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Abstract

For personalized ranking models, the well-calibrated proba-
bility of an item being preferred by a user has great practical
value. While existing work shows promising results in im-
age classification, probability calibration has not been much
explored for personalized ranking. In this paper, we aim to es-
timate the calibrated probability of how likely a user will pre-
fer an item. We investigate various parametric distributions
and propose two parametric calibration methods, namely
Gaussian calibration and Gamma calibration. Each proposed
method can be seen as a post-processing function that maps
the ranking scores of pre-trained models to well-calibrated
preference probabilities, without affecting the recommenda-
tion performance. We also design the unbiased empirical risk
minimization framework that guides the calibration methods
to the learning of true preference probability from the biased
user-item interaction dataset. Extensive evaluations with vari-
ous personalized ranking models on real-world datasets show
that both the proposed calibration methods and the unbiased
empirical risk minimization significantly improve the calibra-
tion performance.

Introduction
Personalized ranking models aim to learn the ranking scores
of items, so as to produce a ranked list of them for the rec-
ommendation (Rendle et al. 2009). However, their predic-
tion results provide an incomplete estimation of the user’s
potential preference for each item; the semantic of the same
ranking position differs for each user. One user might like
his third item with the probability of 30%, whereas the other
user likes her third item with 90%. Accurately estimating
the probability of an item being preferred by a user has great
practical value (Menon et al. 2012). The preference proba-
bility can help the user choose the items with high poten-
tial preference and the system can raise user satisfaction by
pruning the ranked list by filtering out items with low confi-
dence (Arampatzis, Kamps, and Robertson 2009). To ensure
reliability, the predicted probabilities need to be calibrated
so that they can accurately indicate their ground truth cor-
rectness likelihood. In this paper, our goal is to obtain the
well-calibrated probability of an item matching a user’s pref-
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erence based on the ranking score of the pre-trained model,
without affecting the ranking performance.

While recent methods (Guo et al. 2017; Kull et al. 2019;
Rahimi et al. 2020) have successfully achieved model cal-
ibration for image classification, it has remained a long-
standing problem for personalized ranking. A pioneering
work (Menon et al. 2012) firstly proposed to predict cal-
ibrated probabilities from the scores of pre-trained rank-
ing models by using isotonic regression (Barlow and Brunk
1972), which is a simple non-parametric method that fits a
monotonically increasing function. Although it has shown
some effectiveness, there is no subsequent study about para-
metric calibration methods in the field of personalized rank-
ing despite their richer expressiveness than non-parametric
methods.

In this paper, we investigate various parametric distribu-
tions, and from which we propose two calibration methods
that can best model the score distributions of the ranking
models. First, we define three desiderata that a calibration
function for ranking models should meet, and show that ex-
isting calibration methods have the insufficient capability to
model the diverse populations of the ranking score. We then
propose two parametric methods, namely Gaussian calibra-
tion and Gamma calibration, that satisfy all the desiderata.
We demonstrate that the proposed methods have a larger ex-
pressive power in terms of the parametric family and also
effectively handles the imbalanced nature of ranking score
populations compared to the existing methods (Platt et al.
1999; Guo et al. 2017). Our methods are post-processing
functions with three learnable parameters that map the rank-
ing scores of pre-trained models to calibrated posterior prob-
abilities.

To optimize the parameters of the calibration functions,
we can use the log-loss on the held-out validation sets (Guo
et al. 2017). The challenge here is that the user-item interac-
tion datasets are implicit and missing-not-at-random (Schn-
abel et al. 2016; Saito 2019). For each user-item pair, the
label is 1 if the interaction is observed, 0 otherwise. An un-
observed interaction, however, does not necessarily mean a
negative preference, but the item might have not been ex-
posed to the user yet. Therefore, if we fit the calibration
function with the log-loss computed naively on the implicit
datasets, the mapped probabilities may indicate biased like-
lihoods of users’ preference on items. To tackle this prob-
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lem, we design an unbiased empirical risk minimization
framework by adopting Inverse Propensity Scoring (Robins,
Rotnitzky, and Zhao 1994). We first decompose the interac-
tion variable into two variables for observation and prefer-
ence, and adopt an inverse propensity-scored log-loss that
guides the calibration functions toward the true preference
probability.

