
GEQCA: Generic Qualitative Constraint Acquisition

Mohamed-Bachir Belaid,1 Nassim Belmecheri,2,3 Arnaud Gotlieb,1 Nadjib Lazaar3 and Helge
Spieker1

1Simula Research Laboratory, Oslo, Norway
2LITIO, University of Oran 1, Oran, Algeria

3LIRMM, University of Montpellier, CNRS, Montpellier, France
{bachir@simula.no, belmecheri.nassim@edu.univ-oran1.dz, arnaud@simula.no, lazaar@lirmm.fr, helge@simula.no}

Abstract

Many planning, scheduling or multi-dimensional packing
problems involve the design of subtle logical combinations
of temporal or spatial constraints. On the one hand, the pre-
cise modelling of these constraints, which are formulated in
various relation algebras, entails a number of possible logical
combinations and requires expertise in constraint-based mod-
elling. On the other hand, active constraint acquisition (CA)
has been used successfully to support non-experienced users
in learning conjunctive constraint networks through the gen-
eration of a sequence of queries. In this paper, we propose
GEQCA, which stands for Generic Qualitative Constraint
Acquisition, an active CA method that learns qualitative con-
straints via the concept of qualitative queries. GEQCA com-
bines qualitative queries with time-bounded path consistency
(PC) and background knowledge propagation to acquire the
qualitative constraints of any scheduling or packing prob-
lem. We prove soundness, completeness and termination of
GEQCA by exploiting the jointly exhaustive and pairwise
disjoint property of qualitative calculus and we give an ex-
perimental evaluation that shows (i) the efficiency of our ap-
proach in learning temporal constraints and, (ii) the use of
GEQCA on real scheduling instances.

Introduction
Reasoning about time and space is crucial for many prac-
tical problems including automated planning (Belhadji and
Isli 1998), scheduling (Barták, Salido, and Rossi 2008), or
multi-dimensional packing problems (Crainic, Perboli, and
Tadei 2012). In that context, qualitative calculus provide an
algebraic framework that establishes relations between pairs
of entities through a language that is jointly exhaustive and
pairwise disjoint. Examples of qualitative calculus include
(and are not limited to) Point Algebra (Vilain and Kautz
1986b) or Allen’s interval algebra (Allen 1983) to reason
about temporal tasks, Region Connection Calculus (RCC)
(Randell, Cui, and Cohn 1992) to reason about topological
relationships between spatial regions.

In this context, constraint satisfaction techniques and
Constraint Programming (CP) are convenient frameworks
to model and solve qualitative constraint networks. Never-
theless, in many practical situations, complex problems are

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not formulated as constraint networks and are only solved
via historical records and hand-crafted solutions. Moreover,
inter-relationships among entities may only be known on a
local and pair-wise level, but not all implications for other
pairs of entities are known. To ease the modelling of CP
problems, Bessiere et al. introduced the framework of con-
straint acquisition (CA) to learn CP models either via pas-
sive learning from a set of labelled example assignments
(Bessiere et al. 2005) or via active learning with specific
queries that help to classify complete assignments (Bessiere
et al. 2007). State-of-the-art active CA algorithms include:
QUACQ (Bessiere et al. 2013), a query-directed learning ap-
proach also known as exact learning (Bshouty 2018), which
interacts with the user by asking either complete or partial
queries to reduce the set of possible satisfiable constraints
from a given constraint language; MULTIACQ (Arcangi-
oli, Bessiere, and Lazaar 2016), which extends QUACQ by
learning a maximum number of constraints violated by a
given negative example; T-QUACQ (Addi et al. 2018), which
bounds the query-generation time in order to speed-up CA;
MQUACQ-2 (Tsouros, Stergiou, and Bessiere 2019), which
exploits the structure of learned models by focusing queries
on quasi-cliques of constraints; and CLASSACQ (Prestwich
et al. 2021), which uses a Naive Bayes classifier to discrimi-
nate solutions from non-solutions and exploiting this to pas-
sively acquire constraint models.

