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Abstract

A weak backdoor, or simply a backdoor, for a Boolean SAT
formula φ into a class of SAT formulae C is a partial truth as-
signment τ such that φ[τ ] ∈ C and satisfiability is preserved.
The problem of finding a backdoor from class C1 into class
C2, or WB(C1,C2), can be stated as follows: Given a formula
φ ∈ C1, and a natural number k, determine whether there
exists a backdoor for φ into C2 assigning at most k variables.
The class 0-VAL contains all Boolean formulae with at least
one negative literal in each clause. We design a new algo-
rithm for WB(3CNF, 0-VAL) by reducing it to a local search
variant of 3-SAT. We show that our algorithm runs in time
O∗(2.562k), improving on the previous state-of-the-art of
O∗(2.85k). Here, the O∗ notation is a variant of the big-O
notation that allows to omit polynomial factors in the input
size.
Next, we look at WB(3CNF, NULL), where NULL is the class
consisting of the empty formula. This problem was known
to have a trivial running time upper bound of O∗(6k) and
can easily be solved in O∗(3k) time. We use a reduction to
CONFLICT FREE d-HITTING SET to prove an upper bound
of O∗(2.2738k), and also prove a lower bound of 2o(k) as-
suming the Exponential Time Hypothesis.
Finally, HORN is the class of formulae with at most one pos-
itive literal per clause. We improve the previous O∗(4.54k)
running time for WB(3CNF, HORN) problem to O∗(4.17k),
by exploiting the structure of the SAT instance to give a novel
proof of the non-existence of the slowest cases after a slight
restructuring of the branching priorities.

Introduction
Boolean Satisfiability
Boolean Satisfiability, or SAT, is a foundational prob-
lem in computer science, serves as the canonical NP-
Complete problem (Cook 1971), and solutions are useful
in not only broader theoretical (Aho and Hopcroft 1974)
and applied (Marques-Silva 2008) computer science, but
a number of fields of AI (Järvisalo 2016). Noting that
the fastest running time bound for 3-SAT algorithms is
O(1.307n) (Hansen et al. 2019) (a bound which would im-
ply solving a formula with just hundreds of variables is in-
tractable), a discrepancy can been observed with modern
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SAT solving programs that can solve instances with hun-
dreds of thousands of variables (Ohrimenko, Stuckey, and
Codish 2007). Thus, it can be productive to formally inves-
tigate the structure of classes of SAT instances that can be
solved faster than the general case. Throughout this paper,
we will introduce how weak backdoor algorithms facilitate
this investigation, explain their applications, and describe
our improved algorithms.

The SAT problem consists of a Boolean formula φ; an
expression consisting of variables with the binary opera-
tors OR (∨) and AND (∧), the negation operator (¬), and
brackets. SAT asks whether there is an assignment of true
(or 1) and false (or 0) values to its variables such that φ
is satisfied. Defining a literal as a Boolean variable with or
without a negation (e.g. x,¬y); a disjunctive clause, or sim-
ply a clause, is a disjunctive (∨) collection of literals (e.g.
(¬x ∨ y ∨ x)). A Boolean formula φ in conjunctive normal
form, or CNF, consists of a conjunction (∧) of clauses (e.g.
C1 ∧ ... ∧Cn where C1, ..., Cn are clauses), and is in 3CNF
if each clause has at most 3 variables. 3CNF-SAT, or simply
3-SAT, is the variant of SAT where φ ∈ 3CNF.

Parameterized Complexity
A parameterized problem is fixed-parameter tractable if it is
solved by an algorithm that runs in O(f(k) · poly(n)) time,
where n is the input size, poly(n) is a polynomial function
of n, k is the parameter, and f(k) is a computable function
of the parameter only. In this way, a problem can be NP-hard
but remain tractable so long as k is small, as we will illus-
trate when we discuss algorithms for backdoors. As usual in
parameterized algorithmics (Cygan et al. 2015; Downey and
Fellows 2013; Flum and Grohe 2006; Niedermeier 2006),
we say that an algorithm runs in O∗(f(k)) time for parame-
ter k if it runs in O(f(k) · poly(n)) time.