Extensive evaluations with various personalized ranking
models on real-world datasets show that the proposed cal-
ibration methods produce more accurate probabilities than
existing methods in terms of calibration measures like ECE,
MCE, and NLL. Our unbiased empirical risk minimization
framework successfully estimates the ideal empirical risk,
leading to performance gain over the naive log-loss. Further-
more, reliability diagrams show that Gaussian calibration
and Gamma calibration predict well-calibrated probabilities
across all probability range. Lastly, we provide an in-depth
analysis that supports the superiority of the proposed meth-
ods over the existing methods.

Preliminary & Related Work
Personalized Ranking
Let U and I denote the user space and the item space, re-
spectively. For each user-item pair (u, i) of u ∈ U and
i ∈ I , a label Yu,i is given as 1 if their interaction is ob-
served and 0 otherwise. It is worth noting that unobserved
interaction (Yu,i = 0) may indicate the negative preference
or the unawareness, or both. A personalized ranking model
fθ : U × I → R learns the ranking scores of user-item pairs
to produce a ranked list of items for each user. fθ is mostly
trained with pairwise loss that makes the model put a higher
score on the observed pair than the unobserved pair:

Lpair =
∑

u∈U ,i,j∈I
`(fθ(u, i), fθ(u, j))Yu,i(1− Yu,j), (1)

where `(·, ·) is some convex loss function such as BPR loss
(Rendle et al. 2009) or Margin Ranking loss (Weimer et al.
2007). Note that the ranking score fθ(u, i) ∈ R is not
bounded in [0, 1] and therefore cannot be used as a proba-
bility.

Calibrated Probability
To estimate P (Yu,i = 1|fθ(u, i)), which is the probability
of item i being interacted with user u given the pre-trained
ranking score, we need a post-processing calibration func-
tion gφ(s) that maps the ranking score s = fθ(u, i) to the
calibrated probability p. Here, the calibration function for
the personalized ranking has to meet the following desider-
ata: (1) the function gφ : R → [0, 1] needs to take an input
from the unbounded range of the ranking score to output
a probability; (2) the function should be monotonically in-
creasing so that the item with a higher ranking score gets a
higher preference probability; (3) the function needs enough
expressiveness to represent diverse score distributions.

We say the probability p is well-calibrated if it indicates
the ground-truth correctness likelihood (Kull, Silva Filho,
and Flach 2017):

E[Y |gφ(s) = p] = p, ∀p ∈ [0, 1]. (2)

For example, if we have 100 predictions with p = 0.3, we
expect 30 of them to indeed have Y = 1 when the probabili-
ties are calibrated. Using this definition, we can measure the
miscalibration of a model with Expected Calibration Error
(ECE) (Naeini, Cooper, and Hauskrecht 2015):

ECE(gφ) = E
[
|E[Y |gφ(s) = p]− p|

]
. (3)

However, since we only have finite samples, we cannot di-
rectly compute ECE with Eq.3. Instead, we partition the
[0,1] range of p into M equi-spaced bins and aggregate the
value of each bin:

ECEM (gφ) =
M∑
m=1

|Bm|
N

∣∣∣∣
∑
k∈Bm Yk

|Bm|
−
∑
k∈Bm pk

|Bm|

∣∣∣∣ ,
(4)

where Bm is m-th bin and N is the number of samples. The
first term in the absolute value symbols denotes the ground-
truth proportion of positive samples (accuracy) in Bm and
the second term denotes the average calibrated probability
(confidence) of Bm. Similarly, Maximum Calibration Error
(MCE) is defined as follows:

MCEM (gφ) = max
m∈{1,..,M}

∣∣∣∣
∑
k∈Bm Yk

|Bm|
−
∑
k∈Bm pk

|Bm|

∣∣∣∣ .
(5)

MCE measures the worst-case discrepancy between the ac-
curacy and the confidence. Besides the above calibration
measures, Negative Log-Likelihood (NLL) also can be used
as a calibration measure (Guo et al. 2017).