Other key approaches to learning constraint models in-
clude ModelSeeker (Beldiceanu and Simonis 2012, 2016),
which is able to acquire global constraints or the general
framework of constraint learning (De Raedt, Passerini, and
Reso 2018) or constraint synthesis, which is based on mixed
linear integer programming (Pawlak and Krawiec 2017).
The issue of handling errors in a user’s answer to a query
is also at the heart of the most recent development of inter-
active CA (Tsouros, Stergiou, and Bessiere 2020). Standard
active CA algorithms cannot easily address qualitative con-
straints because handling disjunctions of relations leads to a
combinatorial explosion of the constraint basis size. More-
over, although the number of possible inter-relations is lim-
ited, controlling the number of queries asked to the user or
the time allocated to generate these queries is a key aspect of
the adoption of CA in practical applications (Bessiere et al.
2017). Learning qualitative temporal constraints has been
initiated by (Mouhoub, Marri, and Alanazi 2018) in LQCN.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3690

LQCN follows the active learning version of CONACQ by
considering each qualitative constraint between two time
intervals as a concept to learn using membership queries.
Then, the consistency of the network as a whole is main-
tained using path consistency and by considering the compo-
sition table as background knowledge. Nevertheless, LQCN
is limited to Allen’s algebra and its generalization is not pos-
sible without a proof of correctness. Furthermore, the back-
ground knowledge considered in LQCN is limited to a com-
position table, while the user usually knows more informa-
tion about the problem (e.g., tasks duration, resources limit,
pre-crafted constraints). These elements are crucial to com-
plete the constraint propagation step and further filter the
queries to be generated.

In this paper, we introduce Generic Qualitative Con-
straint Acquisition (GEQCA), a novel generic active CA
algorithm for learning any kind of qualitative constraints be-
tween each pair of entities of a specific problem. Our contri-
bution is threefold:

1. We introduce the concept of qualitative query and pro-
vide a generic algorithm, GEQCA, that combines qual-
itative queries, time-bounded path consistency (PC),
PATH a novel heuristic and extended background knowl-
edge propagation to acquire any qualitative constraints in
constraint acquisition;

2. We prove soundness, completeness and termination of
GEQCA by exploiting the ”jointly exhaustive and pair-
wise disjoint” (JEPD) property of qualitative calculus;

3. We provide an implementation of GEQCA with strate-
gies and we experimentally evaluate the benefit of
GEQCA on randomly generated temporal instances and
on real scheduling instances.

To the best of our knowledge, this is the first time a generic
and correct method is introduced within CA to handle qual-
itative networks. Furthermore, this is the first time in CA a
CP model is solved to reduce the number of queries using
the extended background knowledge.

Background
A (binary) constraint network is a setC of constraints on the
vocabulary (X,D), where X is a set of n variables and D
a specified finite domain. In our context, X represents a set
of n entities (points, intervals, regions, etc.) to place in a fi-
nite temporal/spatial space D. For instance, for intervals the
variable Xi is a pair of endpoints (X−i , X

+
i) in a specified

finite domain D, where X−i < X+
i holds. The constraint

network C is built on Γ language. Γ represents a finite set of
time/space relational operators (e.g., before, after, contains,
part-of, etc.), where Γ = {r1, . . . , rm} and |Γ| = m. The
atomic relations in Γ are (i) non-empty and pairwise disjoint,
and (ii) the union of the m relations forms the universal one.
Then, Γ is a jointly exhaustive and pairwise disjoint lan-
guage (JEPD property). Bear in mind that the relational al-
gebra generated by Γ is finite and it is closed under composi-
tion, converse and contains the identity. A binary constraint
Cij ∈ C, denoted by Cij = ((Xi, Xj), {rk1

, . . . , rkd
}), is

a disjunction of d atomic relations in Γ. Here, Cij is inter-

preted as (Xi rk1 Xj)∨. . .∨(Xi rkd
Xj) and |Cij | = d. We

denote by ⊥ the empty and by > the universal constraint.
In constraint acquisition (CA) the learner and the user

share a common knowledge to communicate altogether,
which is materialized by the vocabulary (X,D). We denote
by size(C) =