Backdoors
Some Boolean satisfiability instances are easy to solve; oth-
ers seem very difficult to solve. Backdoors formalize this
phenomenon.

Williams, Gomes, and Selman (2003) introduced the idea
of SAT backdoors as a way of formalising the intuitive struc-
ture found within a lot of SAT formulae. A (partial) assign-
ment τ is a mapping from variables to truth values. If we
have a formula φ and an assignment τ , we denote φ with
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τ applied to it by φ[τ ], which denotes the formula obtained
from φ by removing all clauses that contain a true literal un-
der τ and by removing all false literals from the remaining
clauses. We will say that a weak backdoor assignment from
class C1 to C2 for a formula φ ∈ C1 is a truth assignment
τ : S → {true, false} to a subset of variables S ⊆ V ar(φ)
such that φ[τ ] ∈ C2, and φ[τ ] is satisfiable. We call a weak
backdoor set a set of variables S to which there exists an as-
signment of values that is a weak backdoor assignment. We
also call weak backdoor sets weak backdoors, backdoors, or
simply WB. Given an input parameter k and a class C2, the
weak backdoor problem for classes C1, C2, or WB(C1, C2),
asks us to find a backdoor to C2 of no more than k variables
for a formula φ ∈ C1 (Gaspers and Szeider 2012).

How can this be applied to solve SAT instances? Take
some class of SAT instances C, for instance 2CNF, for which
the satisfiability problem is solvable in polynomial time. Al-
though such instances would of course be exceedingly rare
in the wild, instances that are ‘close’ to a desired class are
more common, where a formula φ is ‘close’ if there exists
a small backdoor from φ to C. Then, if we have a fixed-
parameter tractable algorithm for WB(3CNF, C), so long as
the backdoor is small we can find a backdoor reasonably
quickly; and then determine if the resulting formula in C
is satisfiable in polynomial time. To show how backdoors
formalize insights into practical algorithms, observe that
DPLL-style (Davis, Logemann, and Loveland 1962) branch-
ing algorithms for SAT implicitly find backdoors: When a
satisfying assignment is found in a leaf of the search tree,
the path from the root to this leaf corresponds to a weak
backdoor. Empirically, Li and van Beek (2011) have inves-
tigated the sizes of backdoors of large real-world instances,
and found that size of the backdoor was usually less than
0.5% of the number of variables in the formula.

KROM First, note that KROM is synonymous with 2CNF.
Misra et al. (2013) proved a bound of O∗(2.0755k) for
WB(3CNF, KROM) by reducing it to a problem called 3-
HITTING SET.

Given a collection of sets C, each containing elements
from a universe U , a hitting set is a subset S ⊆ U such
that S has nonempty intersection with every set in C, that is,
for each set C ∈ C, C ∩ S 6= ∅. The d-HITTING SET prob-
lem gives a collection C of subsets that all have cardinality
at most d, and a parameter k, and asks whether there exists a
hitting set of size at most k. We can sketch the reduction by
Misra et al. (2013) by taking a formula φ, turning clauses
into subsets, and turning every unique literal into a unique
element. Then, noting that a backdoor from 3CNF to KROM
simply has to ‘hit’ one element in each clause, a backdoor
for φ would map onto a hitting set.

Jain, Kanesh, and Misra (2020) created a variant called
CONFLICT FREE d-HITTING SET, consisting of a collection
C, a universe U , and additionally a conflict graph G where
each vertex corresponds uniquely to an item in U , and inte-
ger k; and asks whether there exists a hitting set S of size at
most k, such that the induced subgraph G[S] has no edges.
Jain, Kanesh, and Misra (2020) created an O∗(2.2738k) al-
gorithm for this. We will find that similarly to 3-HITTING-

SET and WB(3CNF, KROM), this problem closely relates to
WB(3CNF, NULL).

