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Abstract

Many data applications have certain invariant constraints due
to practical needs. Data curators who employ differential pri-
vacy need to respect such constraints on the sanitized data
product as a primary utility requirement. Invariants challenge
the formulation, implementation and interpretation of privacy
guarantees. We propose subspace differential privacy, to hon-
estly characterize the dependence of the sanitized output on
confidential aspects of the data. We discuss two design frame-
works that convert well-known differentially private mecha-
nisms, such as the Gaussian and the Laplace mechanisms, to
subspace differentially private ones that respect the invariants
specified by the curator. For linear queries, we discuss the
design of near optimal mechanisms that minimize the mean
squared error. Subspace differentially private mechanisms rid
the need for post-processing due to invariants, preserve trans-
parency and statistical intelligibility of the output, and can
be suitable for distributed implementation. We showcase the
proposed mechanisms on the 2020 Census Disclosure Avoid-
ance demonstration data, and a spatio-temporal dataset of mo-
bile access point connections on a large university campus.

1 Introduction
Invariants: a challenge for data privacy Data publication
that satisfies differential privacy carries the formal mathe-
matical guarantee that an adversary cannot effectively tell
the difference, in the probabilistic sense, when two databases
differ in only one entry. The extent of privacy protection un-
der differential privacy is quantified by the privacy loss bud-
get parameters, such as in ϵ-differential privacy and (ϵ, δ)-
differential privacy (Dwork et al. 2006b). While the dif-
ferential privacy guarantee is rigorously formulated with
the probability language, its construction does not naturally
mingle with hard and truthful constraints, called invariants
(Ashmead et al. 2019), that need to be imposed onto the san-
itized data product, often as a primary utility requirement.

An important use case in which the challenge for privacy
arises from invariants is the new Disclosure Avoidance Sys-
tem (DAS) of the 2020 Decennial Census (Abowd 2018).
The new DAS tabulates noise-infused, differentially private
counts into multi-way contingency tables at various geo-
graphic resolutions, from the aggregated state and county
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levels to specific Census blocks. Due to the Census Bureau’s
constitutional mandate and its responsibilities as the official
statistics agency of the United States, all data products must
be preserved in such a way that certain aspects of their val-
ues are exactly as enumerated. These invariants include (and
are not limited to) population totals at the state level, counts
of total housing units, as well as other group quarter facil-
ities at the block level. Straightforward tabulations of the
noisy measurements are most likely inconsistent with the
mandated invariants.

A common method to impose invariants on a differen-
tially private noisy query is via post-processing using dis-
tance minimization (Abowd et al. 2019; Ashmead et al.
2019). The resulting query is the solution to an optimization
task, one that minimizes a pre-specified distance between
the unconstrained query and the invariant-compliant space.
There are two major drawbacks to this approach. First, post-
processing may introduce systematic bias into the query out-
put. Particularly troubling is that the source of such bias is
poorly understood (Zhu, Hentenryck, and Fioretto 2020), in
part due to the highly data-dependent nature of the post-
processing procedure, and the lack of a transparent proba-
bilistic description. The TopDown algorithm (Abowd et al.
2019), employed by the Census DAS to impose invariants
on the noisy measurements, exhibits a notable bias that it
tends to associate larger counts with positive errors, whereas
smaller counts with negative errors, when the total count is
held as invariant. Figure 1 illustrates this phenomenon us-
ing the November 2020 vintage Census demonstration data
(Van Riper, Kugler, and Schroeder 2020). For all states and
state-level territories with more than five counties (i.e. ex-
cluding D.C., Delaware, Hawaii and Rhode Island), a sim-
ple regression is performed between the county-level DAS
errors and the log true county population sizes. Of the 48
regressions, 37 result in a negative slope estimate, out of
which 11 are statistically significant at α = 0.01 level (red
circles in the left panel), indicating a systematic negative as-
sociation between the DAS errors and the true counts. The
bias trend is clearly visible in the right panel among the
DAS errors (red squares) associated with the counties of Illi-
nois, ordered by increasing population size. As Zhu, Henten-
ryck, and Fioretto (2020) discussed, the bias exhibited in the
demonstration data is attributed to the non-negativity con-
straints imposed on the privatized counts.
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The second, and more fundamental, drawback is that im-
posing invariants that are true aspects of the confidential data
may incur additional privacy leakage, even if the invariants
are also publicly released (Gong and Meng 2020). When
conveyed to data users and contributors, the narrative that
the invariants are imposed by “post-processing” may lend to
the erroneous interpretation that no additional leakage would
occur. Care needs to be taken to explain that whenever non-
trivial invariants are observed, the usual (ϵ, δ)-differential
privacy guarantee cannot be understood in its fullest sense.

The need to impose invariants arises in application areas
involving the monitoring of stochastic events in structured
spatio-temporal databases. In some cases, there are require-
ments to report accurate counts (service requests (City of
New York 2021) or traffic volumes (Sui et al. 2016; Yang
et al. 2019, 2020; Wang and Gao 2020)). In other cases,
there are invariants that can be derived from external com-
mon sense knowledge –e.g., the number of vehicles enter-
ing and leaving a tunnel should be the same (when there are
no other exits or parking spaces). An adversary may poten-
tially use such information to reverse engineer the privacy
protection perturbation mechanisms (Rezaei and Gao 2019;
Rezaei, Gao, and Sarwate 2021). Invariants pose a new chal-
lenge to both the curators and the users of private data prod-
ucts, prompting its recognition as a new source of compro-
mise to privacy that stems from external mandates.
Our contribution To meet the challenge posed by invari-
ants, we argue that the definition of differential privacy must
be recapitulated to respect the given constraints. To this end,
we propose the definition of subspace differential privacy,
which makes explicit the invariants imposed on the data
product. Subspace differential privacy intends to honestly
characterize the dependence of the privatized data product
on truthful aspects of the confidential data, to ensure that
any privacy guarantee attached to the data product is both
mathematically rigorous and intuitively sensible. It enables
the assessment of what kind of queries do, and do not, enjoy
the protection of differential privacy.

