The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Analysis of Pure Literal Elimination Rule for Non-uniform Random (MAX)
k-SAT Problem with an Arbitrary Degree Distribution

Oleksii Omelchenko, Andrei A. Bulatov

School of Computing Science, Simon Fraser University, Canada
{oomelche, abulatov} @cs.sfu.ca

Abstract

MAX k-SAT is one of the archetypal NP-hard problems.
Its variation called random MAX k-SAT problem was in-
troduced in order to understand how hard it is to solve in-
stances of the problem on average. The most common model
to sample random instances is the uniform model, which has
received a large amount of attention. However, the uniform
model often fails to capture important structural properties
we observe in the real-world instances.

To address these limitations, a more general (in a certain
sense) model has been proposed, the configuration model,
which is able to produce instances with an arbitrary distri-
bution of variables’ degrees, and so can simulate biases in
instances appearing in various applications.

Our overall goal is to expand the theory built around the
uniform model to the more general configuration model for
a wide range of degree distributions. This includes locat-
ing satisfiability thresholds and analysing the performance of
the standard heuristics applied to instances sampled from the
configuration model.

In this paper we analyse the performance of the pure literal
elimination rule. We provide an equation that given an un-
derlying degree distribution gives the number of clauses the
pure literal elimination rule satisfies w.h.p. We also show how
the distribution of variable degrees changes over time as the
algorithm is being executed.

Introduction

MAX SAT and its variant MAX k-SAT are known NP-hard
problems even for £ = 2. Hence, it is unlikely there exists
an efficient algorithm, unless P=NP, and so we must rely on
heuristics and approximation algorithms. Therefore, it is nat-
ural to ask what heuristics are good at solving typical SAT
instances.

There are many ways to define which instances are typ-
ical. One of the approaches is to construct a random dis-
tribution of SAT formulas, and call formulas sampled from
the distribution as representative or typical. By constructing
appropriate distributions we may imitate formulas coming
from different domains.

The most well-studied random model of k-CNF formulas
is the uniform model Fy(n,rn), which samples equiprob-
ably formulas having n variables and rn k-clauses, where

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3804

quantity > 0 is called density (Achlioptas 2009). It turns
out that many key properties of the model depend on the
density. One such property is the satisfiability threshold,
a critical density pr = pg(n), which depends on k (and
maybe on n), such that with high probability (w.h.p.) ¢ is
satisfiable whenever » < (1 — €)pg(n), and unsatisfiable
if » > (1 + €)pi(n) for e > 0. Finding the satisfiability
threshold for different values of k has been a very active
and fruitful research direction, see, e.g., (Achlioptas 2009;
Ding, Sly, and Sun 2015; Mitchell, Selman, and Levesque
1992; Larrabee and Tsuji 1992; Chvatal and Reed 1992; Go-
erdt 1996; Achlioptas 2001; Achlioptas and Sorkin 2000;
Achlioptas and Peres 2004).

A similar quantity related to MAX k-SAT, the optimiza-
tion version of k-SAT, is the (expected) number of clauses
in a formula from F}(n,rn) that can be simultaneously sat-
isfied. Although this value is not known, a straightforward
argument gives a lower bound of (1 — 27%)rn and in the
case of MAX 2-SAT (Coppersmith et al. 2003) places this
value between (3/4r + 0.34+/7)n and (3/4r + 0.5/7)n.

Lower bounds on the satisfiability thresholds and on the
number of satisfiable clauses of MAX k-SAT instances are
often proved by analyzing relatively simple heuristics. For
example, the (1 — 27%)rn bound is obtained as the ex-
pected number of satisfiable clauses, and this simple tech-
nique can be derandomized using the method of condi-
tional expectations (Erdos and Selfridge 1973). A num-
ber of more sophisticated heuristics of different types have
been analyzed as well, see, e.g., (Broder, Frieze, and Up-
fal 1993; Luby, Mitzenmacher, and Shokrollahi 1998; Mol-
loy 2005; Achlioptas and Sorkin 2000; Achlioptas 2001;
Kaporis, Kirousis, and Lalas 2002, 2006; Hajiaghayi and
Sorkin 2003; Frieze and Suen 1996; Alekhnovich and Ben-
Sasson 2007), for a survey see (Achlioptas 2009). In this pa-
per we focus on the pure literal elimination heuristic. Given
a CNF ¢ this algorithm simply selects a variable that appears
in ¢ in only one polarity, that is, either only negated or only
unnegated, assigns it the value that satisfies all its occur-
rences, and removes the clauses that get satisfied. (Broder,
Frieze, and Upfal 1993) (see also (Kim 2008)) analysed the
pure literal elimination rule for solving uniform random 3-
SAT and MAX 3-SAT. They obtained an expression, which
shows how many clauses are satisfied by each iteration of the
algorithm, and proved that the maximal number of clauses

which can be satisfied by an assignment of pure literals
is concentrated around the function T, (r, k). This function
is however hard to calculate when r is constant. A some-
what easier to use expressions for estimating the efficacy of
the pure literal elimination rule for any £ > 3 were given
in (Mitzenmacher 1997; Molloy 2005).

Most of the results we have mentioned so far concern the
uniform random instances. However, there is a whole line
of research suggesting that in many aspects random uni-
form formulas do not resemble natural instances coming
from the real-world problems. For example, many indus-
trial CNF instances exhibit scale-free property (Ansétegui,
Bonet, and Levy 2009), they seem to consist of clusters
of tightly connected communities (Ansétegui et al. 2019),
have a rather smaller fractal dimension (Ansétegui et al.
2014), and other structural features not present in random
instances (Ansétegui et al. 2008; Beyersdorff and Kullmann
2014). Moreover, it is unlikely that there exists a universal
algorithm performing well on all instances coming from dif-
ferent domains.