HORN HORN is the class of formulae where each clause
has at most one positive literal. The problem of finding a
weak backdoor from 3CNF to HORN was first discussed
in (Misra et al. 2013), where a bound of O∗(4.54k) was
proven using a branching algorithm. HORN has applications
in model theory, automata, and automatic theorem proving
(Moore et al. 2005) (Makowsky 1987).

0-VAL 0-VAL is the class of SAT formulae where each
clause contains at least one negative literal. Note a funda-
mental property of 0-VAL, that an all-false assignment sat-
isfies any such formula. (Raman and Shankar 2013) proved
an O∗(2.85k) bound for the equivalent form of this prob-
lem; MINIMUM WEIGHT 3-SAT, which asks whether a 3-
SAT formula φ can be satisfied by assigning no more than
k variables true (and all other variables false). They noted
the equivalence by recalling the aforementioned fundamen-
tal property, and thus that if there is a backdoor into 0-VAL
with k truevariables, then setting every other variable in φ to
falsewill satisfy φ, giving an assignment of weight no more
than k. We will use this intuition to guide Lemma 8.

NULL NULL is the class consisting of only the Null for-
mula (the formula with no clauses, that is trivially satis-
fied). When Raman and Shankar (2013) proved aO∗(2.85k)
bound for WB(3CNF, 0-VAL), they mentioned in their con-
clusion that a possible future research direction is to find a
parameterized algorithm for WB(3CNF, NULL), and recog-
nised the trivial bound ofO∗(6k). One can sketch a recursive
O∗(3k) algorithm in the following way: If φ /∈ NULL, pick
an arbitrary clause C. For each literal in C, recurse into a
state where we add an assignment to τ that makes the literal
true. If we have more than k variables in τ , do not recurse
any further. If φ ∈ NULL, then there is a backdoor of size
no more than k. Then, since at each node of the recursion
tree we branch into 3 nodes, and the depth is no more than
k, the total number of leaves in the search tree is bounded
by 3k, and since the time spent in each node is polynomial
in n > k, the running time is O∗(3k).

Bounds Previously, the best known O∗ running time
bounds for finding backdoors from 3CNF to a class C were:

C HORN KROM 0-VAL NULL

Upper Bound 4.54k 2.0755k 2.85k 6k

Lower Bound 2k 2k 2o(k) None

Table 1: Summary of Previous Bounds

The 2k lower bounds are subject to the Strong Exponen-
tial Time Hypothesis, and the 2o(k) lower bounds are sub-
ject to the Exponential Time Hypothesis. The upper bounds
for 0-VAL and NULL were given by Raman and Shankar
(2013). The other bounds in the table were proved by Misra
et al. (2013). Since their bound for KROM was bound by
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the running time for 3-HITTING-SET, we update the upper
bound to reflect the new result proved by Wahlström (2007).

The new bounds, with our improvements in bold, are:

C HORN KROM 0-VAL NULL

Upper Bound 4.17k4.17k4.17k 2.0755k 2.562k2.562k2.562k 2.2738k2.2738k2.2738k

Lower Bound 2k 2k 2o(k) 2o(k)2o(k)2o(k)

Table 2: Summary of New Bounds

Preliminaries
The Exponential Time Hypothesis
The Exponential Time Hypothesis, or ETH, postulates that
there is no algorithm that decides the satisfiability of a CNF
formula with n variables in time O∗(2o(n)) (Impagliazzo
and Paturi 2001; Impagliazzo, Paturi, and Zane 2001).

Ball-3-SAT
One approach that has been used in the literature to solve
SAT quickly has been to ‘cover’ the solution space with a
series of local searches. Represent an assignment to the set
of variables x1, x2, ..., xn by a bitstring of length n, that is,
an element of the set {0, 1}n, also known as the Hamming
space. This will be the space that we wish to ‘cover’. Then,
define the Hamming distance between two equal length bit-
strings as the number of positions in which they differ. The
ball in the Hamming space, BH(s, r), denotes the set of all
bitstrings no more than distance r from string s.