∑
Cij∈C |Cij | the total number of atomic re-

lations in C. An assignment e ∈ DX , is rejected by a con-
straint network C iff we have at least one constraint Cij ,
rejecting eij , the projection of e on (Xi, Xj). If eij does not
violate Cij , then eij |= Cij . An assignment e on X that is
accepted byC is a solution ofC. We write sol(C) for the set
of solutions of C. In addition to the vocabulary, the learner
owns the language from which it can build constraints on
specified sets of entity variables. Bear in mind that standard
version space-based approaches like CONACQ and QUACQ
are not suitable for use in qualitative reasoning, where only
languages closed by conjunction on quantitative constraints
are considered. For that, such systems need to build a con-
straint basis from Γ on the vocabulary (X,D), which leads
to a basis of size (2mn(n−1)

2).
Given a vocabulary (X,D), a qualitative concept is a

Boolean function f over DX , that is, a map that assigns to
each assignment e a value in {0, 1}. A representation of a
concept f is a constraint network C for which f−1(1) =
sol(C), denoted f = sol(C). A user qualitative concept is
a concept fQ that returns 1 for e if and only if e is a solution
of the problem that the user has in mind.

We now define convergence, which is the CA problem we
are interested in. Given a set E of examples labelled by the
user as yes or no, we say that a networkC agrees withE ifC
accepts all examples labelled yes in E and does not accept
those labelled no. The learning process has converged on
the network L if (i) L agrees with E and (ii) for every other
networkL′ agreeing withE, we have sol(L′) = sol(L). It is
thus guaranteed that sol(L) = fQ. If there does not exist any
L such that L agrees with E, we say that we have collapsed.
This happens when fQ is an infeasible concept.

In practical applications, it is often the case that we al-
ready know particular parts of the problem. This set of
known information (problem structure, quantitative con-
straints, a model of durative tasks/actions and their pre-
conditions/effects, etc.) represents a background knowledge,
notedK. FromKwe can deduce a qualitative knowledgeKQ

by using the propagation and/or resolution processes. Hence,
KQ is subsumed by the concept to learn fQ (i.e.,KQ ⊆ fQ).

GEQCA: Constraint Acquisition via
Qualitative Queries

We propose GEQCA, a generic constraint acquisition al-
gorithm that can learn qualitative constraints. For this, we
introduce the concept of a qualitative query.

Definition 1 (Qualitative Query). Given a pair of entity
variables (Xi, Xj) and a basic relation r ∈ Γ, a qualita-
tive query Q-ASK(Xi, r,Xj) is answered yes by the user if
and only if Xi can be placed under r wrt Xj .

A classified qualitative query is called a positive or neg-
ative example depending on whether Q-ASK(Xi, r,Xj)

3691

is yes or no. It is important to observe that ”Q-
ASK(Xi, r,Xj)=yes ” does not mean that (Xi, r,Xj) ex-
tends to a solution of the qualitative concept to learn, which
would put an NP-complete problem on the shoulders of the
user (Vilain and Kautz 1986a; Maddux 1994). The rationale
behind GEQCA is to learn constraints between entities re-
lying on the JEPD property of Γ.

Description of GEQCA
GEQCA (see Algorithm 1) takes as input a vocabulary
(X,D) of n entity variables, the Γ language of binary
atomic relations, a background knowledge K and a timed
boundary parameter cutoff. First, GEQCA initializes the
possible constraints between entities of the network L to the
universal constraint > (line 4). τ is set to cutoff to en-
sure that, between two asked queries, the waiting time does
not exceed the given time boundary (cutoff). Afterwards,
GEQCA loops on L to reduce the constraints to sets of
atomic relations equivalent to the user’s concept fQ (lines 6-
17). Once Cij selected, GEQCA uses a propagate proce-
dure, in τ , to reduce Cij by propagating K on it (line 7). For
instance, in a temporal context, if ”Xi and Xj tasks have
respectively, duration of 1 and 2 hours”, which is deduced
from K, the propagate procedure will remove Equals, Con-
tains, Started-by and Finished-by from Xi to Xj . Then, τ
is updated by deducing the amount of time used in K prop-
agation. Once completed, GEQCA iterates on the remain-
ing atomic relations of Cij (lines 9-15). Each atomic rela-
tion r is first checked, in τ , if it is consistent with the pro-
vided K (line 10). If the relation is not consistent,1 we can
remove it at line 13. Otherwise, the resolution finds a solu-
tion or τ is not sufficient, and in these two cases the basic
relation is presented to the user under a qualitative query Q-
ASK(Xi, r,Xj) in line 12. Then, τ is updated by deducing
the amount of time used in the solve process (line 11). If
the user answers no, we remove r from Cij (line 13). If Cij