One way to tune the Random k-SAT model so that ran-
dom instances resemble instances coming from specific do-
mains is to use more general random model. Several such
models have been suggested, see, (Ansétegui, Bonet, and
Levy 2009; Ansétegui, Bonet, and Levy 2019; Ansétegui
et al. 2019; Ansétegui et al. 2014; Friedrich et al. 2017).
In this paper, we use a random model called configuration
model, parametrized by a sequence of random variables. In
order to generate a k-CNF with n variables we fix a ran-
dom variable &; with values in N distributed accordingly to
a distribution D; for each variable v;. The random variable ¢;
represents the degree or the number of occurrences of v; in
the formula. Then the degree &; of v; is sampled from D; and
we create &; clones of v;; each clone is negated with proba-
bility 1/2. Finally, the set of clones is randomly partitioned
into k-sets to form k-clauses.

Depending on the distributions of &; the configuration
model allows one to generate a wide variety of random k-
CNFs. For example, if every &; is a constant we are deal-
ing with CNFs with a fixed degree sequence. This case has
been studied in (Cooper, Frieze, and Sorkin 2007) for 2-SAT.
If every D); is the same Poisson distribution, the configu-
ration model is also known as the Poisson Cloning model.
(Kim 2004) proves that in many aspects the Poisson Cloning
model is equivalent to the uniform Random (MAX) k-SAT.
(Omelchenko and Bulatov 2021b) and (Omelchenko and
Bulatov 2021a) study several aspects of the configuration
model when the distributions are heavy-tailed.

The overall research goal is therefore to expand the results
known for the uniform model to the configuration model.
The main difficulty in this enterprise is that it is not always
possible to use the same well established and efficient tools
in both theoretical and practical aspects of the problem. On
the theoretical side, when the distributions ID; are not as well
behaved as Poisson, especially if they are heavy-tailed or
do not have higher moments, the standard probability the-
ory tools such as concentration inequalities, do not apply,
and have to be replaced with more complicated and less ef-
ficient ones. For example, (Borovkov and Borovkov 2008)

3805

and (Omelchenko and Bulatov 2019) obtained some (rela-
tively weak) concentration bounds for heavy-tailed distribu-
tions. On the practical side, weak concentration properties
mean that in order to achieve a visible trend in experimental
results one needs to handle formulas with billions of vari-
ables.

In this work we study how the pure literal elimination rule
performs in the configuration model, and how the distribu-
tion of degrees of variables affects the number of clauses
which the rule can satisfy. Our main contribution is The-
orem 1. The theorem gives an equation that depends on the
“averaged” distribution of degrees and only assumes that the
random variables &; have finite first moments. Solving the
equation one can find how many clauses the pure elimina-
tion rule satisfies. Note that a similar result for the Poisson
Cloning model was obtained by (Kim 2008). Our secondary
result is Lemma 6, which shows how the degree distribution
evolve as the pure literal heuristics transforms the instance.
This information is useful for further analysis of k-CNF for-
mulas obtained after they have been processed with the pure
literal elimination heuristic.

Our analysis uses two important tools: the Weak Law of
Large Numbers and the Wormald’s differential equations
method. The former one gives us some concentration prop-
erty, while the latter is a standard tool in analysis of SAT
algorithms, see (Achlioptas 2001; Achlioptas and Sorkin
2000).

The paper is organized as follows. After reminding the
basic definitions and notation, we introduce the configura-
tion model. The main part of the paper is the “Analysis of
Pure Literal Elimination Algorithm” section, where we give
a number of lemmas needed to obtain the main result of this
work, Theorem 1. We conclude the paper with a number of
experimental results which show how the pure literal elimi-
nation rule performs on different random instances obtained
from the configuration model in reality. Due to space restric-
tions many proofs will be given in Supplemental materials.

Notations & Definitions

MAX SAT, MAX k-SAT, and Random MAX k-SAT. Let
Z1,...,T, be boolean variables, and n will always denote
their number. A literal is either a variable or its negation.
A literal is negative, when it is a negated variable, and pos-
itive otherwise. A clause is a disjunction of literals, and a
k-clause is a clause with exactly k not necessarily distinct
literals. Then a CNF formula is a set of clauses, while a k-
CNF formula is a set of k-clauses. So, we treat every CNF
formula as a set of clauses, and each clause is a set of k
literals.

The MAX SAT problem is an optimization problem where
given a CNF formula ¢ we need to determine an assignment
that satisfies the maximal number of clauses in ¢. The MAX
k-SAT is a special case of MAX SAT, where the given for-
mula ¢ is k-CNF.

Random MAX k-SAT problem is a variant of MAX k-
SAT problem, where instead of an arbitrary k-CNF formula
we are given a random k-CNF formula, sampled from some
probabilistic distribution over k-CNF formulas with n vari-

ables. The distribution we use in this paper is configuration
model (see the “Configuration Model” section for details).

Probability Reminder. We say that a sequence of events
A,, happens with high probability (w.h.p.), when Pr [A,] —
1 with n — oco. We use acronyms rv. for “random variable”,
r.vs. for “random variables”, and u.a.r. for “uniformly at ran-
dom”. We use [n] to denote the set {1,2,...,n}.

The next lemma shows that the sum of n independent r.vs.
&1,&a, ..., &, with finite expectations E|&;| < oo is concen-
trated around its mean, ie. > . ;& = Y. E& + o(n)
w.h.p. This result is known as the Weak Law of Large Num-
bers (WLLN), however, its classical versions require the
r.vs. &;’s to be either identically distributed and/or to have
moments beyond expectation. Variation of the WLLN we
need and state below does not ask for such premises, while
its proof is only a minor modification of the now classi-
cal proof of Khintchin’s Law of Large Numbers (Borovkov
2013).