Calibration Method
Existing methods for model calibration are categorized into
two groups: non-parametric and parametric methods. Non-
parametric methods mostly adopt the binning scheme in-
troduced by the histogram binning (Zadrozny and Elkan
2001). The histogram binning divides the uncalibrated
model outputs into B equi-spaced bins and samples in
each bin take the proportion of positive samples in the bin
as the calibrated probability. Subsequently, isotonic regres-
sion (Menon et al. 2012) adjusts the number of bins and
their width, Bayesian binning into quantiles (BBQ) (Naeini,
Cooper, and Hauskrecht 2015) takes an average of different
binning models for the better generalization. In the perspec-
tive of our desiderata, however, none of them meets all three
conditions (please refer to Appendix A).

The parametric methods try to fit calibration functions
that map the output scores to the calibrated probabilities.
Temperature scaling (Guo et al. 2017), a well-known tech-
nique for calibrating deep neural networks, is a simplified
version of Platt scaling (Platt et al. 1999) that adopts Gaus-
sian distributions with the same variance for the positive and
the negative classes. Beta calibration (Kull, Silva Filho, and
Flach 2017) utilizes Beta distribution for the binary classi-
fication and Dirichlet calibration (Kull et al. 2019) general-
izes it for the multi-class classification. While recent work
(Rahimi et al. 2020; Mukhoti et al. 2020) is focusing on
parametric methods and shows promising results for image
classification, they cannot be directly adopted for the person-
alized ranking. Also, the above parametric methods do not
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satisfy all the desiderata (please refer to Appendix A). In this
paper, we propose two parametric calibration methods that
satisfy all the desiderata for the personalized ranking mod-
els.

Proposed Calibration Method
Revisiting Platt Scaling
Platt scaling (Platt et al. 1999) is widely used parametric
calibration method, which is a generalized form of the tem-
perature scaling (Guo et al. 2017):

gPlatt
φ (s) = σ(bs+ c), (6)

where φ = {b, c} are learnable parameters and σ(x) =
1/(1 + exp(−x)) is the sigmoid function. In this section,
we show that Platt scaling can be derived from the assump-
tion that the class-conditional scores follow Gaussian distri-
butions with the same variance.

We first set the class-conditional score distribution for the
positive and the negative classes:

p(s|Y = 0) = (
√

2πσ0)−1exp[−(s− µ0)2/2σ2
0 ],

p(s|Y = 1) = (
√

2πσ1)−1exp[−(s− µ1)2/2σ2
1 ],

(7)

where µ0, µ1 ∈ R, σ2
0 , σ

2
1 ∈ R+ are the mean and the vari-

ance of each Gaussian distribution. Then, the posterior is
computed as follows:

P (Y = 1|s) =
π1p(s|Y = 1)

π1p(s|Y = 1) + π0p(s|Y = 0)

=
1

1 + π0p(s|Y = 0)/π1p(s|Y = 1)

=
1

1 + exp
[
( 1

2σ2
1
− 1

2σ2
0
)s2 + (µ0

σ2
0
− µ1

σ2
1
)s− c

]
= σ(as2 + bs+ c),

(8)

where π0 and π1 are the prior probability for each class,
a = (2σ2

0)−1 − (2σ2
1)−1, b = µ1/σ

2
1 − µ0/σ

2
0 , and c =

µ2
1/(2σ

2
1) − µ2

0/(2σ
2
0) + log(π0σ1) − log(π1σ0) ∈ R. We

can see that Platt scaling is a special case of Eq.8 with the
assumption a = 0 (i.e., the same variance for both class-
conditional score distributions).

Gaussian Calibration
For personalized ranking, however, the usage of the same
variance for both class-conditional score distributions is
not desirable, because a severe imbalance between the two
classes exists in user-item interaction datasets. Since users
have distinct preferences for item categories, preferred items
take only a small portion (∼10% in real-world datasets) of
the entire itemset. Therefore, the score distribution of di-
verse unpreferred items and that of distinct preferred items
are likely to have disparate variances.

To tackle this problem, we let the variance of each class-
conditional score distribution be optimized with datasets,
without any naive assumption of the same variance for both
classes:

gGaussian
φ (s) = σ(as2 + bs+ c), (9)

where φ = {a, b, c} are learnable parameters and can be any
real numbers. Since a = (2σ2

0)−1 − (2σ2
1)−1 can capture

the different deviations of two classes during the training,
we can handle the distinct distribution of each class.