A covering code C is a set of bitstrings such that⋃
c∈C BH(c, r) = {0, 1}n. At this point, we can observe

that if our covering code had O∗(f(k)) elements, and we
could determine if there existed a satisfying assignment/bit-
string b ∈ BH(s, r) for φ in running timeO∗(g(k)), then we
could solve SAT in O∗(f(k) ·g(k)). And indeed, many state
of the art algorithms for 3-SAT have involved this process
(see, e.g., Brueggemann and Kern (2004); Scheder (2008);
Kutzkov and Scheder (2010)).

This motivates the object of our interest, the BALL-3-
SAT problem, which asks whether there exists a satisfying
assignment for a formula φ within Hamming distance r of
α (Fomin and Kratsch 2010). The bound given by Kutzkov
and Scheder (2010) will come in handy for proving our
bound for WB(3CNF, 0-VAL).

Branching Algorithms
In our algorithm for WB(3CNF, HORN), we use a branching
algorithm (Fomin and Kratsch 2010) where in each Branch-
ing Rule we branch into n cases that add b1, b2, ..., and bn
variables to the assignment, summarized by the branching
vector (b1, b2, ..., bn). Then, the number of leaves in the
branching tree for that Branching Rule is bound by the func-
tion T (k) 6 T (k − b1) + ... + T (k − bn), and the unique
positive real root of xk = xk−b1 + ...+xk−bn is the branch-
ing number B, hence the running time of our algorithm is
O∗(Bk), whereB is the maximum branching number of any
branching rule (Cygan et al. 2015; Fomin and Kratsch 2010).

WB(3CNF, HORN)
Algorithm & Analysis
Inspired by Misra et al. (2013), we define a C2 clause as a
3-clause with exactly two positive literals. (e.g. (¬a, b, c)).
Rules adapted from that paper are marked with a (?).

Apply the following branching rules exhaustively:

Branching Rule 1.(?) If there is a positive 3-clause
(x, y, z), branch into the following cases:

x = 1•
y = 1•
z = 1•
x = 0, y = 0•
x = 0, z = 0•
y = 0, z = 0•

Branching Rule 2.(?) If there is a positive 2-clause (x, y),
branch into

x = 1•
x = 0•
y = 1•
y = 0•

Branching Rule 3.(?) If variable x occurs positively in
both C = (x, y,¬z) and C ′ = (x, y′,¬z′), branch into

x = {1, 0}•
y = {1, 0}, y′ = {1, 0}•
y = {1, 0}, z′ = 0•
z = 0, y′ = {1, 0}•
z = 0, z′ = 0•

Here, by a notation such as y = {1, 0}, y′ = {1, 0}we mean
all 4 branches where y is set to one value among {1, 0} and
y′ is set to one value among {1, 0}.

In Branching Rule 4, suppose two clauses C and C ′ have
exactly two variables x, y in common.

Branching Rule 4.1.(?) If x is positive in C and C ′ and y
is negative in C and C ′, then we have C = (x,¬y, z), C ′ =
(x,¬y, z′). Branch into

x = {1, 0}•
y = 0•
z = {1, 0}, z′ = {1, 0}•

Branching Rule 4.2.(?) If x is positive in C and negative
in C ′ and y is negative in C and positive in C ′, then we have
C = (x,¬y, z), C ′ = (¬x, y, z′). Branch into

x = 0•
y = 0•
x = 1, y = 1•
x = 1, z′ = {1, 0}•
y = 1, z = {1, 0}•
z = {1, 0}, z′ = {1, 0}•
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Branching Rule 4.3. If x is positive in C and C ′, and y
is positive and negative in C and C ′, respectively, then we
have C = (x, y,¬z), C ′ = (x,¬y, z′). Branch into

x = 1•

y = 1•

y = 0•

y = 1, z′ = {1, 0}•

z = 0, z′ = {1, 0}•
In Branching Rule 5, we branch on C2 clauses that contain

a variable that does not occur in any other C2 clauses.