Lemma 1 (WLLN). Let &1,&o,...,&, be a collection of n
independent r.vs. with finite expectation E|¢;| < co. Then it
holds w.h.p.

D &= E&i+o(n).
i=1 i=1

To analyse the evolution of algorithms, we rely on
Wormald’s differential equations method theorem (Wormald
1995, 1999). Some improvements to the method and its
applications can be found in (Bohman 2009; Bohman and
Keevash 2010; Warnke 2014, 2019). The main idea of
the method is simple. Suppose you have a number of co-
evolving in time scalar random processes X;(t), where
t € Nand i € [f]. Our goal is to describe how those
processes evolve, and approximate their trajectory in time.
The processes may affect each other in some intricate way
during their evolution, which complicates their descrip-
tion. The theorem states that if the processes are “good”,
namely: (a) given state of all processes at any time ¢,
the expected one time change of each process can be
well-approximated (up to o(1) factor) by some function

f; (g STORR TORNP.0) . (b) it is highly unlikely that

n 0 n 2t
any process during its evolution will jump over n'/?; and fi-
nally (c) functions f;’s satisfy Lipschitz condition, then we
can be confident that the processes are concentrated around
the deterministic trajectory, which can be obtained from a
solution to the system of differential equations, for as long
as all the above three conditions hold (see Supplemental Ma-
terials for a precise statement of the theorem).

Finally, we denote by & ~ D the fact that a r.v. £ is dis-
tributed according to a probability distribution ID.

Configuration Model. Configuration model Ck ((£;)™_,)
is a probability distribution of k-CNF formulas with n vari-
ables. The model is parametrized by an ordered sequence of
n independent random variables &; with support on NT. We
write ¢ ~ CF ((&)7_,), when formula ¢ is sampled from
the configuration model. We do not require &;’s to be iden-
tically distributed as each &; ~ D; may come from its own

3806

distribution ID;. But we do require them to be independent
and with finite expectation E¢; < oo for all i € [n].

Sampling formulas from CE ((&;)_,) is usually done by
constructing such formulas. By V(¢) we denote the set of all
variables in a sampled formula ¢. Then |V(¢)|= n always.
The degree of a variable v € V(¢) is the number of times it
appears in ¢ as an atom; each occurrence of v in ¢ we call a
clone of v. Let S(¢) be the set of all clones of all variables
in ¢. Each clone in S(¢) can be positive or negative thus
corresponding to a positive or negative literal. A literal in ¢
is said to be pure literals, if ¢ does not contain its negation.

A formula in the configuration model is generated in two
steps. The first step, called CREATECLONES((&;)™ 4, k),
starts with a sequence (&;)?_; of random variables and cre-
ates clones of variables and assigns a sign to each of them.
In order to do that for each ¢ € [n] we sample degree d; of
each variable v; € V(¢) from &; and create d; clones of v;. If
the total number of clones is not a multiple of & we discard
these clones and start all over. Otherwise we assign a sign
to each clone equiprobably. Let S denote the resulting set
of (signed) clones. During the process we say that a clone
¢ € §(¢) is paired, when there is a clause in ¢, which con-
tains this clone c; otherwise, the clone is said to be unpaired.

In the second step, called CONFIGURATIONMODEL-
CNF(S, k), we randomly partition the set S into k-element
subset that form clauses of the formula.

Note that as long as the second step results in a random
partition of S into k-element subsets, it makes no difference
how exactly partitioning is done. The most basic way is to
pick k-element subsets from S until all the clones are put
into some clause. However, often it is convenient to choose
a more elaborate way, which may ease the analysis of the
process. For example, we can use any rule (deterministic or
probabilistic) to pick the very first clone for every clause,
since in the end all clones must end up in some clauses. This
observation was one of the key features used in (Cooper,
Frieze, and Sorkin 2007; Omelchenko and Bulatov 2021b)
to produce an alternative algorithm called TSPAN for con-
structing 2-CNF formulas. On the other hand, this freedom
of picking the very first clone is coupled with the restric-
tion that the other £ — 1 clones of every clause must be
picked u.a.r. without replacement from the set of unpaired
clones. When these two conditions are satisfied, we can be
sure that the formulas produced by the alternative algorithms
are equivalent to the formulas from C¥ ((&)7_,).

To end this section, we introduce several quantities, which
we frequently use in the subsequent analysis. First, let S,, =
|S(#)]| be the total number of clones in ¢. Then, clearly, the
number of clauses in ¢ is |p|= ST” Lety := 3" K&
denote the average degree of variables, and since all E¢; <
00, it follows that v < oo. Moreover, as the expectations of
&;’s are finite, we have the following simple result:

Lemma 2. It holds that S,, = (1 + o(1)) yn w.h.p.

Let ¢ be ar.v. over N with probability distribution function

Pr[&zd]:%ZPr[@:d] forall d € N. (1)
=1

It turns out that many quantities in the configuration model
can be expressed via this “averaged” r.v. £. For example, v =
E¢, and so S,, = (1 + o(1)) nEE w.h.p. Next, we will abuse
notation by using the same letter p with different subscripts
to denote two different probabilities distinguishing them by
the number of indices. Let py := Pr[¢ = d], while we use
D;,; to denote the probability that a u.a.r. chosen variable
produces ¢ positive clones and j negative clones. The next
lemma expresses p; ; in terms of p; ;.

Lemma 3. The probability a randomly chosen variable pro-
duces exactly i positive and j negative clones is

—G+) [T+ L —G+ [Tt
Pij = 2 (ﬂ)(ij>Pr[§_z+j]_2 <+J)< ij>pi+j.