is reduced at line 7 or at line 13, GEQCA eliminates non-
feasible relations from L by maintaining path consistency
using the PC function and in a time not exceeding τ . If Cij

is reduced to the empty constraint ⊥ in line 13 or if an in-
consistency is reported by PC (lines 23 and 24), this means
that the space of possible networks collapses because of an
infeasible concept (fT ≡ ⊥) (line 17).

In lines 18-28, we present the PC function (Mackworth
1977). The PC function is a time-bounded path consistency
propagator of a cubic complexity in number of entity vari-
ables. PC returns true when a fixpoint (transitive closure) is
reached by propagating qualitative knowledge, or when τ is
elapsed, and false if any inconsistency is detected.

Theoretical Analysis
We first show that an acquisition using GEQCA (Algo-
rithm 1) is a correct algorithm to learn any constraint net-
work representing a qualitative concept over Γ language
with a waiting time between two queries not exceeding a
given time boundary. For the following propositions and

1if τ is sufficient to prove that there is no solution: s = ∅.

Theorem 1, we have a vocabulary (X,D) of n entity vari-
ables, the set Γ, a qualitative concept fQ and a knowledge
KQ ⊆ fQ subsumed by a given background knowledge K.

Proposition 1 (Soundness). The network L returned by
GEQCA is such that fQ ⊆ sol(L).

Proof. Suppose there exists e ∈ fQ \ sol(L). Here, e 6|= L,
which means that there exists at least one constraintCij ∈ L
with the projection of the solution eij 6|= Cij . At this point,
we conclude that a relation r∗ missing in a given Cij to
have eij |= Cij . That is, !∃r∗ 6∈ Cij : eij |= Xi{r∗}Xj

(a unique relation because of the JEPD property of Γ lan-
guage). Knowing that propagate procedure (line 7) and
consistency check (line 10) are based on a K subsumed by
fQ (KQ ⊆ fQ) and that the PC function is sound (Allen
1983; Vilain and Kautz 1986a), the unique place where r∗
can be removed from Cij is at line 13 because of a negative
answer on a qualitative query. Knowing that a qualitative
query on a consistent relation between a given pair of enti-
ties cannot be answered by no, we deduce that removing an
atomic relation from a given constraint in L cannot reject an
example accepted by fQ.

Note that the soundness property shows that GEQCA
returns a constraint network L not containing false nega-
tives (only consistent constraints). That is, there exists a con-
straint network CQ representing fQ, where L ⊆ CQ.

Proposition 2 (Completeness). The network L returned by
GEQCA is such that sol(L) ⊆ fQ.

Proof. Suppose there exists e ∈ sol(L) \ fQ. Here, L is ac-
cepting solutions rejected by the concept fQ. It means that
we need to restrict at least one constraint Cij ∈ L to have
e 6|= L. Restricting Cij means removing at least one relation
r∗ fromCij . If the relation r∗ is not removed usingK propa-
gation (line 7 and 10) or using PC, it is presented to the user
under a qualitative query. As r∗ is inconsistent on (Xi, Xj),
the qualitative query on r∗ can only be answered by no. We
deduce that keeping an atomic relation in a given constraint
in L cannot accept an example rejected by fQ.

The completeness property shows that GEQCA returns a
constraint network L not missing a true positive (a consis-
tent constraint). That is, there exists a constraint networkCQ

representing fQ, where CQ ⊆ L.

Proposition 3 (Termination). GEQCA terminates.

Proof. GEQCA iterates on all pairs of entities (i.e., n(n−1)
2

iterations, line 6), and for each pair of entities, GEQCA iter-
ates on the language Γ line 9. Since the pair of entities and Γ
have finite size, propagate and solve are time-bounded pro-
cedures, and the PC function is time-bounded and/or cubic,
we have termination.