Branching Rule 5.1. If we have a C2 clause containing a
variable x that only occurs once in a C2 clause, and the oc-
currence is as a negative literal, we have (¬x, y, z), in which
case we branch into

y = 1•

y = 0•

z = 1•

z = 0•

Branching Rule 5.2. If we have a C2 clause containing a
variable x that only occurs once in a C2 clause, and the oc-
currence is as a positive literal, we have (x,¬y, z), in which
case we branch into

y = 0•

z = 1•

z = 0•
In Branching Rule 6, Suppose C,C ′ are C2 clauses with

x, y both positive in C,C ′.

Branching Rule 6.1. Suppose x and y occur outside of
C,C ′, and one of these occurrences is within the same
clause. Thus we have C = (x, y,¬z), C ′ = (x, y,¬z′) and
C ′′ = (x, y,¬z′′). In this case, we can branch into

x = {1, 0}•

y = {1, 0}•

z = 0, z′ = 0, z′′ = 0•

Branching Rule 6.2. Suppose we have (¬x, v0, w0) and
(¬y, v1, w1) where pairs vi, vj and wi, wj are not necessar-
ily distinct, but pairs vi, wi are necessarily distinct. Then, to
make C = (x, y,¬z), C ′ = (x, y,¬z′) HORN, branch into

x = 1, v0 = {1, 0}•

x = 1, w0 = {1, 0}•

x = 0•

y = 1, v1 = {1, 0}•

y = 1, w1 = {1, 0}•

y = 0•

z = 0, z′ = 0•

Branching Rule 6.3. If x and y do not occur in any other
C2 clauses, branch into

x = 1•

x = 0•

z = 0, z′ = 0•

In Branching Rule 7, suppose C2 clauses C,C ′ have 3
variables in common. That is, C = (x, y,¬z) and C ′ =
(x,¬y, z).

Branching Rule 7.1. Suppose there exists a clause C ′′ =
(¬x, y, z), and y, z occur in no other C2 clauses. Then,
branch into

x = 0, y = 0•

x = 0, y = 1•

x = 1, y = 0•

x = 1, y = 1•

Branching Rule 7.2. If both y and z occur in no other C2
clauses, we can simply branch into

x = 1•

x = 0•

In order to prove that all of our branching rules are
exhaustive, we will introduce the Branching Exhaustion
Lemma.

Definition 1. A branching is a set of assignments
{τ1, τ2, ...} that we branch into in our branching algorithm.

Definition 2. A branching is exhaustive if at least one of the
branches results in a backdoor of minimum size, assuming a
backdoor exists.

Rule Branching Vector Branching Number

1 (1, 1, 1, 2, 2, 2) 3.80

2 (1, 1, 1, 1) 4

3 (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) 4.17

4.1 (1, 1, 1, 2, 2, 2, 2) 4
4.2 (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) 4.17
4.3 (1, 1, 1, 2, 2, 2, 2) 4

5.1 (1, 1, 1, 1) 4
5.2 (1, 1, 1) 3

6.1 (1, 1, 1, 1, 3) 4.07
6.2 (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) 4.17
6.3 (1, 1, 2) 2.42

7.1 (2, 2, 2, 2) 2
7.2 (1, 1) 2

Table 3: Branching Vectors and Branching Numbers for
WB(3CNF, HORN)
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Lemma 1 (The Branching Exhaustion Lemma). For any set
of clauses S, if a branching consists of every minimal as-
signment that makes all clauses in S either satisfied or in
the base class, C2, then the branching is exhaustive.

Proof. Clearly, every backdoor for φ must contain at least
one of the backdoors for S inside it.

Lemma 2. Every branching rule is exhaustive.