Finally, let N; ; be the number of variables, which pro-
duced exactly 7 positive and j negative clones. Then by
Lemma 1 and Lemma 3, it readily follows that w.h.p.

Ni,j = (]. + 0(1)) np; ;. (2)

Analysis of Pure Literal Elimination

As was mentioned in the Introduction, our goal here is to
analyse the efficiency of the pure literal elimination heuristic
on random k-CNF instances sampled from the configuration
model.

The main entities of interest in pure literal elimination rule
are pure literals. As was mentioned in previous sections, we
call a literal £ pure in a k—CNF formula ¢ if its complement
literal ¢ does not appear in ¢. Hence, we can safely satisfy /,
and eliminate all clauses in which ¢ is present, thus, simpli-
fying ¢. We continue this elimination process as long as we
have pure literals to satisfy. Observe, that during clause elim-
ination it may happen that a literal, which was not initially
pure, becomes pure if all occurrences of its complement lit-
eral happen to be in the eliminated clauses, which fuels the
algorithm with new pure literals.

For the sake of analysis we slightly modify the algorithm
(keeping the same outcome) by employing deferred deci-
sion. That is, instead of feeding the algorithm a complete
k-CNF formula, we instead “reveal” only those clauses that
contain pure literals, satisfy them, update the set of pure lit-
erals, and repeat this process as long as we have unpaired
clones of pure literals. This way the unrevealed part of the
formula remains random, and so probabilistic analysis can
be applied.

The deferred decision version of the pure literal elim-
ination algorithm is given in Algorithm 1. We start with
creation of clones for all n variables by calling the
CREATECLONES((&;)_;, k) procedure with (§;), being
a sequence of r.vs. from which degrees are sampled. It may
happen that some variables possess only clones of one sign
(it happens w.h.p. when we have pg > 0 for some constant
d). Such variables form an initial pool of pure literals.

We generate formula ¢ iteratively, one clause at a time.
We start with an empty formula. Next, as long as we have
pure literals, we pick one of them u.a.r. without replacement.
Observe that if we satisfy the chosen literal [, then every
clause in which a clone of [is present is satisfied as well.

Algorithm 1: Pure literal elimination algorithm with de-
ferred decision.

1: function PURELITERAL((&;)? 1, k)

2 o1+ {};

3: S < CREATECLONES((&;)™_ 1, k);

4 while there are clones in S with no complementary
counterparts do

¢ < u.a.r. picked clone from the set of clones

with no complementary counterparts in S;
6 Satisfy the literal ¢ associated with c;
7: C < the set of all unpaired clones of ¢;
8: while C # () do
9.
0

el

¢ < pick an arbitrary clone from C;
cl < sample k — 1 clones u.a.r. w/o replace-
ment from S — {c};

11: cl+{c} Uds

12: Mark ¢l as satisfied;
13: ¢1 < g1 U{cl};
14: C<«+C—d,

15: S+ S—c;

16: end while

17: end while
18: return CONFIGURATIONMODELCNE(S, k);
19: end function

Hence, to know how many clauses we satisfy by satisfying [,
we calculate how many clauses contain clones of [. To do so
take all clones of the chosen pure literal [and distribute them
in the following manner. Pick an arbitrary unpaired clone of
[and form a new 1-clause out of it. Next, to finish the forma-
tion of the new clause, sample other £ — 1 unpaired clones
from S (line 1.10), and append them to the newly created
1-clause (line 1.11). We obtain a complete k-clause, which
we add to the formula ¢ (line 1.13). Since we have paired
clones in the new clause, they cannot appear in any other
clauses, and so we remove them from the sets C and S (lines
1.14 and 1.15 respectively). We continue formation of new
clauses containing clones of [as long as there remain un-
paired clones of it. This generation process of clauses con-
taining clones of [continues until we deplete all its unpaired
clones. After that we pick next pure literal, if there exists
any, and continue producing new clauses. Observe that the
algorithm not just creates new clauses but actually satisfies
them as well.

Just like in the original algorithm, it may happen that dur-
ing elimination process some literals, which were not pure
initially, become pure, when all clones of their complements
get paired. Or, in other words, all their complement coun-
terparts appear only in clauses, which we have already sat-
isfied. In that case we add the newly-formed pure literals to
the pool of all not-yet-paired pure literals, and continue the
pairing process until we exhaust all the unpaired clones of
pure literals. When all pure literals are used up we generate
a k-CNF from the remaining clones in the usual way.

To analyse Algorithm 1, we need to introduce a few quan-
tities that play major role in the analysis. The first one is the
number of variables with i unpaired positive clones and j
unpaired negative clones at time ¢ € N, which we denote

by N; ;(t). Time ¢ here measures how many clauses Al-
gorithm 1 has formed, or, equivalently, the total number of
times the inner loop (lines 8-16) has been executed. Hence,
initially we have ¢ = 0. As we form new clauses and ¢ in-
creases, IV; ;(t) changes as well. If it happens that Algo-

rithm 1 runs long enough for ¢ to reach |¢|= k" , We con-
clude that the pure literal elimination rule was able to find a
satisfying assignment. Also note that due to the random na-
ture of the pairing process, IV; ;(t) for all 4, j > 0 are in fact
random processes.

Note that Y.<, (Njo(t) + No,i(t)) measures the number
of pure literals at time ¢, since N; o(¢) and Ny ;(¢) count the
number of variables with ¢ unpaired clones all of which be-
long to a single literal. Hence, the algorithm runs as long
as y .~q (Nio(t) + No,i(t)) > 0. Let ¢y denote the mo-
ment of time, when the algorithm stops, i.e. when the quan-
tity Zz>1 (N;0(to) + No,i(to)) hits zero. Note that g is a
random variable, due to the random nature of dynamics of
the processes N; ;(t). Clearly, to study how well the pure
literal elimination heuristic performs on random instances
from CE ((&;)7_,), we need to learn the distribution of .