The literature has seen attempts to generalize beyond
the classic notion of differential privacy. The framework of
Pufferfish privacy (Kifer and Machanavajjhala 2012, 2014;
Song, Wang, and Chaudhuri 2017) specifies the potential
secrets, discriminative pairs, as well as the data generation
model and knowledge possessed by the potential attacker.
Special cases of the Pufferfish framework include Blowfish
privacy (He, Machanavajjhala, and Ding 2014) and Bayesian
differential privacy (Yang, Sato, and Nakagawa 2015). Re-
lated notions of correlated differential privacy (Zhu et al.
2014) and dependent differential privacy (Liu, Chakraborty,
and Mittal 2016) specifically address secrets in the form of
query correlations or structural dependence of the database.

The current work differentiates itself from the existing lit-
erature in two senses. First, the theoretical focus is to pro-
vide a principled reconciliation between the hard truth con-
straints which the data curator must impose on the sanitized
data product, and the privacy guarantee the product can en-
joy. In particular, just like the classic notion of differential
privacy, subspace differential privacy does not require the
specification of a data generation model nor any knowledge

that the attacker might possess. Second, the practical empha-
sis is on the design of probabilistic mechanisms that impose
deterministic truth constraints as they instill subspace dif-
ferential privacy in the data product. This forgoes the need
for additional post-processing, and preserves good statistical
qualities of the output.

A related, but different, line of work in the literature con-
cerns the internal consistency of the privacy mechanism out-
put (Barak et al. 2007; Hay et al. 2009). For example, when
we query the number of students in a school and the num-
bers of students in each class of the school, we may expect
the outputs to be non-negative, and the sum of the (priva-
tized) numbers of students in all classes to be equal to the
(privatized) number of students in the school. These inter-
nal consistency requirements, such as non-negativity and re-
lational constraints, are independent of the private dataset.
Therefore, they may be compatible with the classic notion of
differential privacy, in which case they may be instantiated
with differentially private mechanisms. However, for invari-
ants that are nontrivial functions of the confidential data, we
show in Section 2.1 that it is impossible to have differen-
tially private mechanisms that satisfy them. It is this kind of
invariants that motivate our work in this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 defines subspace differential privacy and induced sub-
space differential privacy, motivated by the pair of neces-
sary criteria that the mechanism be simultaneously provably
private and invariant-respecting. Section 3 outlines two gen-
eral approaches, projection and extension, to design induced
subspace differentially private mechanisms. We apply both
frameworks to produce Gaussian and Laplace mechanisms
for general queries, present a correlated Gaussian mecha-
nism that is near-optimal (i.e. in terms of mean squared er-
ror, with a small multiplicative factor) for linear queries, and
sketch the design for a k-norm mechanism that would enjoy
near optimality. Section 4 discusses the statistical and imple-
mentation considerations behind the proposed mechanisms,
as they enjoy transparency and statistical intelligibility that
facilitate principled downstream statistical analysis. In the
special case of additive spherical Gaussian mechanism, a
distributional equivalence is established between the projec-
tion framework and statistical conditioning. All mechanisms
can also be adapted for distributed privatization. Section 5
provides two demonstrations of the proposed induced sub-
space differentially private mechanisms, on the 2020 Cen-
sus DAS demonstration data and spatio-temporal mobility
dataset on a university campus subject to various marginal
total invariants. Section 6 concludes.

2 Recapitulating Privacy under Invariants
In this work, we model private data as a database x =

(x1, . . . , xN )
⊤ ∈ XN of N rows, where each row xi ∈ X

contains data about an individual i, and X is finite with size
d, and we set the space of all possible non-empty databases
as X ∗ := ∪N≥1XN . A trusted curator holds the database
x ∈ X ∗, and provides an interface to the database through a
randomized mechanism M : X ∗ → Y where Y ⊆ Rn is the
output space of M . We want to design good mechanisms to
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Figure 1: Left: the Census DAS associates positive errors with larger counties and negative errors with smaller counties, when
the state population is held as invariant (Nov 2020 vintage demonstration files; Van Riper, Kugler, and Schroeder 2020). Eleven
out of 48 simple regressions of the county-level DAS errors against log true county populations have statistically significant
negative slopes (α = 0.01), circled in red. Right: for the counties of Illinois in increasing true population sizes, DAS errors (red
squares) show a clear negative trend bias. The boxplots show errors from ten runs of our proposed method (the (ϵ, 0)-induced
subspace differentially private projected Laplace mechanism; Corollary 3.8). As Corollary 4.1 shows, these errors are unbiased.

answer a query A : X ∗ → Y that satisfies not only certain
privacy notions, but also invariant constraints as motivated
in Section 1.