Gamma Calibration
Gamma distribution is also widely adopted to model the
score distribution of ranking models (Baumgarten 1999).
Unlike Gaussian distribution that is symmetric about its
mean, Gamma distribution can capture the skewed popu-
lation of ranking scores that might exist in the datasets. In
this section, we set the class-conditional score distribution
to Gamma distribution:

p(s|Y = 0) = Γ(α0)−1βα0
0 sα0−1exp(−β0s),

p(s|Y = 1) = Γ(α1)−1βα1
1 sα1−1exp(−β1s),

(10)

where Γ(·) is the Gamma function, α0, α1, β0, β1 ∈ R+ are
the shape and the rate parameters of each Gamma distribu-
tion. Then, the posterior is computed as follows:

P (Y = 1|s) =
1

1 + π0p(s|Y = 0)/π1p(s|Y = 1)

=
1

1 +
π0β

α0
0 Γ(α1)

π1β
α1
1 Γ(α0)

sα0−α1exp[(β1 − β0)s]

=
1

1 + exp
[
(α0 − α1)logs+ (β1 − β0)s− c

]
= σ(alogs+ bs+ c),

(11)

where a = α1 − α0, b = β0 − β1, and c =
log(π1β

α1
1 Γ(α0)/π0β

α0
0 Γ(α1)) ∈ R. Therefore, Gamma

calibration can be formalized as follows:

gGamma
φ (s) = σ(alogs+ bs+ c), (12)

where φ = {a, b, c} are learnable parameters. Since Gamma
distribution is defined only for the positive real number, we
need to shift the score to make all the inputs positive: s ←
s− smin, where smin is the minimum ranking score.

Other Distributions
Besides adopting Gaussian distribution or Gamma distribu-
tion for both classes, there have been proposed other para-
metric distributions for modeling the ranking scores. Swets
adopts two Exponential distributions (Swets 1969), Man-
matha proposes Gaussian distribution for the positive class
and Exponential distribution for the negative class (Man-
matha, Rath, and Feng 2001), and Kanoulas proposes Gaus-
sian distribution for the positive class and Gamma distribu-
tion for the negative class (Kanoulas et al. 2010). We also in-
vestigated these distributions, however, they either have the
same form as the proposed calibration function or their pos-
terior cannot satisfy our desiderata. Please refer to Appendix
B for more information.

Monotonicity for Proposed Desiderata
The proposed calibration methods naturally satisfy the first
and the third of our desiderata: (1) the proposed methods
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take the unbounded ranking scores and produce calibrated
probabilities; (2) the proposed methods have richer expres-
siveness than Platt scaling or temperature scaling, since they
have a larger capacity in terms of the parametric family. The
last condition that our calibration methods need to meet is
that they should be monotonically increasing for maintain-
ing the ranking order. To this end, we need linear constraints
on the parameters of each method: 2as+b > 0 for Gaussian
calibration and a/s+ b > 0 for Gamma calibration (deriva-
tion of these constraints can be found in Appendix C). Since
these constraints are linear and we have only three learnable
parameters, the optimization of constrained logistic regres-
sion is easily done in at most a few minutes with the existing
module of Scipy (Pedregosa et al. 2011).

Unbiased Parameter Fitting
Naive Log-loss
After we formalize Gaussian Calibration and Gamma Cali-
bration, we need to optimize their learnable parameters φ. A
well-known way to fit them is to use log-loss on the held-out
validation set, which can be the same set used for the hy-
perparameter tuning (Guo et al. 2017; Kull, Silva Filho, and
Flach 2017). Since we only observe the interaction indica-
tor Yu,i, the naive negative log-likelihood is computed for a
user-item pair as follows:

Lnaive = −Yu,i log(gφ(su,i))− (1− Yu,i)log(1− gφ(su,i)).
(13)

where su,i = fθ(u, i) is the ranking score for the user-
item pair. Note that during the fitting of the calibration func-
tion gφ(s), the parameters of the pre-trained ranking model
fθ(u, i) are fixed.