Proof. For Branching Rule 5.1 and Branching Rule 5.2, sup-
pose there exists a weak backdoor τ 3 x of size at most
k. Then since x occurs in no C2 clauses outside of C , if
we replace the assignment of x in the backdoor with ei-
ther z = true or z = false, τ will still be a backdoor and
the equation will remain satisfiable for at least one of the
choices. Thus we do not need to branch on assigning x. For
Branching Rule 6.3, suppose there exists a weak backdoor
τ 3 y of size at most k. Then since y occurs in no C2
clauses outside of C,C ′ , if we replace the assignment of
y in the backdoor with either x = true or x = false, τ will
still be a backdoor and the equation will remain satisfiable
for at least one of the choices. Thus we do not need to branch
on assigning y. For Branching Rule 7.1, clearly, we need to
assign at least two variables to make C,C ′, and C ′′ HORN.
Since x, y, and z only occur in C2 clausesC,C ′, C ′′, we can
simply branch on the possible assignments of x and y since
it is impossible to make the backdoor smaller by putting z in
the backdoor instead. For Branching Rule 7.2, suppose there
exists a weak backdoor τ 3 y (or WLOG z) of size at most
k. Then since y occurs in no C2 clauses outside of C,C ′ ,
if we replace the assignment of y in the backdoor with ei-
ther x = true or x = false, τ will still be a backdoor and
the equation will remain satisfiable for at least one of the
choices. Thus we do not need to branch on assigning y. The
exhaustiveness of all other rules follows immediately from
the Branching Exhaustion Lemma.

The main novelty of our algorithm is a case analysis that
avoids several branching rules with high branching numbers.
To show the case analysis is exhaustive, assume, for the sake
of contradiction, there exists a formula φ that is not Horn and
to which none of the branching rules applies.

Since Branching Rule 5 eliminates all C2 clauses with no
shared variables with other clauses, φ contains C2 clauses
that share at least one variable. However, we will now show
that no two C2 clauses share two variables, no two C2
clauses share one variable, and then that no two C2 clauses
share three variables, giving a contradiction.

Lemma 3. The formula φ contains no two C2 clauses shar-
ing exactly two variables.

Proof. In Branching Rule 4 we eliminate all C2 clauses that
share 2 variables with another clause, except the subcases
where x, y both occur positively in two clauses C,C ′, which
we address in Branching Rule 6. To see why Branching Rule
6 is exhaustive, observe the following: if x or y occurred
elsewhere positively (individually) in different clauses, this
would have been branched on in Branching Rule 3.1. If they
occurred elsewhere in the same clause and either x or y was

negative, this would be branched on in Branching Rule 4.

At this point, we note that Lemma 4 formalizes the main
conceptual contribution of our algorithm, hence we give
some intuition to aid with understanding the proof. Recall
that we wish to exhaustively branch on every case where a
non-HORN instance can occur. At first glance, if we consider
the clauses C = (¬x, y, z), C ′ = (¬x, y′, z′), it appears we
have failed to exhaust every case in our analysis. However,
we will prove that this set of clauses cannot exist, as follows:
Suppose we do have these two clauses. Since variables that
occur in only one C2 clause have been eliminated, consider
another clause that y′ occurs in. Upon close examination, we
can see that y′ cannot occur in the same C2 clause as x, y, z,
or z′, since we would have branched on all of the possible
cases, so φ must have a clause (¬y, a, b). Similarly, upon a
close examination of a, we can see that a must also occur in
another C2 clause, which cannot also contain x, y, z, y′, or b.
Hence, φ must have the clause (¬a, c, d). At this point, one
may notice a pattern, and suspect that if we have applied
all of our branching rules, we can can go down an infinite
regress of clauses that must exist in φ. We will proceed to
formalize this intuitive notion to show that we exhaustively
branch on any HORN clauses in φ.

Our proof that no two C2 clauses in φ share one variable
is based on the following definitions.

Definition 3. A variable is a child with respect to a set of
clauses S if it occurs only positively in S.

Definition 4. A clause is a child with respect to a set of
clauses S if it is a C2 clause containing at least one variable
that is a child with respect to S.

Definition 5. A set S of C2 clauses is a z-branching if no
variables except ¬z occur only negatively in S, and it con-
tains at least 2 child clauses with respect to itself.

Lemma 4. The formula φ has no pair of C2 clauses C,C ′
sharing exactly one variable x, that is negative in C and
positive in C ′.