We begin the discussion about mechanisms for a general
query, defined by a function A : X ∗ → Y , throughout
the end of Section 3.3. In Section 3.4, we consider optimal
mechanisms for a linear query A, with a : X → Rn so that
A(x) :=

∑
i a(xi). Indeed, a linear query A can be repre-

sented as a linear function of the histogram of database x,
hist(x) : X ∗ → Nd where hist(x)z :=

∑
i 1[xi = z] is

the number of rows equal to z ∈ X in x ∈ X ∗. With this
notation, given a linear query A, we denote A as a matrix
where the k, z entry is A(z)k for k ∈ [n] and z ∈ X , and
the linear query on a database x can be written as matrix
multiplication, A(x) = A · hist(x).

2.1 Privacy Guarantees and Invariants
The notion of differential privacy ensures that no individ-
ual’s data has much effect on the output of the mechanism
M . That is, if we consider any two neighboring databases x
and x′ of size N that differ on one row (there exists i such
that xi ̸= x′

i and xj = x′
j for all j ̸= i.) the output distribu-

tion of mechanism M on x should be similar to that of M
on x′. Formally:

Definition 2.1 (Bounded differential privacy (Dwork et al.
2006b)). Let (Y ,F) be a measurable space and ϵ, δ ≥ 0.
We say that a random mechanism M : X ∗ → Y is (ϵ, δ)-
differentially private if for all neighboring databases x ∼
x′ and all measurable set S ∈ F , Pr [M (x) ∈ S] ≤ eϵ ·
Pr [M (x′) ∈ S] + δ.

From the data curator’s perpective, in addition to privacy
concerns, there often exists external constraints that the pri-
vatized output M must meet. These constraints can often be
represented as a function of M(x) that agrees with what’s
calculated based on the confidential A(x). In this work, we

focus on the class of invariants that can be written in the
form of a system of linear equations.

Definition 2.2 (Invariants - linear equality). Given a query
A : X ∗ → Rn, and C ∈ Rnc×n be a nc × n matrix with
rank nc < n.1 A (random) mechanism M : X ∗ → Y ⊆
Rn satisfies the linear equality invariant C with query A, if
for all x, CM (x) = CA(x) with probability one over the
randomness of M .

Given a linear equality invariant C, let N := {v ∈ Rn :
Cv = 0} be the null space of C, and R := N⊥ ⊆ Rn be
the row space of C. Additionally, we set ΠN be the orthog-
onal projection matrix for null space N , QN be a collection
of orthonormal basis of N , and AN := Q⊤

NA be the query
function A projected into N with basis QN . We use sub-
script R in the similar manner.

Linear equality invariants are a natural family of invari-
ants. Here are two examples.

Example 2.3. Let x ∈ XN be a database with |X | =
d, A = hist be the histogram query, and C = 1⊤ =
(1, . . . , 1) ∈ R1×d all one vector with length d. This lin-
ear equality invariant requires the curator to accurately re-
port the total number of individuals without error, because
CM(x) = 1⊤ hist(x) = N .

Example 2.4. Consider X = {1, 2, 3, 4}, A = hist : X ∗ →
R4 and C = (1, 0, 1, 0). The linear equality invariant en-
sures the number of individual with odd feature is exact.

The invariants discussed in the Census DAS application,
such as state-level population and block-level housing units
and group quarter facilities, can be formulated as linear
equality invariants.

1We can always find a C′ consists of a subset of independent
rows of C which has same row rank as C’s, and we can translate
between these two through a linear transformation.
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2.2 Subspace and Induced Subspace Differential
Privacy

The mechanism we seek must meet two necessary criteria:
provably private and invariant-respecting. That is, the mech-
anism should privatize the confidential query with mathe-
matically provable guarantees, while at the same time the
query output should conform to the invariants that a data
curator chooses to impose. The two criteria culminate in the
induced subspace differential privacy (Definition 2.6) which
enjoys additional desirable properties, such as the practicali-
ties of design and statistical intelligibility, which will be dis-
cussed from section 3 and on.

To motivate the construction, note that the classic defi-
nition of differential privacy and invariant constraints are
not compatible by design. For instance, in Example 2.4 if
a mechanism M respects the invariant constraint Defini-
tion 2.2, the probability ratio of event S = {(y1, y2, y3, y4) :
y1 + y3 = 1} ⊂ R4 on neighboring databases x = (1, 2, 4)

and x′ = (4, 2, 4) is unbounded, Pr[M(x)∈S]
Pr[M(x′)∈S] = ∞, be-

cause Pr[M(x) ∈ S] = Pr[CM(x) = C hist(x)] = 1 but
Pr[M(x′) ∈ S] = Pr[CM(x′) ̸= C hist(x′)] = 0. Thus M
violates (ϵ, δ)-differential privacy for any ϵ > 0 and δ < 1.

Therefore, we need a new notion of differential privacy to
discuss the privacy protection in the presence of mandated
invariants. Below we attempt to do so by recapitulating the
definition of (ϵ, δ)-differential privacy, to acknowledge the
fact that if a hard linear constraint is imposed on the privacy
mechanism, we can no longer offer differential privacy guar-
antee in the full n-dimensional space that is the image of A,
but rather only within certain linear subspaces.