Theorem 1 (Correctness). The network L returned by
GEQCA is such that sol(L) = fQ.

Proof. Correctness immediately follows from Propositions
1, 2, and 3.

3692

Proposition 4 (Waiting time). GEQCA learns a network
L, or collapses, with a waiting time not exceeding cutoff
time bound between two queries.

Proof. If cutoff = ∞, it is trivial. Suppose now that
cutoff < ∞, at each iteration of GEQCA main loop
(line 6), propagate, solve and PC are executed in a
time t < τ . τ is initialized to cutoff value (line 5) and
only decreased by the update function after each call
of the three procedures/functions. If a qualitative query
is asked, we reset τ to cutoff at line 15. Now, if τ is
reduced to 0, GEQCA will ask a query at the next iteration
where propagate, solve, and PC are not called; then we
reset τ to cutoff. Thus, the waiting time between two
queries will never exceed the given time bound cutoff.

Complexity of GEQCA in terms of queries. We anal-
yse the complexity of GEQCA in terms of the number of
qualitative queries it can submit to the user. The queries are
proposed to the user in line 12 of Algorithm 1.

Given a vocabulary (X,D) of n entity variables, the lan-
guage Γ of m atomic relations, a qualitative concept fQ,
a qualitative knowledge KQ ⊆ fQ subsumed by a given
background knowledge K, and a number of atomic relations
pruned using K and PC propagation noted k. GEQCA asks
O(d) positive queries and O(mn(n−1)

2 − (d + k)) negative
queries to prove convergence on a constraint network L of
size(L) = d, or to collapse. The convergence is obtained
in GEQCA once any possible atomic relation between two
entities is visited. An atomic relation can be visited by a
qualitative query or by a remove action (using propagate,
solve or PC). Note that we have n(n−1)

2 constraints of m
atomic relations. If propagate, solve and PC remove k rela-
tions, the total number of queries is O(mn(n−1)

2 − k). An
atomic relation in L after convergence is a relation that is
not removed with propagate, solve or PC, and validated with
a positive qualitative query. That is, the number of positive
queries is equal to size(L). It follows that the number of
negative queries required for convergence is bounded above
by O(mn(n−1)

2 − (d+ k)).

Strategies

GEQCA can be improved by making the constraint selec-
tion at line 6 less brute-force. That is, selecting constraints
in different ways can have a significant impact on K and
PC propagation, thus leading to great improvements in the
number of asked queries until convergence. We introduce a
dedicated constraint selection heuristic based on traversal of
a complete graph. PATH heuristic first selects a random con-
straint Cij in L and then selects a connected one (Cki or
Cjk), otherwise it again selects a random one. As the ini-
tial constraint network L is a complete graph of universal
constraints as edges, we visit all constraints (edges) of L by
forming a maximum number of paths. The rationale behind
is to maximize the impact of PC and the transitivity between
constraints with a constraint selector building paths.

Algorithm 1: GEQCA: Constraint Acquisition via
Qualitative Queries.

1 In: vocabulary (X,D); Γ language; background
knowledge K; parameter cutoff;

2 Out: a learned network L;

3 begin
4 L← {Cij = > : i < j};
5 τ ← cutoff;
6 foreach Cij ∈ L do
7 CHANGE← propagate(K, Cij , τ)
8 update(τ);
9 foreach r ∈ Cij do

10 s← solve(L ∪ K ∪ Xi{r}Xj , τ)
11 update(τ);
12 if (s = ∅) ∨ (Q-ASK(Xi, r,Xj) = no)

then
13 Cij ← Cij \ {r}
14 CHANGE← true;
15 if s 6= ∅ then τ ← cutoff;

16 if (Cij = ⊥) ∨ (CHANGE ∧¬PC(L, τ) then
17 return ”collapse”

18 Function PC(L, τ):
19 Q← L
20 while (Q 6= ∅) ∧ (τ is not yet up) do
21 pick Cij in Q
22 foreach Xk ∈ X \ {Xi, Xj} do
23 ∆1 ← Cik ∩ composition(Cij , Cjk);

if ∆1 = ⊥ then return false
24 ∆2 ← Cki ∩ composition(Cki, Cij);

if ∆2 = ⊥ then return false
25 if Cik 6= ∆1 then Cik ← ∆1;

