actors, movies, directors and com-
posers. PubMed is a network of genes, diseases, chemicals,
and species. DBLP is an academic network containing au-
thors, papers, venues and phrases. Statistics of extracted sub-
graphs are listed in Table 1 and Table 2.

Parameter choices. The transport mass is selected by line
search as is stated in Sec. 3.3. In all experiments, the em-
bedding dimension is set as d = 64. Setting 1 × 10−7 ≤
α ≤ 1× 10−4 for FOTA yields improved performance over

3http://konect.cc/networks/arenas-email/
4https://www3.nd.edu/∼cone/MAGNA++/
5http://snap.stanford.edu/data/ca-AstroPh.html
6https://github.com/eXascaleInfolab/JUST/tree/master/

Datasets/Movies
7https://pubmed.ncbi.nlm.nih.gov/
8https://dblp.uni-trier.de/

FOTA-GW. The results in Tables 3, 4 and 5 are obtained with
α = 1 × 10−5. We tested β in {1, 0.1, 0.01, 1 × 10−3, 1 ×
10−4, 1× 10−5}. 1× 10−3 ≤ β ≤ 1 achieves stable perfor-
mance and thus we set β = 0.01.

4.2 Matching Homogeneous Graphs

The recall, precision, and F1 scores on homogeneous graphs
are shown in Table 3. FOTA and FOTA-GW consistently
outperform baselines in terms of the F1 indicator and the ad-
vantage becomes more significant with the overlap ratio de-
creasing, which demonstrates the effectiveness of partial op-
timal transport. GWL and SpectralPivot are closest competi-
tors. Because GWL is a full matching method, it occasion-
ally outperforms FOTA in terms of recall by a small margin.
However, it is widely known that F1 is a better measure as it
balances precision and recall (Van Rijsbergen 1979; Fawcett
2006). The partial optimal transport allows FOTA to signif-
icantly boost the precision and F1. For partially overlapped
graphs, FOTA improves the precision and F1 over the best
baseline by at least 12.5% and 7.7% respectively and often
much more. The ablation study indicates that the superior
performance of FOTA is mainly attributed to the partial GW
discrepancy, since FOTA-W has unsatisfying results. Node
embeddings improve the matching performance of FOTA.
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ρ Methods Movie PubMed DBLP
recall precision F1 recall precision F1 recall precision F1

1.0

REGAL 73.7±0.0 73.7±0.0 73.7±0.0 60.3±0.0 60.3±0.0 60.3±0.0 81.0±0.0 81.0±0.0 81.0±0.0
GDD 21.9±0.0 21.9±0.0 21.9±0.0 16.4±0.0 16.4±0.0 61.3±0.0 17.7±0.0 17.7±0.0 17.7±0.0
GRAMPA 12.3±0.0 12.3±0.0 12.3±0.0 / / / / / /
GWL 88.2±1.4 88.2±1.4 88.2±1.4 61.2±0.8 61.2±0.8 61.2±0.8 81.6±0.1 81.6±0.1 81.6±0.1
MM 73.5±0.1 73.5±0.1 73.5±0.1 60.2±0.0 60.2±0.0 60.2±0.0 81.0±0.0 81.0±0.0 81.0±0.0
SpectralPivot 87.6±0.5 87.6±0.5 87.6±0.5 59.6±0.7 59.6±0.7 59.6±0.7 78.9±0.1 78.9±0.1 78.9±0.1
SANA 65.8±0.5 65.8±0.5 65.8±0.5 / / / / / /
VELSET 4.7±0.0 4.7±0.0 4.7±0.0 5.7±0.0 5.7±0.0 5.7±0.0 0.5±0.0 0.5±0.0 0.5±0.0
G-Finder 1.7±0.0 3.3±0.0 2.2±0.0 / / / / / /
FOTA-GW 91.6±0.0 91.6±0.0 91.6±0.0 65.5±0.0 65.5±0.0 65.5±0.0 81.2±0.0 81.2±0.0 81.2±0.0
FOTA-W 17.3±3.6 17.3±3.6 17.3±3.6 1.1±0.1 1.1±0.1 1.1±0.1 0.3±0.0 0.3±0.0 0.3±0.0
FOTA 93.7±0.3 93.7±0.3 93.7±0.3 68.0±0.0 68.0±0.0 68.0±0.0 81.6±0.0 81.6±0.0 81.6±0.0