Proof. Suppose that the previous branching rules have been
exhaustively applied, and the instance I contains C2 clauses
C = (¬x, y, z), C ′ = (x, y′,¬z′) with exactly one vari-
able x in common, where x is negative in C and positive in
C ′. Since I trivially contains a z′-branching, there exists a
largest z′-branching S ⊆ I . Then consider an arbitrary child
clause (¬a, b, c) ∈ S, where c may or may not be equal to
z′. Due to Branching Rule 3 and Lemma 3, we must have
a C2 clause CI ∈ I \ S containing ¬b, alongside two vari-
ables which do not exist in S. (Note that we cannot have
CI = (¬b, a, c) since a occurs positively elsewhere in S by
Definition 9.) Thus, S ∪ {CI} is a branching set that contra-
dicts maximality.

Lemma 5. The formula φ has no two C2 clausesC,C ′ shar-
ing exactly one variable x, that is negative in C and in C ′.

Proof. Suppose x occurs negatively in C =
(¬x, y, z), C ′ = (¬x, y′, z′). Then, by exhaustive ap-
plication of Branching Rule 5, we must have y occurring
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elsewhere, and due to Branching Rule 3 and Branching
Rule 4, this occurrence must be negative and not involving
x or z (noting that we cannot have (¬y, x, z) because then
x would appear negatively in one clause and positively in
another). But then, y occurs positively in one clause and
negatively in another clause, contradicting Lemma 4.

Lemma 6. The formula φ contains no two C2 clauses shar-
ing exactly one variable x.

Proof. By Branching Rule 3, there are no pairs of C2 clauses
C,C ′ such that x is positive in C and positive in C ′. Due to
Lemma 4, there are no pairs of C2 clauses C,C ′ such that
x is negative in C and positive in C ′. Lemma 5 shows there
are no pairs of C2 clauses C,C ′ such that x is negative in C
and in C ′. This exhausts the combinations of C2 clauses for
the lemma.

Lemma 7. The formula φ has no two C2 clauses sharing 3
variables.

Proof. After Branching Rule 7 has been exhausted, clearly,
z must exist outside of C,C ′, and such that z ∈ C ′′ and
C ′′ does not consist only of variables x, y, z. If two of the
variables occurred elsewhere together with a negative occur-
rence, this would contradict Lemma 3, and if they occurred
elsewhere separately, this would contradict Lemma 6.

This proves the correctness of our algorithm. Taking the
maximum of all of the branching numbers to bound the num-
ber of nodes in the search tree, we obtain

Theorem 1. WB(3CNF, HORN) can be solved inO∗(4.17k)
time.

WB(3CNF, 0-VAL)
Algorithm & Analysis
First, we prove a lemma relating WB(3CNF, 0-VAL) to
BALL-3-SAT.

Lemma 8. A formula φ has a 0-VAL backdoor of size at
most k if and only if it has an assignment τ of size at most k
that only assigns true such that φ[τ ] ∈ 0-VAL.

Proof. Since the backwards direction is trivial, consider
only the forward implication, and suppose a backdoor of
size at most k exists. Then, there is an assignment τ for this
backdoor such that φ[τ ] ∈ 0-VAL. Let τ ′ be τ , but restricted
to only its true assignments. Since φ[τ ] is satisfied by the
all-false assignment, then φ[τ ′] must also be satisfied by the
all-false assignment, and hence φ[τ ′] ∈ 0-VAL.

Now, recall the BALL-3-SAT algorithm from Kutzkov
and Scheder (2010) that runs inO∗(2.562r) time, where r is
the maximum Hamming distance from the starting assign-
ment. Our algorithm involves a reduction to BALL-3-SAT.

Theorem 2. There is an algorithm for WB(3CNF, 0-VAL)
that runs in O∗(2.562k) time.

Proof. Consider the following algorithm for WB(3CNF, 0-
VAL): Given a formula φ and parameter k, run the algorithm
for Ball-3-SAT on φ, with maximum distance k and a start-
ing assignment of only false. If Ball-3-SAT returns a satisfy-
ing assignment, return a backdoor with every true variable in
the assignment; otherwise, return that there is no backdoor.