Definition 2.5 (Subspace differential privacy). Let V be a
linear subspace of Rn, and ΠV the projection matrix onto
V . Given ϵ, δ ≥ 0, a random mechanism M : X ∗ → Rn is
V-subspace (ϵ, δ)-differentially private if for all neighboring
databases x ∼ x′ and every Borel subset S ⊆ V ,

Pr [ΠVM (x) ∈ S] ≤ eϵ Pr [ΠVM (x′) ∈ S] + δ. (1)

We are ready to formalize the notion of a provably private
and invariant-respecting private mechanism, one that meets
both the criteria laid out at the beginning of this subsection.

Definition 2.6 (Induced subspace differential privacy).
Given ϵ, δ ≥ 0, a query A : X ∗ → Rn and a linear equality
invariant C : Rn → Rnc with null space N , a mechanism
M : X ∗ → Rn is (ϵ, δ)-induced subspace differentially pri-
vate for query A and an invariant C if 1) M is N -subspace
(ϵ, δ)-differentially private (Definition 2.5), and 2) M satis-
fies the linear equality invariant C (Definition 2.2). M may
be referred to simply as induced subspace differentially pri-
vate, whenever the context is clear about (or does not require
the specification of) ϵ, δ and C.

An induced subspace differentially private mechanism de-
livers query outputs that meet the curator’s invariant specifi-
cation (C) with probability one. It is provably differentially
private for all queries and their components that are orthog-
onal to the invariants, and is silent on privacy properties for
those that are linearly dependent on the invariants.

2.3 Properties of Subspace Differential Privacy
Now we discuss several properties of subspace differen-
tial privacy. First, we show a “nestedness” property: a
V1-subspace differentially private mechanism is also V2-
subspace differentially private for all V1 ⊇ V2.

Proposition 2.7. Let V2 ⊆ V1 be nested linear subspaces
of respective dimensions d2 ≤ d1. If a mechanism M is V1-
subspace (ϵ, δ)-differentially private, it is also V2-subspace
(ϵ, δ)-differentially private.

The main idea is that because V2 ⊆ V1 are both linear
spaces, for any measurable S, we can always find another
measurable set S′ such that Π−1

V2
(S) = Π−1

V1
(S′). Thus V1-

subspace differential privacy implies V2-subspace differen-
tial privacy. We include the proof to the appendix.

Proposition 2.7 implies that a differentially private mech-
anism is subspace differential private, as shown in Corol-
lary 2.8. Thus, we can call an (ϵ, δ)-differentially pri-
vate mechanism the Rn-subspace (ϵ, δ)-differentially pri-
vate mechanism.

Corollary 2.8. If M : X ∗ → Rn is a (ϵ, δ)-differentially
private mechanism, it is V-subspace (ϵ, δ)-differentially pri-
vate for any linear subspace V ⊆ Rn.

Induced subspace differential privacy inherits the com-
position property from differential privacy in the following
sense (with proof deferred to the full version).

Proposition 2.9 (Composition). Given ϵ1 ≥ 0 and ϵ2 ≥ 0,
if M1 is induced subspace (ϵ1, 0)-differentially private for
query A1 and linear invariant C1 and M2 is induced sub-
space (ϵ2, 0)-differentially private for query A2 and lin-
ear invariant C2, the composed mechanism (M1,M2) is in-
duced subspace (ϵ1 + ϵ2, 0)-differentially private for query
A1,2 := (A1, A2) and linear invariant C1,2 := (C1, C2).

The above is a preliminary answer to the composition
property of subspace differential privacy. However, when C1

and C2 are different, the composition of invariant constraints
may reveal additional information about the underlying con-
fidential data. In general, the composition of logically inde-
pendent and informative invariants is not unlike a database
linkage attack. For instance, A1 = A2 is a two-way con-
tingent table that reports the counts of individuals with ages
and zip code, the invariant C1 ensures the accurate marginal
counts of individuals within each age bracket, and C2 en-
sures the accurate count of individuals within each zip code.
The composition of these two invariant constraints may al-
low an adversary to infer each individual’s information.

The subspace differential privacy is naturally immune to
any post-processing mapping which only acts on the sub-
space N . However, it is not readily clear how to define post-
processing under mandated invariant constraints. Specifi-
cally, if a mechanism satisfies a nontrivial invariant con-
straint C with row space R and null space N , we can apply
a post-processing mapping that outputs the invariant com-
ponent in R – here the output is revealed precisely. Unfor-
tunately, such will be true for any invariant-respecting pri-
vatized product, regardless of what notion of privacy is at-
tached to it.
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Finally, we note that if we consider a mixture of two
V-subspace differentially privacy mechanisms the resulting
mechanism is also V-subspace differentially private. This
property is known as the privacy axiom of choice (Kifer and
Lin 2010).

3 Mechanism Design
This section introduces two frameworks for designing in-
duced subspace differentially private mechanisms with lin-
ear equality invariant C. The data curator would invoke the
projection framework if seeking to impose invariants onto
an existing differentially private mechanism, and the exten-
sion framework if augmenting a smaller private query in a
manner compatible with the invariants. Both frameworks are
applied to revise existing differentially private mechanisms
in Section 3.3, notably the Gaussian and the Laplace mech-
anisms, for general queries. For linear queries, Section 3.4
presents a near optimal correlated Gaussian mechanism, and
sketches the design of a near optimal k-norm mechanism.

3.1 The Projection Framework
Suppose the data curator already employs a differentially
private mechanism M to answer a general query A, and
would like to impose a linear equality invariant C on the
query output. The projection framework, outlined in The-
orem 3.1, can transform the existing mechanism M to in-
duced subspace differentially private for A and C, with little
overhead on the curator’s part.