In order to apply the differential equations method to ap-
proximate dynamics of the processes NV; ;(t), we must verify
that the processes are “good”. The next lemma proves that
the processes N; ;(t) are indeed good candidates for approx-
imation using the differential equations method.

Lemma 4. Let H(t) := Uy<y<; U j>1 {Nis (1)} be the
complete history of the evolution of the processes N; ;(t')

up to and including time t. Then for all 1,5 > 1 and all
0 <t <ty itholds:

L E[Nij(t+1) = Nij(t) | H(?)]
= Jis (57 Niglt) Nergl) Nogialt

’ ’
n n n

)+ o).
where

fig (Tym4,5(T)s mig1,5(7), M1 (7))

k-1, .
T ()

—-17,.)

TR [Dnes () + G+ D)

2. Pr HNW-(t +1) - Ni,j(t)‘ >k| H(t)] =0;

3. fi; (1o (7),mig1 (7)), ni j41(T)) is continuous and
satisfies Lipschitz condition for 0 < 17 < %’ < 7

Remark. As it follows from the lemma, we use n; ;(T) =
N; j(tn)

- with T = %, to denote the scaled number of vari-
ables with 1 positive and j negative unpaired clones at the
scaled time T.

Hence, now we construct the system of differential equa-
tions describing the dynamics of the scaled number of vari-
ables n; j(7) forall 7,5 > 1

dni,;j
dr

= fij (7,05 (7), it (7), i 41 (7))
B kE—1
v — kT

k—1r,. .
pogy (i 4+ Dniv1,;(7) + (5 + 1)ni,j+1(7')}7

(i + 5)ni,i(7)

+ 3

3808

with initial values n; ;(0) = N J(O) —(i+9) ("”)p it
which follows from (2) after pluggmg in the initial number
of variables NV; ;. The system has a single solution.

Lemma 5. The system (3) defined for all i,j > 1 together
with initial values n; ;(0) = 27 (+7) (i"i'j)p,;ﬂ has a unique
solution

i (i
ni (1) =2 <+J)< :)

2 < ﬂ)) (1= 2(r) T,

0-(1-2)

Now, we apply differential equations method to approxi-
mate dynamics of the processes N; ;(t).

Lemma 6. Let N; j(t) be the number of variables with i
positive and j negative unpaired clones at time t, where
i,j > 1. Then it holds w.h.p. that N; j(t) = n-n;; (L) +
o(n), where function n; ; (f) is the solution from Lemma 5
foralli,j > 1.

Now after learning how N; ;(t)’s evolve over time, we
determine when the pure literal elimination algorithm stops
and how many clauses it satisfies. First let C'(¢) denote the
number of unpaired clones of pure literals at time ¢, and let

e(r) == @ be its scaled version at scaled time 7. Then
we have the following result:

where

Lemma 7. The number of unpaired pure clones at time 0 <
t S to is

Clt)=n-c (t> +o(n),

n

where

o(r) = 7 — kr — 2(r)y + 2(r ;Ep()>“
6 (1-3)]

z(1) d
Here G(z) = E [azf] is the probability-generating function of the

=y —kr—2(r)y = 2L
rv. & given by (1).

2 dx

z=2z(T) '

Now, given Lemma 7, the stopping time of Algorithm 1
becomes almost self-evident.

Theorem 1. Let ¢ ~ CF ({17 ,), where B¢, < oo
Then the pure literal elimination heuristic satisfies w.h.p.
(14 o(1)) 7on clauses with 7 = 19 > 0 being the small-
est solution of the equation
x
& (1-3)]

z(1) d
where z(T) is the function defined in Lemma 5.

v — kT —2(1)y

=0, @)

z=2z(T)

2 dz

Proof. Recall that the Algorithm 1 stops as soon as all pure
clones get paired. The number of unpaired pure clones at
time ¢is C(t) = n-c (£)+f(n) wh.p., where f(n) = o(n),

as it follows from Lemma 7. Introduce an increasing func-
tion A(n), such that f(n) < A(n) < n. For the sake of
analysis instead of stopping the algorithm when all pure
clones get exhausted, we stop its execution when C(t) be-
comes less than A(n). Although, the algorithm could still
continue working and satisfy more clauses, but as it will be-
come apparent from the proof, difference in the number of
clauses that Algorithm 1 satisfies, which are not satisfied by
stopping the algorithm at the A\(n) mark is of order at most
A(n) = o(n), which is negligible comparing to the number
of clauses we do satisfy.

Hence, it follows that the algorithm’s stopping time ¢ is
the time, when C'(¢9) < A(n) for the first time. When we
consider the same condition in terms of the scaled version
of the number of unpaired pure clones, we have that 7y = %

is the time, when ¢(79) = % < @ = o(1). In other

words, 7 = 7 is the first time ¢(7) crosses 0 (up to o(1)
additive term, since ¢(7) is a smooth continuous function).
Therefore, by finding the closest to zero 79 > 0, which
satisfies equation (4) gives us the stopping time of Algo-
rithm 1, from which we obtain the number of satisfied
clauses tg (1 + o(1)) 7on (the (1 + o(1)) multiplica-
tive factor here is caused by us stopping the algorithm at
A(n) = o(n) level instead of when C(¢) turns to 0). O

Note that if £ ~ D(#) for some parametric probability
distribution over N1, then the evolution of the scaled num-
ber of pure clones can be itself viewed as not only a function
of scaled time 7, but also of parameter 6, i.e. ¢(7) = cg(7).
In that case the most interesting values of # are the ones,
when c¢y(7) only touches zero at 7 = 73 and bounces back
as 7 increases. In that case we should see sharp and sud-
den changes in the efficacy of the pure literal algorithm in
the neighbourhood of such critical 8’s. We demonstrate ex-
amples of this phenomenon in the next section, where we
discuss our experiment.