Q← Q ∪ {Cik}
26 if Ckj 6= ∆2 then Ckj ← ∆2;

Q← Q ∪ {Ckj}

27 if Q = ∅ then update(τ);
28 return true

Experiments
In this section, we experimentally evaluate GEQCA, with
time intervals as entities, on learning temporal constraints
based on the Allen’s interval algebra, where |Γ| = 13 (see
Figure 1). The goal is 1) to compare our approach with
LQCN (Mouhoub, Marri, and Alanazi 2018) 2) to evaluate
our contributions for learning temporal networks and real-
world scheduling problems. The basic version of GEQCA
under time intervals as variables is similar to LQCN ex-
cept for the used strategy of pairs selection. LQCN uses a
weight-based heuristic from (van Beek and Manchak 1996).
Unlike LQCN, GEQCA uses the novel PATH heuristic as
presented in the previous section and GEQCA is a correct
and generic CA algorithm that can learn any qualitative net-
work. More precisely, our evaluation aims to answer the fol-
lowing research questions:

3693

Precedes Meets Overlaps

Finished byContains

Starts

Equals Started by

During Finishes

Overlapped by Met byPreceded by

EndStart p m o

fidi

s

pi mi oi

fd

sieq

Figure 1: Overview of the 13 atomic relations in Allen’s Interval Algebra (Allen 1983) as named in (Krokhin, Jeavons, and
Jonsson 2003). These relations resemble the possible qualitative queries, the user is asked in GEQCA.

• RQ1: Is GEQCA useful for learning temporal networks
and how does it compare with LQCN?
• RQ2: Is GEQCA capable of learning the qualitative

part of real-world scheduling problems?

Experimental Evaluation Protocol. For the first ex-
periment, we generated 12 random problem instances rep-
resenting feasible temporal concepts (i.e., fQ 6≡ ⊥). We
consider n, the number of Time Intervals (TI) (10, 25, 50
and 100) and we randomly sample both a subset of pairs of
TI and their atomic relations. Then, we maintain path con-
sistency on the network and check its satisfiability. The den-
sity of an instance corresponds to the percentage of atomic
relations present in each temporal constraint. For example,
Ins 50 48 denotes the instance with 50 TI and a density
of 48%, i.e. 6 of 13 relations are possible for each pair on
average. GEQCA is implemented in Java and using Choco
solver2 for the solve procedure at line 10 in Algorithm 1. The
code and full descriptions of each instance are publicly avail-
able at https://github.com/lirmm/ConstraintAcquisition/tree/
GEQCA. All tests are run on an Intel core i7, 2.8GHz with
RAM of 16GB.

[RQ1]: Effectiveness of GEQCA For our first experi-
ment, we use GEQCA with three basic features: 1) pairs in
line 6 of Algorithm 1 are selected using the PATH heuristic;
2) K is empty; and 3) the PC function is run until a fixpoint
is reached (cutoff =∞).

Table 1 reports on the performance of GEQCA as com-
pared to LQCN. In Table 1, we report the total number
of positive queries Q+ for each instance. Note that Q+ are
mandatory queries that validate the consistency of atomic
relations of L (i.e., size(L) = Q+). Hence, Q+ is similar for
both approaches. On the other hand, the number of nega-
tive queries, Q−, depends on the strength of PC propagation.
For each approach, on each instance, we report the number
of negative queries, Q−, and the user effort eF, which rep-
resents the ratio of queries that need to be classified by the
user according to Qmax, the maximum number of queries (i.e.,
Qmax = 13n(n−1)

2 and eF=(Q+ + Q−)/Qmax).
For learning qualitative constraints (using LQCN or

GEQCA), we observe a positive correlation between Q+

and eF. This is especially true when Q+ are queries that
must be submitted to the user to validate the learned net-
work. However, we observe a negative correlation between

2https://choco-solver.org/

Q− and eF. This is explained by the fact that the atomic rela-
tions removed using PC (less user effort) can only be classi-
fied as negatives if submitted to the user. For instance, using
GEQCA, the user effort on Ins 25 8 is 17% with 8% ef-
fort on positives and 9% on negatives. On the other hand,
the user effort on Ins 25 58 is 78% with 59% effort on pos-
itives and 19% on negatives.