Theorem 3.1 (Projection framework). Given ϵ, δ ≥ 0, a
general query A : X ∗ → Rn, and a linear equality invariant
C with null space N , if M : X ∗ → Rn is (ϵ, δ)-differentially
private, then M(x) := A(x) + ΠN (M(x)−A(x)), for all
x ∈ X ∗ is (ϵ, δ)-induced subspace differentially private for
query A and invariant C.

Informally, we conduct projection on a differentially pri-
vate mechanism in order to 1) remove the noise in the row
space of C to respect the invariant constraint C; and 2) pre-
serve noise in the null space N and satisfy N -subspace dif-
ferential privacy.

Proof of Theorem 3.1. Because for all x ∈ X ∗, CM(x) =
CA(x) + CΠN (M(x) − A(x)) = CA(x), M satisfies
the invariant C. Since M is N -subspace (ϵ, δ)-differentially
private by Corollary 2.8, and ΠNM(x) equals ΠNM (x)
in distribution, M is also N -subspace differentially pri-
vate.

The projection framework in Theorem 3.1 is particularly
useful for revising additive mechanisms, having the form

M(x) = A(x) + e, (2)

where e is a noise component independent of A(x).
Examples of additive mechanisms include the classic
Laplace and Gaussian mechanisms (Dwork et al. 2006b), t-
(Nissim, Raskhodnikova, and Smith 2007), double Geomet-
ric (Fioretto and Van Hentenryck 2019), and k-norm mech-
anisms (Hardt and Talwar 2010; Bhaskara et al. 2012). In
contrast, the Exponential mechanism (McSherry and Talwar

2007) is in general not additive because the sampling pro-
cess depends on the utility function non-additively.

When the existing differentially private mechanism M is
additive, the projection construction of an induced subspace
differentially private mechanism based on M can be simpli-
fied, by first sampling the noise e, and outputting the query
value A(x) with the projected noise added to it.
Corollary 3.2. If the mechanism M in Theorem 3.1 is fur-
thermore additive, i.e. of the form (2), the modified mecha-
nism, M(x) := A(x) + ΠNe, is (ϵ, δ)-induced subspace
differentially private for query A and invariant C.

Corollary 3.2 will be useful for the derivation of the pro-
jection mechanisms, as well as the various statistical proper-
ties of additive mechanisms (including the crucial unbiased-
ness property), to be discussed in the ensuing sections.

3.2 The Extension Framework
The projection framework in Section 3.1 transforms an exist-
ing differentially private mechanism to one that is subspace
differentially private and respects the invariant C. The ex-
tension framework, on the other hand, enables the design of
an induced subspace differentially private mechanism with-
out a full mechanism in place yet. Theorem 3.3 discusses
how to extend a differential private mechanism with image
contained in N to an induced subspace differentially pri-
vate mechanism. Moreover, the converse also holds— any
induced subspace differentially private mechanism can be
written as a differential private mechanism with a transla-
tion. Thus, the extension framework provides the optimal
trade-off between privacy and accuracy, as Corollary 3.10
will show. We defer the proof to supplementary material.
Theorem 3.3 (Extension framework). Given ϵ, δ ≥ 0, a
general query A : X ∗ → Rn, and a linear equality invariant
C with null space N and row space R, M is (ϵ, δ)-induced
subspace differentially private for query A and invariant C,
if and only if M(x) := M̂(x)+ΠRA(x) where M̂ is (ϵ, δ)-
differentially private and its image is contained in N ⊆ Rn.

3.3 Induced Subspace Differentially Private
Mechanisms for General Queries

We now describe the use of the above two frameworks
to construct induced subspace differentially private mech-
anisms. We first introduce induced subspace differentially
private mechanisms with Gaussian noises, then the pure (i.e.
δ = 0) versions with Laplace noises. All mechanisms dis-
cussed in this section are additive mechanisms, having a
general functional form as (2).

Let the ℓp sensitivity of the query function A : X ∗ → Rn

be ∆p(A) = supx∼x′ ∥A(x)−A(x′)∥p, which measures
how much a single individual’s data can change the output of
the query A. We measure the performance of a mechanism
M in terms of the expected squared error. Given any query
function A : X ∗ → Rn, the worst-case expected squared
error of a mechanism M for A is defined as errM (A) :=
supx∈X∗ E

[
∥M(x)−A(x)∥22

]
.

Gaussian mechanisms Recall the standard Gaussian mech-
anism, which adds a spherical noise to the output that de-
pends on the ℓ2 sensitivity of A. By an abuse of notation,
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the superscript n over a probability distribution denotes the
n-dimensional product distribution with the said marginal.
Lemma 3.4 (Gaussian mechanism (Dwork et al. 2006a)).
For all ϵ, δ > 0, and general query A : X ∗ → Rn, let
cϵ,δ := ϵ−1(1 +

√
1 + ln(1/δ)). Then an additive mech-

anism for A with noise eG(A, ϵ, δ)
d
= N(0;∆2(A)cϵ,δ)

n

where N(0;σ) is the unbiased Gaussian distribution with
variance σ2 (ϵ, δ)-differentially private.