Experiments

To verify our results experimentally, we picked 4 probability
distributions over N*, coming from different classes:

1. Subgaussian distribution S(u,o) with probability dis-

—p\2
tribution function Pr[S(u,0) = z] = W,e_(=),
where C,, , is its normalizing constant. S(u, o) resem-
bles normal distribution but with support for whole num-
bers only. As the name suggests, subgaussian distribution
comes from the class of subgaussian distributions.

2. Poisson distribution P(\) with distribution
Pr[P(\) =2] = 22 The distribution is identi-

cal to classical Poisson distribution but with support
defined only for positive natural numbers. The Poisson
distribution is an example of exponentially decaying
distributions.
3. Log-normal L(n,o) distributed
M, _(logz—p 2
Pr[L(n,0) = x] = —2X%e (=) , where M, »
is the normalizing constant. L(n,o) was inspired by
the classical continuous log-normal distribution, and it
belongs to the class of distributions with tail’s decay rate

distribution as

3809

being in-between exponentially decaying distributions
and the ones with polynomially heavy tails.

Zeta distribution Z(«) with distribution
PriZ(a)=1] = Zg5, where ((a) = X, 27
is the Riemann zeta function. Z(«) is a canonical
example of a discrete heavy-tailed distribution.

4.

Remark. For S(u,o0) and L(n, o) we fix their second pa-
rameter o = 1, and now all 4 distributions parametrized by
a single parameter.

The goal of the experiment is to measure performance of
the pure literal elimination rule on random k-CNFs formulas
having different degree distributions. The distributions we
picked cover a wide spectrum of tail dynamics at infinity,
hence, this should help us to develop an intuition on how
distributions of degrees affect performance of the pure literal
elimination.

Let us denote by D(0) an arbitrary one-parameter prob-
ability distribution with 6 being the distribution’s parame-
ter. Let D = {S(p, 1), P(A\),L(n,1), Z(c)} be the set of
the 4 chosen distributions. For every fixed D(f) € D let
6., be the value of its parameter, so that the expected value
E[D(6,)] = .

Next we describe setup of the experiment. First, we fix a
list of 13 average degrees £ = {3,4,5,...,14,15}. Then
for every D(6) € D and every v € £, we estimate 0.,. Next,
we produce random' 3-CNF formulas ¢ ~ C2((&)™,),
where & ~ D(f,) are ii.d. r.vs. with E§; = ~, and n,
the number of variables of sampled formulas, we fix to be
100,000. We solve the generated formulas with pure literal
elimination algorithm, and record how many clauses the al-
gorithm satisfies. Let the number of satisfied clauses be T,
and its scaled version 7 % = 107°T. Then with every
sampled formula ¢ we associate a tuple (¢, D(6.,),v,70),
where ¢ is the formula itself, D(6,) is the distribution,
which was used for degree sequence generation, -y is the av-
erage degree, and finally 7y is the scaled number of clauses
of ¢ that the pure literal algorithm was able to satisfy. By
sampling many formulas for each D(f) € D and v € €,
we should be able to get a good estimate of the “true” 7y
value. In our experiment we produced 7,777 instances for
each distribution and each average degree +.

After collecting enough data points, we averaged 7 for
each v and every D(#), and plotted this estimate of 7y on
Figure 1. We also calculated the 0.99 confidence interval
of the obtained estimates, which we also added to the fig-
ure (surprisingly, whiskers, marking the bounds of the con-
fidence intervals, are almost indiscernible, which means that
the estimates seem to converge rapidly to their true values.
We say it is rather surprising, since, based on our experience,
quantities derived from heavy-tailed distributions quite of-
ten do not exhibit nice convergence rates. One case of this
phenomenon can be seen, for example, in (Omelchenko and
Bulatov 2021b)).

Also for each D(0) € D we calculate numerically 7y =
70(0) by solving the equation (4). Note that now 7(6) can

"We use std::random_device() from the standard library of C++
to generate seeds for PRG.

(a) Subgaussian distribution

(b) Poisson distribution

5 3.0 5 3.0
2 Total # of clauses (scaled) 2 Total # of clauses (scaled)
8 —— 7o for Subgaussian r.vs. S —— 1o for Poisson r.vs.
wn 2.5 @ Experimentaly measured To with 0.99 CI wn 2.5 @ Experimentaly measured to with 0.99 CI
0 0
a 2.0 . 2.0
=} =}
© ©
o 15 o 15
2 3
= 1.0 = 1.0
0] %]
=})
& 05 & o5
Y Yy
o o
0.0 - 0.0 -
*® 4 6 8 10 12 14 * 4 6 8 10 12 14
avg. degree y avg. degree y
(c) Log-normal distribution (d) Zeta distribution
5 3.0 5 3.0
2 Total # of clauses (scaled) 2 Total # of clauses (scaled)
© = To for Log-normal r.vs. © = To for Zeta r.vs.
H 2.5 @ Experimentaly measured To with 0.99 CI ﬁ 2.5 @ Experimentaly measured to with 0.99 CI
0 4
v 2.0 g 2.0
B B
<o 15 o 15
2 3
< 1.0 e 1.0
- -
& 05 & 05
Y Y
o (]
3# 0.0 3 0.0