Ideal Log-loss for Preference Estimation
The observed interaction label Yu,i, however, indicates the
presence of user-item interaction, not the user’s preference
on the item. Therefore, Yu,i = 0 does not necessarily mean
the user’s negative preference, but it can be that the user
is not aware of the item. If we fit the calibration function
with Lnaive, mapped probabilities could be biased towards
the negative preference by treating the unobserved positive
pair as the negative pair. To handle this implicit interaction
process, we borrow the idea of decomposing the interaction
variable Yu,i into two independent binary variables (Schn-
abel et al. 2016):

Yu,i = Ou,i ·Ru,i,
P (Yu,i = 1) = P (Ou,i = 1) · P (Ru,i = 1)

= ωu,i · ρu,i,
(14)

whereOu,i is a binary random variable representing whether
the item i is observed by user u, andRu,i is a binary random
variable representing whether the item i is preferred by user
u. The user-item pair interacts (Yu,i = 1) when the item is
observed (Ou,i = 1) and preferred (Ru,i = 1) by the user.

The goal of this paper is to estimate the probability of an
item being preferred by a user, not the probability of an item
being interacted by a user. Therefore, we need to train gφ(s)

for predicting P (R = 1|s) instead of P (Y = 1|s)1. To this
end, we need a new ideal loss function that can guide the
optimization towards the true preference probability:

Lideal = −Ru,i log(gφ(su,i))− (1−Ru,i)log(1− gφ(su,i)).
(15)

The ideal loss function enables the calibration function to
learn the unbiased preference probability. However, since we
cannot observe the variable Ru,i from the training set, the
ideal log-loss cannot be computed directly.

Unbiased Empirical Risk Minimization
In this section, we design an unbiased empirical risk mini-
mization (UERM) framework to obtain the ideal empirical
risk minimizer. We deploy the Inverse Propensity Scoring
(IPS) estimator (Robins, Rotnitzky, and Zhao 1994), which
is a technique for estimating the counterfactual outcome of
a subject under a particular treatment. The IPS estimator is
widely adopted for the unbiased rating prediction (Schnabel
et al. 2016; Wang et al. 2019) and the unbiased pairwise
ranking (Joachims, Swaminathan, and Schnabel 2017; Saito
2019). For a user-item pair, the inverse propensity-scored
log-loss for the unbiased empirical risk minimization is de-
fined as follows:

LUERM = −Yu,i
ωu,i

log(gφ(su,i))−(1−Yu,i
ωu,i

)log(1−gφ(su,i)),

(16)
where ωu,i = P (Ou,i = 1) is called propensity score.

Proposition 1. R̂UERM(gφ|ω), which is the empirical risk
of LUERM on validation set with true propensity score ω, is
equal to R̂ideal(gφ), which is the ideal empirical risk.

The proof can be found in Appendix D. This proposition
shows that we can get the unbiased empirical risk minimizer
by φUERM = argminφ{R̂UERM(gφ|ω)} when only Yu,i is ob-
served.

The remaining challenge is to estimate the propensity
score ωu,i from the dataset. There have been proposed sev-
eral techniques for estimating the propensity score such as
Naive Bayes (Schnabel et al. 2016) or logistic regression
(Rosenbaum 2002). However, the Naive Bayes needs unbi-
ased held-out data for the missing-at-random condition and
the logistic regression needs additional information like user
demographics and item categories. In this paper, we adopt a
simple way that utilizes the popularity of items as done in
(Saito 2019): ω̂u,i = (

∑
u∈U Yu,i/maxi∈I

∑
u∈U Yu,i)

0.5.
While one can concern that this estimate of propensity score
may be inaccurate, Schnabel (Schnabel et al. 2016) shows
that we merely need to estimate better than the naive uniform
assumption. We provide an experimental result that demon-
strates our estimate of the propensity score shows compara-
ble performance with Naive Bayes and Logistic Regression
that use additional information (Appendix F).

For deeper insights into the variability of the estimated
empirical risk, we investigate the bias when the propensity
scores are inaccurately estimated.

1We can replace Yu,i with Ru,i in Eq.2∼12.
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Proposition 2. The bias of R̂UERM(gφ|ω̂) induced
by the inaccurately estimated propensity scores ω̂ is

1
|Dval|

∑
(u,i)∈Dval

ρu,i

(
ωu,i
ω̂u,i
− 1
)

log
(

gφ(su,i)
1−gφ(su,i)

)
.

The proof can be found in Appendix D. Obviously, the bias
is zero when the propensity score is correctly estimated. Fur-
thermore, we can see that the magnitude of the bias is af-
fected by the inverse of the estimated propensity score. This
finding is consistent with the previous work (Su et al. 2019)
that proposes to adopt a propensity clipping technique to re-
duce the variability of the bias. In this work, we use a simple
clipping technique ω̂u,i ← max{ω̂u,i, 0.1} that can prevent
the item with extremely low popularity from amplifying the
bias (Saito 2019).