Given ϵ, δ > 0, a general query A : X ∗ → Rn, and
linear equality invariant C ∈ Rnc×n, by projection (Theo-
rem 3.1) and extension (Theorem 3.3), we can derive two in-
duced subspace differentially private Gaussian mechanisms.
The proofs of Corollaries 3.5 and 3.6 are both deferred to
the full version.
Corollary 3.5 (Projected Gaussian mechanism). An ad-
ditive mechanism MPG for A with noise ΠNeG(A, ϵ, δ)
where eG is defined in Lemma 3.4 is (ϵ, δ)-induced subspace
differentially private for query A and invariant C. Moreover,
errMPG

(A) = (n− nc)c
2
ϵ,δ∆2(A)

2.
To apply the extension framework of Theorem 3.3, one

complication is how to design a differentially private mech-
anism with image in N . To handle this, we first project
the query A to the null space N and have a new query
AN = Q⊤

NA : X ∗ → Rn−nc . Then, compute the sensi-
tivity of AN , ∆2(AN ), and sample eN which consists of
n−nc iid Gaussian noise with variance (cϵ,δ∆2(AN ))2. Fi-
nally, convert the noise to the original space Rn and add the
true query A(x). We define the mechanism formally below.

Algorithm 1: Gaussian induced subspace differentially pri-
vate mechanism through extension
Input: a database x, a query A : X ∗ → Rn, linear equality
invariant C ∈ Rnc×n with rank nc, ϵ ∈ (0, 1), and δ ∈
(0, 1).

1: Compute QN ∈ Rn×n−nc an collection of an orthonor-
mal basis of N , and AN := Q⊤

NA.

2: Let cϵ,δ = ϵ−1(1 +
√
1 + ln(1/δ)), and sample eN

d
=

N (0; cϵ,δ∆2(AN ))
n−nc .

3: return A(x) +QNeN .

Corollary 3.6 (Extended Gaussian mechanism). An addi-
tive mechanism MEG for A with noise eEG(A, ϵ, δ) =

QN eN where eN
d
= N

(
0; cϵ,δ∆2(Q

⊤
NA)

)n−nc is
(ϵ, δ)-induced subspace differentially private for query
A and invariant C. Moreover, errMEG

(A) = (n −
nc)c

2
ϵ,δ∆2(Q

⊤
NA)2.

Since QN consists of orthonormal columns, the ℓ2 sensi-
tivity of Q⊤

NA is less than or equal to the sensitivity of the
original query A, and the error in Corollary 3.6 is no more
than the error in Corollary 3.5.
Laplace mechanisms Similarly, the standard Laplace mech-
anism adds independent product Laplace noise to the out-
put that depends on the ℓ1 sensitivity of A. In what fol-
lows, Lap(b) denotes the univariate Laplace distribution
with scale b > 0, with density function 1

2b exp
(
− |x|

b

)
.

Lemma 3.7 (Laplace mechanism (Dwork et al. 2006b)).
Given ϵ > 0, and a query A : X ∗ → Rn, an additive
mechanism for A with noise eL(A, ϵ)

d
= Lap(∆1(A)/ϵ)

n

is (ϵ, 0)-differentially private.

Given ϵ > 0, a query A : X ∗ → Rn, and a linear equality
invariant C ∈ Rnc×n, we have the following two induced
subspace differentially private Laplace mechanisms.

Corollary 3.8 (Projected Laplace mechanism). The additive
mechanism for A with noise ΠNeL where eL is defined in
Lemma 3.7 is (ϵ, 0)-induced subspace differentially private
for query A and invariant C.

Corollary 3.9 (Extended Laplace mechanism). An additive
mechanism MLE for A with noise eEL(A, ϵ) = A(x) +

QNwN where wN
d
= Lap

(
∆1(Q

⊤
NA))/ϵ

)n−nc is (ϵ, 0)-
induced subspace differentially private for query A and in-
variant C.

We have thus far discussed four mechanisms, respectively
derived using the projection and extension frameworks, and
employing Gaussian and Laplace errors. In practice, a data
curator would choose either projected mechanisms if seek-
ing to impose invariants on an existing differentially private
mechanism, and either extension mechanisms if augmenting
a smaller private query while staying compatible with the in-
variants. The curator would prefer the Laplace mechanisms
over the Gaussian ones if a pure (i.e. δ = 0) subspace differ-
ential privacy guarantee is sought, although at the expense
of heavier-tailed noises which may be undesirable for utility
purposes. In what follows, we discuss mechanism options
for the curator, if utility considerations are the most salient.

3.4 Optimal Induced Subspace Differentially
Private Mechanisms for Linear Queries

As a consequence of Theorem 3.3, Corollary 3.10 translates
optimal accuracy enjoyed by a differentially private mecha-
nism to optimal accuracy by an induced subspace differen-
tially private mechanism. Let optϵ,δ(A) be the optimal error
achievable by any (ϵ, δ)-differentially private mechanism,
and optCϵ,δ(A) be the optimal error by any (ϵ, δ)-induced
subspace differentially private mechanism for query A and
invariant C.

Corollary 3.10. For all ϵ, δ ≥ 0, general query A :
X ∗ → Rn, and linear equality invariant C, optCϵ,δ(A) =

optϵ,δ(ΠNA).

We defer the proof to the full version. Informally, for
any differentially private mechanism we use the extension
framework in Theorem 3.3 to construct an induced subspace
differentially private mechanism. Because our proof is con-
structive, we can translate existing near optimal differen-
tially private mechanisms to induced subspace differentially
private ones.