This algorithm clearly has a running time bound of
O∗(2.562k) since the only exponential stage is running the
Ball-3-SAT algorithm. The algorithm’s correctness follows
from the fact that by Lemma 8, a 0-VAL backdoor of size no
more than k exists if and only if an assignment of size no
more than k exists that only has truth values; then this as-
signment is an assignment whose distance from the all-false
assignment is no more than k.

WB(3CNF, NULL)
Lower Bound
First, we can trivially prove a lower bound for problem, con-
ditional on the Exponential Time Hypothesis.
Theorem 3. There is no algorithm that solves WB(3CNF,
NULL) in 2o(k) time, assuming the ETH.

Proof. Recall that our algorithm outputs a weak backdoor
set of size no more than k if one exists; otherwise it outputs
that no such backdoor exists. Suppose that there exists an
algorithm that solves WB(3CNF, NULL) in O∗(2o(k)) time.
Then, the following procedure solves 3-SAT: Given any for-
mula φ, run the algorithm with k = n, where n is the num-
ber of variables in φ, and return Yes if the algorithm returns
a backdoor, and No otherwise. Thus, we can solve 3-SAT in
O∗(2o(n)), contradicting ETH.

Algorithm & Analysis
Theorem 4. There is an algorithm for WB(3CNF, NULL)
that runs in O∗(2.2738k) time.

Proof. We will construct a reduction from WB(3CNF,
NULL) to CONFLICT FREE d-HITTING SET. Consider an
instance of WB(3CNF, NULL) with formula φ. The universe
U will contain the elements x, x′ for all variables x ∈ φ,
and similarly the conflict graph G will consist of the edges
(x, x′) for all variables x ∈ φ. For our construction, de-
noting the literals in φ by Lit(φ), we will use the function
f : Lit(φ)→ U

f(l) =

{
x if l = x

x′ if l = ¬x

Then, let C consist of
⋃

l∈C f(l) for each clause C ∈ φ.
We now show that this is a reduction. Suppose that there

exists a conflict-free hitting set H of size no more than k for
(C, G). Then, denoting var(l) to be the variable underlying
the literal l, consider the set

⋃
l∈H f−1(l). This must be a

backdoor to φ, since every clause has a true literal, and we
do not assign any variable both true and false, since this is
excluded by the conflict graph. Conversely, suppose there is
a backdoor set for φ of size no more than k, and correspond-
ingly a weak backdoor assignment τ . To construct a hitting
set for C, for each variable x ∈ τ , if it is assigned true, add
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x, and if it assigned false, add x′. Then, clearly it has size
no more than k, and cannot contain both x and x′ for any
variable x; thus it is conflict-free.

Conclusion
We improve on a number of algorithms to find weak back-
doors of 3-CNF formulae. Along the way, we observe some
correspondences between backdoor problems seen in the lit-
erature and known combinatorial problems, and contribute
new ideas for solving problems in which we can prove that
certain structures (that may intuitively seem to be present)
do not exist.

We discussed ways to construct a SAT sub-solver with
backdoor algorithms that are of theoretical interest: If a
SAT instance contains a small backdoor into one of these
classes, we can use a backdoor algorithm to find it, and
then solve the rest of the instance in polynomial time. Some
have empirically investigated the size of these backdoors in
practical instances, and the observations made in our algo-
rithms could help to improve real-world algorithms for find-
ing these backdoors.

To improve our algorithm for WB(3CNF, HORN), naively
attempting a finer case distinction may be problematic since
one may have to consider cases that contain undesirable
structures like C = (¬x, y, z), C ′ = (x, y′,¬z′). How-
ever, after we branch, we do not look at the new clauses
that are created, even though it is possible some of these
could give us a more favorable branching. An improvement
could be to track the number of clauses that exist that give
a lower branching number than 4.17; and then apply Mea-
sure and Conquer to these clauses, as used for 3-HITTING
SET by Niedermeier (2006), Fernau (2010), and Wahlström
(2007), to bound the overall running time.
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