Experiment
Experimental Setup
We concisely introduce our experimental settings in this
section. For more details, please refer to Appendix E. Our
source code is publicly available2.

Datasets To evaluate the calibration quality of predicted
preference probability, we need an unbiased test set where
we can directly observe the preference variableRu,i without
any bias from the observation process Ou,i. To the best of
our knowledge, there are two real-world datasets that have
separate unbiased test sets where the users are asked to rate
uniformly sampled items (i.e., Ou,i = 1 for test sets). Note
that in the training set, we only observe the interaction Yu,i.
Yahoo!R33 has over 300K interactions in the training set
and 54K preferences in the test set from 15.4K users and 1K
songs. Coat (Schnabel et al. 2016) has over 7K interactions
in the training set and 4.6K preferences in the test set from
290 users and 300 coats. We hold out 10% of the training
set as the validation set for the hyperparameter tuning of the
base models and the optimization of the calibration methods.

Base models For rigorous evaluation, we apply the cali-
bration methods on several widely-used personalized rank-
ing models with various model architectures and loss func-
tions: Bayesian Personalized Ranking (BPR) (Rendle et al.
2009), Neural Collaborative Filtering (NCF) (He et al.
2017), Collaborative Metric Learning (CML) (Hsieh et al.
2017), Unbiased BPR (UBPR) (Saito 2019), and LightGCN
(LGCN) (He et al. 2020). The details for the training of these
base models can be found in Appendix E.

Calibration methods compared We evaluate the pro-
posed calibration methods with various calibration methods.
For the naive baseline, we adopt the minmax normalizer
and the sigmoid function which simply re-scale the scores
into [0,1] without calibration. For non-parametric methods,
we adopt Histogram binning (Zadrozny and Elkan 2001),
Isotonic regression (Menon et al. 2012), and BBQ (Naeini,
Cooper, and Hauskrecht 2015). For parametric methods, we
adopt Platt scaling (Platt et al. 1999) and Beta calibration

2https://github.com/WonbinKweon/CalibratedRankingModels
AAAI2022

3http://research.yahoo.com/Academic Relations

(Kull, Silva Filho, and Flach 2017). Note that we do not
compare recent work designed for multi-class classification
(Kull et al. 2019; Rahimi et al. 2020), since they are either
the generalized version of Beta calibration or cannot be di-
rectly adopted for the personalized ranking models.

Evaluation metrics We adopt well-known calibration
metrics like ECE, MCE with M = 15, and NLL as done
in recent work (Kull et al. 2019; Rahimi et al. 2020). We
also plot the reliability diagram that shows the discrepancy
between the accuracy and the average calibrated probability
of each probability interval. Note that evaluation metrics are
computed on Ru,i which is observed only from the test set.

Evaluation process We first train the base personalized
ranking model fθ(u, i) with Yu,i on the training set. Sec-
ond, we compute ranking score su,i = fθ(u, i) for user-item
pairs in the validation set. Third, we optimize the calibration
method gφ(s) on the validation set with the computed su,i
and the estimated ω̂u,i, with fθ(u, i) fixed. Lastly, we eval-
uate the calibrated probability p = gφ(su,i) with Ru,i from
the unbiased test set by using the above evaluation metrics.

Comparing Calibration Performance
Table 1 shows ECE of each calibration method applied on
the various personalized ranking models (MCE and NLL
can be found in Appendix F). ECE indicates how well the
calibrated probabilities and ground-truth likelihoods match
on the test set across all probability ranges. First, the min-
max normalizer and the sigmoid function produce poorly
calibrated preference probabilities. It is obvious because the
ranking scores do not have any probabilistic meaning and
naively re-scaling them cannot reflect the score distribution.

Second, the parametric methods better calibrate the pref-
erence probabilities than the non-parametric methods in
most cases. This is consistent with recent work (Guo et al.
2017; Kull et al. 2019) for image classification. The non-
parametric calibration methods lack rich expressiveness
since they rely on the binning scheme, which maps the rank-
ing scores to the probabilities in a discrete manner. On the
other hand, the parametric calibration methods fit the contin-
uous functions based on the parametric distributions. There-
fore, they have a more granular mapping from the ranking
scores to the preference probabilities.