We demonstrate this translation with a near-optimal (i.e.
mean squared error with a small multiplicative factor) corre-
lated Gaussian mechanism for linear queries from Nikolov,
Talwar, and Zhang (2013). Specifically, first design a differ-
ential private mechanism M̂ for AN := Q⊤

NA, and extend
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it to a subspace differentially private mechanism by Theo-
rem 3.3. Because the mean squared error is invariant under
rotation, errM̂ (ΠNA) = errM̂ (AN ). Therefore, if M̂ is the
near optimal correlated Gaussian noise mechanism for AN ,
the resulting induced subspace differentially private mecha-
nism is also near optimal by Corollary 3.10. Details of this
mechanism is spelled out in the full version which we, to-
gether with the proof for Theorem 3.11 below, defer to the
full version.

Theorem 3.11. Given ϵ, δ > 0, a linear query A : Rd →
Rn, and a linear equality invariant C ∈ Rnc×n, the cor-
related Gaussian mechanism is an efficient (ϵ, δ)-induced
subspace differentially private mechanism such that for all
small enough ϵ and all δ small enough with respect to ϵ sat-
isfies

errM(A) = O(log2(n− nc) log 1/δ) opt
C
ϵ,δ(A).

We may use the same idea to convert an k-norm mecha-
nism (Hardt and Talwar 2010; Bhaskara et al. 2012) to an
(ϵ, 0)-induced subspace differentially private one. Bhaskara
et al. (2012) proposed an (ϵ, 0)-differentially private k-norm
mechanism whose approximation ratio of mean squared er-
ror is O((log n)2) for any linear query with image in Rn.
We can run the k-norm mechanism on query AN whose
mean squared error is O((log(n−nc))

2) optϵ,0(AN ). Then,
by Corollary 3.10, the output can be converted to an (ϵ, 0)-
induced subspace differentially private mechanism, with an
approximation ratio O((log n− nc)

2).

4 Statistical and Practical Considerations
Unbiasedness of projection algorithms The projection al-
gorithms proposed in this paper, be they Laplace or Gaus-
sian, are provably unbiased due to their additive construc-
tion. In fact, we have the following result.

Corollary 4.1. Any mechanism of the form M(x) :=
A(x) + ΠNe as defined in Corollary 3.2, where e is ran-
dom noise with E (e) = 0, is unbiased in the sense that

E [M(x) | A(x)] = A (x) .

Corollary 4.1 stands because the conditional expectation
of its noise component, E [ΠNe | A(x)], is zero, due to the
independence of e from A(x), and the nature of the pro-
jection operation. All projection mechanisms proposed in
this paper are of this type, hence are unbiased. As for the
proposed extension algorithms, their purpose is to augment
existing DP mechanisms in a way that satisfy mandated in-
variants, thus their unbiasedness hinge on the unbiasedness
of the initial mechanism which they extend. For applications
in which the data curator has the freedom to design the pri-
vacy mechanism from scratch, projection mechanisms are
the recommended way to proceed. Indeed, both numerical
demonstrations in Section 5 applied to the county-level 2020
Census demonstration data and the spatio-temporal univer-
sity campus data utilize the projection mechanisms, guaran-
teeing the unbiasedness of the sanitized data products under
their respective invariant constraints.

Transparency and statistical intelligibility Subspace dif-
ferentially private additive mechanisms carry a special ad-
vantage when examined through the lens of downstream
statistical analysis of the output query. All Gaussian and
Laplace mechanisms examined in this paper (corollaries 3.5,
3.6, 3.8 and 3.9 and theorem 3.11), be they obtained via pro-
jection or extension, linearly combine the confidential query
with a noise term that is publicly specified. Just like standard
differential privacy, mechanisms of subspace differential pri-
vacy described in this paper are transparent (Abowd and
Schmutte 2016), a prized property that brought revolution-
ary change to the literature of statistical disclosure limita-
tion by ridding obscure procedures. Moreover, the employed
noise terms have probability distributions that are fully char-
acterized and independent of the confidential query. This
grants the mechanisms statistical intelligibility (Gong and
Meng 2020), making the output query eligible for both an-
alytical and simulation-based (such as bootstrap) statistical
analysis and uncertainty quantification.

In the special case that the original unconstrained differ-
entially private mechanism is spherical Gaussian, defined
in Lemma 3.4, the induced subspace differentially private
mechanism resulting from projection produces a random
query that is distributionally equivalent to that obtained via
the standard probabilistic conditioning of the unconstrained
mechanism, where the conditioning event is precisely the in-
variants that the curator seeks to impose.

Theorem 4.2. If the additive mechanism M in Corollary 3.2
is spherical Gaussian as defined in Lemma 3.4, the corre-
sponding modified mechanism M has a probability distri-
bution equivalent to the distribution of M conditional on the
invariant being true. That is,

M(x)
d
= M(x) | CM(x) = CA(x).

The proof of Theorem 4.2 is deferred to the full version.
The equivalence with conditionalization is particularly valu-
able for Bayesian inference based on the privatized query, as
the analyst may coherently utilize all available information.
We note here however, that Theorem 4.2 results from unique
properties of the spherical Gaussian distribution. In general,
the projection operation aligns closer with marginalization,
and cannot produce the equivalent distribution as condition-
alization. Nevertheless, the happy statistical consequence of
Theorem 4.2 may still be widely impactful, thanks to the
ubiquity of the spherical Gaussian mechanism.
Implementation: distributed privatization In local dif-
ferential privacy, we consider the identity mapping as the
query function A, and the private mechanism directly in-
fuses entry-wise noise into the entire confidential dataset be-
fore releasing it to the public. The confidential dataset, x, is
often gathered by a number of local agents – nodes, sensors,
survey workers – each responsible for one (or more) entries
of x. Distributed privatization can be valuable in local dif-
ferential privacy, as it ensures individual data contributors’
information is protected the moment it leaves the local agent.