0.8

REGAL 32.8±1.2 29.6±1.1 31.1±1.1 35.0±0.3 31.5±0.3 33.2±0.3 19.5±0.3 17.5±0.3 18.5±0.3
GDD 2.9±0.0 2.6±0.0 2.7±0.0 1.7±0.0 1.5±0.0 1.6±0.0 0.6±0.0 0.5±0.0 0.5±0.0
GRAMPA 6.0±0.0 5.4±0.0 5.7±0.0 / / / / / /
GWL 73.0±2.6 66.0±2.3 69.3±2.4 48.1±0.2 43.3±0.1 45.6±0.1 39.3±1.5 34.9±1.1 37.0±1.3
MM 29.3±1.4 26.5±1.3 27.8±1.3 33.5±0.6 30.1±0.6 31.7±0.6 16.0±0.6 14.3±0.5 15.1±0.5
SpectralPivot 72.0±1.9 65.0±1.7 68.3±1.8 47.7±0.4 43.0±0.4 45.2±0.4 24.5±9.4 21.9±8.4 23.1±8.8
SANA 49.8±1.5 45.0±1.4 47.3±1.5 / / / / / /
VELSET 4.4±0.0 4.0±0.0 4.1±0.0 4.5±0.0 4.1±0.0 4.3±0.0 0.5±0.0 0.4±0.0 0.4±0.0
G-Finder 1.1±0.0 3.1±0.0 1.6±0.0 / / / / / /
FOTA-GW 74.4±0.0 71.9±0.0 73.1±0.0 49.3±0.0 50.5±0.0 49.9±0.0 32.9±0.0 46.6±0.0 38.6±0.0
FOTA-W 2.0±0.1 2.7±0.4 2.3±0.2 0.5±0.1 0.5±0.1 0.5±0.1 0.5±0.0 0.5±0.0 0.5±0.0
FOTA 75.7±0.0 72.2±0.2 73.9±0.1 53.7±0.0 52.6±0.0 53.1±0.0 41.7±1.0 59.7±1.3 49.1±1.2

0.6

REGAL 19.5±0.7 14.8±0.6 16.9±0.6 18.1±0.5 14.0±0.4 15.8±0.4 10.4±0.2 7.9±0.2 9.0±0.2
GDD 2.1±0.0 1.6±0.0 1.8±0.0 0.8±0.0 0.6±0.0 0.7±0.0 0.6±0.0 0.4±0.0 0.5±0.0
GRAMPA 3.1±0.0 2.4±0.0 2.7±0.0 / / / / / /
GWL 60.6±3.5 46.1±2.7 52.4±3.0 35.2±0.2 27.2±0.1 30.7±0.2 29.3±0.3 22.3±0.2 25.3±0.3
MM 14.9±0.7 11.3±0.5 12.9±0.6 15.4±0.3 11.9±0.3 13.4±0.3 7.8±0.6 5.9±0.4 6.8±0.5
SpectralPivot 41.1±2.6 31.2±2.0 35.5±2.2 33.0±0.8 25.5±0.6 28.7±0.7 17.8±1.4 13.5±1.1 15.4±1.2
SANA 30.1±1.3 22.9±1.0 26.0±1.1 / / / / / /
VELSET 4.2±0.0 3.2±0.0 3.6±0.0 3.8±0.0 2.9±0.0 3.3±0.0 0.4±0.0 0.3±0.0 0.3±0.0
G-Finder 0.8±0.0 2.2±0.0 1.2±0.0 / / / / / /
FOTA-GW 76.1±0.0 62.9±0.0 68.9±0.0 33.3±0.0 29.9±0.0 31.5±0.0 27.0±0.0 31.0±0.0 28.8±0.0
FOTA-W 1.1±0.4 0.9±0.3 1.0±0.4 0.3±0.1 0.3±0.1 0.3±0.1 0.1±0.0 0.1±0.0 0.1±0.0
FOTA 77.9±0.3 63.7±0.1 70.1±0.2 37.1±0.0 33.3±0.0 35.1±0.0 27.9±0.1 32.7±0.2 30.1±0.1

Table 4: Recall, precision, and F1 scores with standard deviations on heterogeneous graphs (in percent).

4.3 Matching Heterogeneous Graphs

The performance of FOTA and baselines on heterogeneous
graphs are reported in Tables 4 and 5. Due to the complexity
of GRAMPA, SANA and G-Finder, we evaluate them only
in the first test on the smaller Movie dataset but not in the
remaining two tests on the larger PubMed and DBLP graphs.
Other methods are evaluated on all three tests. FOTA and
FOTA-GW outperform baselines in terms of precision and
F1 indicators on all datasets.

All homogeneous graph matching methods can match
nodes of different types. On Movie and PubMed, they match
about half of the nodes in the source graph to nodes of dif-
ferent types in the target graph. Therefore, they cannot be
directly used to match heterogeneous graphs and the type in-
formation should be explicitly considered. SANA, VELSET
and G-Finder outperform these methods in terms of the type
mismatch ratio. However, type mismatch still occurs. By
contrast, type mismatch do not happen for FOTA and its
variants.