4 6 8 10 12 14
avg. degree y

4 6 8 10 12 14
avg. degree y

Figure 1: Experimentally obtained efficacy of the pure literal heuristic on formulas from C3 ((&;)%;)
vs. theoretically predicted efficacy, where r.vs. &;’s follow (a) subgaussian, (b) Poisson, (c) log-normal, and (d) zeta
distribution. Black curves represent the scaled number of satisfied clauses 7o(~y) as a function of 7. Grey slanted lines show the
typical number of total clauses, and round markers are experimentally obtained estimates of 7y(~y) with whiskers showing
bounds of the 0.99 confidence intervals.

be viewed as a function of the distribution’s parameter,
which, in turn, controls the expected value ~y(6). Hence,
we can plot (y(9), 0(0)) by varying 6. We pick 6’s so that
~(0) € [3,15], and calculate corresponding 7(#). Obtained
functions of the “true” values of 7 are represented as black
curves on Figure 1. Additionally, we plot as grey slanted
lines the scaled average number of clauses that formulas
with average degree ~ have, i.e. for each + this quantity is
equal to % =+=1

As it follows from the experiment, we have obtained good
evidence supporting Theorem 1. The “true” values of the
scaled number of satisfied clauses 7y, given by equation 4,
predict well how the pure literal elimination performs in re-
ality. There are some more observations we can make from
the experimental data. It seems the heuristic performs really
well, when the distribution of degrees has a rapidly decaying
tail (like Poisson and subgaussian), and + is at most around
5. However, for even slightly larger v’s performance of the
pure literal heuristic drops significantly and it becomes al-
most useless. Hence, this average degree v = 5 and the cor-
responding values of 6, for Poisson and subgaussian distri-
butions seem to be critical.

However, the more heavy-tailed distributions exhibit a
somewhat reversed dynamic. The pure literal algorithm does

3810

not seem to perform well on them for lower values of . For
example, the algorithm was able to satisfy only around 1/2
of all clauses of formulas with log-normally distributed de-
grees when v = 5, while on subgaussian r.vs. it was able to
satisfy all or almost all clauses at the same average degree.
But as we increase v, the rule starts performing better on
the more heavy-tailed distributions comparing to their light-
tailed counterparts. Consider, for example, Poisson and zeta
distributions. When ~ > 10, the algorithm is unable to sat-
isfy any reasonable number of clauses in case of Poisson
distributed degrees, but for zeta distribution efficacy of the
pure literal elimination rule drops much and much slower as
we increase 7.

References
Achlioptas, D. 2001. Lower bounds for random 3-SAT via
differential equations. Theoretical Computer Science, 265.
Achlioptas, D. 2009. Random Satisfiability. Frontiers in
Artificial Intelligence and Applications, 185.

Achlioptas, D.; and Peres, Y. 2004. The Threshold for Ran-
dom k-SAT Is 2* Log 2-O(k). Journal of the American
Mathematical Society, 17(4): 947-973.

Achlioptas, D.; and Sorkin, G. 2000. Optimal myopic algo-

rithms for random 3-SAT. Annual Symposium on Founda-
tions of Computer Science - Proceedings.

Alekhnovich, M.; and Ben-Sasson, E. 2007. Linear Up-
per Bounds for Random Walk on Small Density Random
3-CNFs. SIAM J. Comput., 36(5): 1248-1263.

Ansétegui, C.; Bonet, M. L.; Girdldez-Cru, J.; and Levy, J.
2014. The Fractal Dimension of SAT Formulas. In Demri,
S.; Kapur, D.; and Weidenbach, C., eds., Automated Rea-
soning, 107-121. Cham: Springer International Publishing.
ISBN 978-3-319-08587-6.

Ansétegui, C.; Bonet, M. L.; Girdldez-Cru, J.; Levy, J.; and
Simon, L. 2019. Community Structure in Industrial SAT
Instances. J. Artif. Intell. Res., 66: 443-472.

Ansétegui, C.; Bonet, M. L.; and Levy, J. 2009. On the
Structure of Industrial SAT Instances. In Proceedings of the
15th International Conference on Principles and Practice of
Constraint Programming, CP’09, 127-141. Berlin, Heidel-
berg: Springer-Verlag. ISBN 3642042430.

Ansétegui, C.; Bonet, M. L.; and Levy, J. 2019. Phase Tran-
sition in Realistic Random SAT Models. In Sabater-Mir, J.;
Torra, V.; Aguild, 1.; and Hidalgo, M. G., eds., Artificial In-
telligence Research and Development - Proceedings of the
22nd International Conference of the Catalan Association
for Artificial Intelligence, CCIA 2019, Mallorca, Spain, 23-
25 October 2019, volume 319 of Frontiers in Artificial In-
telligence and Applications, 213-222. 10S Press.

Ansétegui, C.; Bonet, M. L.; Levy, J.; and Manya, F. 2008.
Measuring the Hardness of SAT Instances. In Proceed-
ings of the 23rd National Conference on Artificial Intelli-
gence - Volume 1, AAAT’08, 222-228. AAAI Press. ISBN
9781577353683.

Beyersdorff, O.; and Kullmann, O. 2014. Unified Character-
isations of Resolution Hardness Measures. In SAT.

Bohman, T. 2009. The triangle-free process. Advances in
mathematics (New York. 1965), 221(5): 1653-1677.

Bohman, T.; and Keevash, P. 2010. The early evolution of
the H-free process. Inventiones mathematicae, 181(2): 291—
336.

Borovkov, A.; and Borovkov, K., eds. 2008. Asymptotic
analysis of random walks: heavy-tailed distributions, vol-
ume 118 of Encyclopedia of mathematics and its applica-
tions. Cambridge University Press. ISBN 978-0-51172-139-
7.