For all additive subspace differentially private mecha-
nisms proposed in this work, distributed privatization may
be achieved, if the local agents are capable of simulating
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the same noise component. The synchronized simulation can
be implemented – hardware permitting – by sharing a com-
mon seed across the different local sensors or workers. An
instance of distributed privatization is in the full version,
which works for arbitrary linear equality invariant C.

5 Numerical Examples
5.1 2020 Census Demonstration Data
We consider the publication of induced subspace differen-
tially private county-level Census population counts, subject
to the invariant of state population size, using the Novem-
ber 2020 vintage privacy-protected demonstration files cu-
rated by IPUMS NHGIS (Van Riper, Kugler, and Schroeder
2020). These data files link together the original tables from
the 2010 Census Summary Files (CSF), here treated as the
confidential values, and the trial runs of the Census Bu-
reau’s 2020 Disclosure Avoidance System (DAS) applied
to the CSF. All these datasets are publicly available at the
cited source. For our demonstration, the privacy loss bud-
get is set to accord exactly to the Census Bureau’s specifi-
cation, with ϵ = 0.192 = 4 (total) × 0.16 (county level) ×
0.3 (population query).

Right panel of Figure 1 showcases the county-level er-
rors from ten runs of the projected Laplace (ϵ, 0)-induced
subspace differentially private mechanism of Corollary 3.8,
applied to the counties of Illinois arranged in increasing
true population sizes. Compared with the DAS errors (red
squares) which show a clear negative bias trend, the pro-
posed mechanism is provably unbiased, due to its additive
errors being projected from unbiased and unconstrained ran-
dom variables. On the other hand, these errors span a sim-
ilar scale compared to the DAS errors. In the full version,
we further show the application of the projected Laplace
(ϵ, 0)-induced subspace differentially private mechanism to
an additional ten states, for which the TopDown algorithm
incurred decidedly negatively biased errors. Details of how
these states were identified are given in Section 1.

5.2 Spatio-temporal Dataset
We consider the publication of time series derived from
WiFi log data on connections of mobile devices with
nearby access points from a large university campus (Ts-
inghua University) (Sui et al. 2016) consisting of 3243 fully
anonymized individuals and the top 20 most popularly vis-
ited buildings in one day. 2 The raw data recorded whether
an individual appears in each of the building in each of the
hours on one day. The data were tabulated into hourly time
series for 14 clusters of individuals obtained through sim-
ple K-means, to represent hypothetical group memberships
with distinct travel patterns.

The invariants we consider are of two types, motivated by
needs for building management, energy-control, and group
activity scheduling: 1) the total number of person-hours
spent at each building every hour from all groups, and 2)

2Data was collected under the standard consent for Wifi access
on university campus. Interested reader may contact the authors of
(Sui et al. 2016) to inquire access to the dataset.

the total number of person-hours spent at each building by
every group over 24 hours. The query under consideration
is 14 (groups) × 24 (hours) × 20 (location) = 6720 dimen-
sional, subject to a (24 + 14 − 1) × 20 = 740-dimensional
linear constraint.

We apply the projection Gaussian mechanism in Corol-
lary 3.5 with the scale of the elementwise Gaussian noise set
to 1. The mechanism is again provably unbiased, but due to
the numerous linear constraints imposed, the errors exhibit
a slight loss of scale. The median standard deviation of the
elementwise additive errors over 50 repetitions is 0.88, with
5% and 95% quantiles at (0.86, 0.91) respectively. Detailed
results of the simulation can be found in the full version.

6 Conclusion and Future Work
In this paper, we proposed the concept of subspace differ-
ential privacy to make explicit the mandated invariants im-
posed on private data products, and discussed the projec-
tion and extension designs of induced differentially private
mechanisms. The invariants we consider are in the form of
linear equalities, including sums and contingency table mar-
gins as often encountered in applications including the U.S.
Decennial Census and spatio-temporal datasets.

An important type of invariants not addressed in this paper
are inequalities, such as nonnegativity and relational con-
straints (e.g. the population size must be larger or equal
to the number of households in a geographic area). How-
ever, we note that an important premise to the unbiasedness
achieved by subspace differentially private mechanisms, as
discussed in Section 4, is that the mechanism admits equal-
ity invariants only. If inequality invariants must be imposed,
unbiased privacy mechanisms can be inherently difficult
to design. As Zhu, Hentenryck, and Fioretto (2020) dis-
cussed, the bias induced by projection-type post-processing
of noisy measurements is attributable to the non-negativity
constraints imposed on them. This raises the question of the
appropriateness of inequality invariants on the sanitized out-
put, if unbiasedness is simultaneously required.

Also not considered are invariants for binary and cate-
gorical attributes, taking values in a discrete space. These
invariants differ from real-valued linear equality invariants,
because in general they cannot be realized by an additive
mechanism with a noise term independent of the confidential
data value. While the notion of subspace differential privacy
can be extended to these cases, the design of accompanying
privacy mechanisms that also enjoy good statistical and im-
plementation properties remains a subject of future research.
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