5 Related Work
Matching homogeneous graphs. The matching costs kii′
and dii′jj′ in (1) are critical to the matching accuracy. In
some early works, these costs are based on handcrafted fea-
tures that rely heavily on expert knowledge (Mamano and
Hayes 2017; Heimann et al. 2018). More recently, end-
to-end deep learning frameworks for graph matching are
proposed to automatically learn the node embedding-based
assignment costs (Zanfir and Sminchisescu 2018; Wang,
Yan, and Yang 2019; Wang et al. 2019a), which however
are supervised and require a large amount of ground truth
node pairs to be available. OT-based methods propose to
exploit geometrical properties of the metric space of the
graph in order to estimate the node correspondence in an
unsupervised/semi-supervised manner and thus reduce the
demand of data labeling (Maretic et al. 2019; Xu et al. 2019;
Titouan et al. 2019).

Matching heterogeneous Graphs. Many existing meth-
ods for matching heterogeneous graphs are supervised (Wu
et al. 2019; Ren, Meng, and Zhang 2020; Sun et al. 2020;
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Datasets Movie PubMed DBLP
ρ 1.0 0.8 0.6 1.0 0.8 0.6 1.0 0.8 0.6
REGAL 12.2±0.9 27.4±1.5 34.2±1.3 29.1±0.5 50.9±0.4 63.0±1.0 0.1±0.0 3.4±0.1 6.6±0.3
GDD 37.9±0.0 55.9±0.0 55.9±0.0 61.3±0.0 72.8±0.0 73.4±0.0 33.8±0.0 49.5±0.0 52.1±0.0
GRAMPA 50.5±0.0 57.8±0.0 51.5±0.0 / / / / / /
GWL 4.5±0.8 16.5±1.4 25.2±1.6 28.6±0.7 42.9±0.2 54.7±0.2 0.1±0.0 7.2±0.8 5.0±0.6
MM 10.9±0.0 37.1±2.0 47.5±0.9 29.1±0.5 51.8±0.6 64.4±1.0 0.3±0.0 19.2±0.9 24.2±0.9
SpectralPivot 4.8±0.3 16.7±1.1 32.3±2.0 30.5±0.4 42.9±0.5 55.3±0.3 4.5±0.3 21.0±6.3 20.7±0.3
SANA 10.0±0.6 6.9±0.7 8.9±0.5 / / / / / /
VELSET 0.0±0.0 0.0±0.0 2.1±0.0 0.0±0.0 0.0±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.3±0.0
G-Finder 0.0±0.0 0.0±0.0 0.0±0.0 / / / / / /
FOTA-GW 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
FOTA-W 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
FOTA 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Table 5: Type mismatch ratio q results with standard deviations on heterogeneous graphs (in percent).

Wang, Yang, and Ye 2020). Although Zhang et al. 2021 pro-
pose an unsupervised method, the purpose is different from
ours. Concretely, the nodes represent persons captured by
different cameras, and are divided into two types according
to whether the appearance is clear. The node type mismatch
is allowed or even encouraged, since a person is clear in one
camera may not be clear in another. Some methods (Dutta,
Nayek, and Bhattacharya 2017; Liu et al. 2019) treat the
node type as an one-dimensional node attribute. Matching
heterogeneous graphs is then converted into the problem of
matching homogeneous attributed graphs, which may still
match nodes of different types. Besides, these methods are
often time-consuming due to the complex matching proce-
dures.

Conclusion
In this paper, we propose the first practical method to match
both heterogeneous graphs and partially overlapped graphs.
The learning procedure is decomposed into a series of sub-
procedures, each of which matches one type of nodes by
solving a partial optimal transport problem. The nodes that
are already matched serve as seeds. Such a matching strategy
is a hybrid of the seed-and-extend strategy and the searching
strategy. Empirical results demonstrate that our method out-
performs state-of-the-art graph matching methods on both
homogeneous and heterogeneous graphs.

Acknowledgments
This work is supported by National Key Research
and Development Program of China under Grant
2020AAA0107400, Zhejiang Provincial Natural Sci-
ence Foundation of China (Grant No: LZ18F020002,
LR19F020005), Alibaba-Zhejiang University Joint Re-
search Institute of Frontier Technologies, and National
Natural Science Foundation of China (Grant No: 61672376,
61751209, 61472347, 61972347).

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
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Özer, I. B.; Wolf, W.; and Akansu, A. N. 2002. A graph-
based object description for information retrieval in digital
image and video libraries. JVCIR.
Pedarsani, P.; and Grossglauser, M. 2011. On the privacy
of anonymized networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 1235–1243.
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