Third, every parametric calibration method benefits from
adopting LUERM instead of Lnaive for the parameter fit-
ting. The naive log-loss treats all the unobserved pairs as
negative pairs and makes the calibration methods produce
biased preference probabilities. On the contrary, inverse
propensity-scored log-loss handles such problem and en-
ables us to compute the ideal empirical risk indirectly. As
a result, ECE decreases by 7.40%∼76.52% for all paramet-
ric methods compared to when the naive log-loss is used for
the optimization.

Lastly, Gaussian calibration and Gamma calibration with
LUERM show the best calibration performance across all base
models and datasets. Platt scaling can be seen as a special
case of the proposed methods with a = 0, so it has less ex-
pressiveness in terms of the capacity of parametric family.
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Yahoo!R3 Coat

Type Methods BPR NCF CML UBPR LGCN BPR NCF CML UBPR LGCN

uncalibrated MinMax 0.4929 0.4190 0.3152 0.3004 0.2258 0.1790 0.4624 0.1834 0.1920 0.2350
Sigmoid 0.3065 0.0729 0.0526 0.2516 0.3024 0.2196 0.1422 0.0647 0.1415 0.0508

non-parametric
Hist 0.0161 0.0133 0.0641 0.0130 0.0194 0.0552 0.0230 0.0161 0.0514 0.0470

Isotonic 0.0146 0.0130 0.0635 0.0127 0.0154 0.0474 0.0159 0.0160 0.0490 0.0453
BBQ 0.0136 0.0137 0.0634 0.0140 0.0165 0.0552 0.0178 0.0198 0.0459 0.0494

parametric
w/ Lnaive

Platt 0.0126 0.0146 0.0515 0.0107 0.0099 0.0441 0.0245 0.0203 0.0423 0.0407
Beta 0.0127 0.0144 0.0504 0.0105 0.0150 0.0451 0.0258 0.0270 0.0416 0.0407

Gaussian 0.0129 0.0104 0.0486 0.0105 0.0073 0.0436 0.0264 0.0245 0.0410 0.0404
Gamma 0.0108 0.0145 0.0512 0.0107 0.0098 0.0424 0.0239 0.0208 0.0405 0.0406

Platt 0.0106 0.0129 0.0303 0.0100 0.0070 0.0411 0.0120 0.0155 0.0354 0.0224
parametric Beta 0.0109 0.0132 0.0305 0.0094 0.0076 0.0414 0.0075 0.0183 0.0375 0.0266
w/ LUERM Gaussian 0.0106 0.0096 0.0285 0.0070 0.0061 0.0393 0.0062 0.0147 0.0323 0.0208

Gamma 0.0100 0.0117 0.0287 0.0085 0.0065 0.0390 0.0061 0.0148 0.0326 0.0215

Improv 5.85% 25.35% 5.94% 25.85% 12.86% 5.21% 18.67% 5.41% 8.81% 7.14%

Table 1: Expected Calibration Error of each calibration method applied on five personalized ranking models. Numbers in
boldface are the best results and Improv denotes the improvement of the best proposed method over the best competitor (Platt
or Beta with LUERM).

Figure 1: Reliability diagram of each calibration method. Gap denotes the discrepancy between the accuracy and the average
calibrated probability for each bin. The grey dashed line is a diagonal function that indicates the ideal reliability line where the
blue accuracy bar should meet.

Beta distribution is only defined in [0,1], so it cannot repre-
sent the unbounded ranking scores. To adopt Beta calibra-
tion, we need to re-scale the ranking score, however, it is not
verified for the optimality (Menon et al. 2012). As a result,
our calibration methods improve ECE by 5.21%∼25.85%
over the best competitor. Also, since our proposed models
have a larger capacity of expressiveness, they show larger
improvement on Yahoo!R3, which has more samples to fit
the parameters than Coat.

Reliability Diagram
Figure 1 shows the reliability diagram (Guo et al. 2017) for
each calibration method applied on LGCN for Yahoo!R3.