Borovkov, A. A. 2013. Probability Theory by Alexandr
A. Borovkov. Universitext. Springer London : Imprint:
Springer, 1st ed. 2013. edition. ISBN 1-4471-5200-X.

Broder, A. Z.; Frieze, A. M.; and Upfal, E. 1993. On
the Satisfiability and Maximum Satisfiability of Random
3-CNF Formulas. In Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 93,
322-330. USA: Society for Industrial and Applied Mathe-
matics. ISBN 0898713137.

Chvatal, V.; and Reed, B. 1992. Mick gets some (the odds
are on his side) (satisfiability). In Proceedings., 33rd Annual
Symposium on Foundations of Computer Science, 620-627.

3811

Cooper, C.; Frieze, A.; and Sorkin, G. B. 2007. Random 2-
SAT with Prescribed Literal Degrees. Algorithmica, 48(3):
249-265.

Coppersmith, D.; Gamarnik, D.; Hajiaghayi, M. T.; and
Sorkin, G. B. 2003. Random MAX SAT, random MAX
CUT, and their phase transitions. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, January 12-14, 2003, Baltimore, Maryland, USA,
364-373. ACM/SIAM.

Ding, J.; Sly, A.; and Sun, N. 2015. Proof of the Satisfiabil-
ity Conjecture for Large k. STOC ’15, 59-68. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450335362.

Erdos, P.; and Selfridge, J. 1973. On a combinatorial game.
Journal of Combinatorial Theory, Series A, 14(3): 298-301.
Friedrich, T.; Krohmer, A.; Rothenberger, R.; Sauerwald, T.;
and Sutton, A. M. 2017. Bounds on the Satisfiability Thresh-
old for Power Law Distributed Random SAT. In Pruhs, K.;
and Sohler, C., eds., 25th Annual European Symposium on
Algorithms, ESA 2017, September 4-6, 2017, Vienna, Aus-
tria, volume 87 of LIPIcs, 37:1-37:15. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik.

Frieze, A. M.; and Suen, S. 1996. Analysis of Two Simple
Heuristics on a Random Instance of k-SAT. J. Algorithms,
20(2): 312-355.

Goerdt, A. 1996. A Threshold for Unsatisfiability. J. Com-
put. Syst. Sci., 53(3): 469-486.

Hajiaghayi, M. T.; and Sorkin, G. B. 2003. The satisfiability
threshold of random 3-SAT is at least 3.52. Technical report,
IBM.

Kaporis, A. C.; Kirousis, L. M.; and Lalas, E. G. 2002.
The Probabilistic Analysis of a Greedy Satisfiability Algo-
rithm. In Mohring, R. H.; and Raman, R., eds., Algorithms -
ESA 2002, 10th Annual European Symposium, Rome, Italy,
September 17-21, 2002, Proceedings, volume 2461 of Lec-
ture Notes in Computer Science, 574-585. Springer.
Kaporis, A. C.; Kirousis, L. M.; and Lalas, E. G. 2006. The
probabilistic analysis of a greedy satisfiability algorithm.
Random Struct. Algorithms, 28(4): 444—480.

Kim, J. H. 2004. The Poisson Cloning Model for Random
Graphs, Random Directed Graphs and Random k-SAT Prob-
lems. In Chwa, K.; and Munro, J. 1., eds., Computing and
Combinatorics, 10th Annual International Conference, CO-
COON 2004, Jeju Island, Korea, August 17-20, 2004, Pro-
ceedings, volume 3106 of Lecture Notes in Computer Sci-
ence, 2. Springer.

Kim, J. H. 2008. Finding cores of random 2-SAT formulae
via Poisson cloning. CoRR, abs/0808.1599.

Larrabee, T.; and Tsuji, Y. 1992. Evidence for a Satisfiability
Threshold for Random 3CNF Formulas. Technical report,
USA.

Luby, M.; Mitzenmacher, M.; and Shokrollahi, M. A. 1998.
Analysis of Random Processes via And-Or Tree Evalua-
tion. In Karloff, H. J., ed., Proceedings of the Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, 25-27
January 1998, San Francisco, California, USA, 364-373.
ACM/SIAM.

Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard
and Easy Distributions of SAT Problems. In Proceedings
of the Tenth National Conference on Artificial Intelligence,
AAAT’ 92, 459-465. AAAI Press. ISBN 0262510634.
Mitzenmacher, M. 1997. Tight thresholds for the pure literal
rule. Technical report.

Molloy, M. 2005. Cores in random hypergraphs and Boolean
formulas. Random Struct. Algorithms, 27(1): 124—135.
Omelchenko, O.; and Bulatov, A. 2021a. Satisfiability and
Algorithms for Non-uniform Random k-SAT. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(5):
3886-3894.

Omelchenko, O.; and Bulatov, A. A. 2019. Concentration in-
equalities for sums of random variables, each having power
bounded tails. https://arxiv.org/abs/1903.02529. Online; ac-
cessed 6 March 2019.

Omelchenko, O.; and Bulatov, A. A. 2021b. Satisfiability
Threshold for Power Law Random 2-SAT in Configuration
Model. Theoretical Computer Science.

Warnke, L. 2014. When does the K4-free process stop? Ran-
dom structures & algorithms, 44(3): 355-397.

Warnke, L. 2019. On Wormald’s differential equation
method. ArXiv, abs/1905.08928.

Wormald, N. 1999. The differential equation method for
random graph processes and greedy algorithms, 73—155.
Wydawnictwo Naukowe Pwn.

Wormald, N. C. 1995. Differential Equations for Random

Processes and Random Graphs. The Annals of applied prob-
ability, 5(4): 1217-1235.

3812