We partition the calibrated probabilities gφ(s) into 10 equi-
spaced bins and compute the accuracy and the average cal-
ibrated probability for each bin (i.e., the first and the sec-
ond term in Eq.4, respectively). The accuracy is the same
with the ground-truth proportion of positive samples for the
positive bins (i.e., probability over 0.5) and the ground-truth
proportion of negative samples for the negative bins (i.e.,
probability under 0.5). Note that the bar does not exist if the
bin does not have any prediction in it.

First, the non-parametric calibration methods do not pro-
duce the probability over 0.6. It is because they can easily be
overfitted to the unbalanced user-item interaction datasets
since they do not have any prior distribution. On the other
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Figure 2: Ranking score distributions of negative and posi-
tive pairs.

Figure 3: Fitted function of each calibration method.

hand, the parametric calibration methods produce probabil-
ities across all ranges by avoiding such overfitting problem
with the prior parametric distributions.

Second, the parametric calibration methods with UERM
produce well-calibrated probabilities especially for the pos-
itive preference (p > 0.5). The naive log-loss makes the
calibration methods biased towards the negative preference,
by treating all the unobserved pairs as the negative pairs.
As a result, the parametric methods with the naive log-loss
(upper-right three diagrams of Figure 1) show large gaps
in the positive probability range (p > 0.5). On the con-
trary, UERM framework successfully alleviates this problem
and produces much smaller gaps for the positive preference
(lower-right three diagrams of Figure 1). Lastly, it is quite
a natural result that parametric methods with UERM do not
produce the probability over 0.9, considering that the users
prefer only a few items among a large number of items.

Score Distribution & Fitted Function
Figure 2 shows the distribution of ranking scores trained
by NCF and LGCN on Yahoo!R3. We can see that the
class-conditional score distributions have different devia-
tions (σ0 > σ1) and skewed shapes (left tails are longer than
the right tails). This indicates that Platt scaling (or temper-
ature scaling) assuming the same variance for both classes
cannot effectively handle these score distributions. Figure
3 shows the fitted calibration function of each paramet-
ric method adopted on LGCN and optimized with UERM.
Since most of the user-item pairs are negative in the inter-
action datasets, all three functions are fitted to produce the
low probability under 0.1 for a wide bottom range to reflect
the dominant negative preferences. Platt scaling is forced to
have the symmetric shape due to its parametric family, so it
produces the high probability over 0.9 which is symmetri-
cal to that of under 0.1. On the other hand, Gaussian cali-

Figure 4: Case study. Top-5 items for each user with ranking
score s and calibrated probability gφ(s).

bration and Gamma calibration, which have a larger expres-
sive power, learn asymmetric shapes tailored to the score
distributions having different deviations and skewness. This
result shows that they effectively handle the imbalance of
user-item interaction datasets and supports the experimental
superiority of the proposed methods.

Case Study
Figure 4 shows the case study on Yahoo!R3 with Gaus-
sian calibration adopted on LGCN. The personalized rank-
ing model first learns the ranking scores and produces a
top-5 ranking list for each user. Then, Gaussian calibration
transforms the ranking scores to the well-calibrated prefer-
ence probabilities. For the first user u4506, the method pro-
duces high preference probabilities for all top-5 items. In
this case, we can recommend them to him with confidence.
On the other hand, for the second user u8637, all top-5 items
have low preference probabilities, and the last user u2940

has a wide range of preference probabilities. For these users,
merely recommending all the top-ranked items without con-
sideration of potential preference degrade their satisfaction.
It is also known that the unsatisfactory recommendations
even make the users leave the platform (McNee, Riedl, and
Konstan 2006). Therefore, instead of recommending items
with low confidence, the system should take other strategies,
such as requesting additional user feedback (Kweon et al.
2020).

Conclusion
In this paper, we aim to obtain calibrated probabilities with
personalized ranking models. We investigate various para-
metric distributions and propose two parametric calibration
methods, namely Gaussian calibration and Gamma calibra-
tion. We also design the unbiased empirical risk minimiza-
tion framework that helps the calibration methods to be
optimized towards true preference probability with the bi-
ased user-item interaction dataset. Our extensive evaluation
demonstrates that the proposed methods and framework sig-
nificantly improve calibration metrics and have a richer ex-
pressiveness than existing methods. Lastly, our case study
shows that the calibrated probability provides an objective
criterion for the reliability of recommendations, allowing the
system to take various strategies to increase user satisfaction.
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