Comparing LQCN to GEQCA, our initial observation is
that GEQCA improves on 1) sparse instances (density not
exceeding 10%) and 2) large instances (100 TI), which both
represent 7 over 12 instances. On these instances, the saved
user effort using GEQCA ranges in between 17% and 40%,
which amounts for 76,517 less queries than LQCN. On the
remaining instances (5 out of 12), LQCN is the winner with
a saved user effort in between 3% and 11%, which repre-
sents 793 queries less than GEQCA. But our main observa-
tion is on instances of 100 TI, where GEQCA outperforms
LQCN with a constant saved effort of 35%, which amounts
for 22,520 queries less than LQCN per instance. Our anal-
ysis shows that the PATH heuristic combined with PC has a
great impact on large instances. Even though the instances
have been randomly generated, these results are promising
for using GEQCA on both sparse real-world instances (few
solutions) and large ones (i.e., more than 100 TI).

To strengthen our observations, Figure 2 shows the cu-
mulative filtering (percentage of removed atomic relations)
and the cumulative CPU time of PC calls using LQCN
and GEQCA, and acting on two instances (Ins 25 8 and
Ins 25 58).

For sparse Ins 25 8 (Figure 2.(a) and (b)), we observe
that GEQCA, with its heuristic, removes more than 80%
of atomic relations using 35 PC calls, where LQCN, with
its weight-based heuristic, is only able to remove 40% us-
ing 240 PC calls. Another observation is on CPU time (in
seconds) needed by both approaches. GEQCA removes the
80% relations in a total time not exceeding 40sec., whereas
40% relations of LQCN are removed in 62sec. On sparse in-
stances and within a given amount of time, GEQCA is able
to save twice the user effort with 7 times fewer calls of PC,
as compared to LQCN.

For dense Ins 25 58 (Figure 2.(c) and (d)), we observe a
similar behavior for both approaches with a slight advantage
for LQCN in terms of number of calls (16 calls less), in
terms of filtering (2% more) and in terms of cumulative CPU
time (50 seconds less).

3694

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

0.1

1

10

100
F

ilt
er

in
g

(%
)

T
im

e

#calls (PC)

Filtering

Time (ms)

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

1

10

100

F
ilt

er
in

g
(%

)

T
im

e

#calls (PC)

Filtering

Time (ms)

(a) LQCN on Ins 25 8 (b) GEQCA on Ins 25 8

0

5

10

15

20

25

0 20 40 60 80 100 120 140

0.1

1

10

100

F
ilt

er
in

g
(%

)

T
im

e

#calls (PC)

Filtering

Time (ms)

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

1

10

100

1000

F
ilt

er
in

g
(%

)

T
im

e

#calls (PC)

Filtering

Time (ms)

(c) LQCN on Ins 25 58 (d) GEQCA on Ins 25 58

Figure 2: LQCN vs GEQCA: removed relations and time wrt PC calls.

Instance Q+= LQCN GEQCA
size(L) Q− eF Q− eF

Ins 10 8 45 228 47% 112 26%
Ins 10 25 145 177 55% 201 59%
Ins 10 46 268 189 78% 106 63%
Ins 25 8 300 2,034 60% 364 17%
Ins 25 28 1,100 695 46% 748 47%
Ins 25 58 2,253 703 76% 794 78%
Ins 50 8 1,225 7,308 53% 748 12%
Ins 50 48 7,680 1,500 58% 1,763 59%
Ins 50 52 8,316 1,689 63% 2,051 65%
Ins 100 8 4,950 23,754 44% 1,634 10%
Ins 100 32 20,395 24,276 69% 1,653 34%
Ins 100 37 23,942 24,974 76% 1,629 40%

Table 1: User effort, eF, of LQCN vs GEQCA.

[RQ2]: Using GEQCA for Learning the
Qualitative Part of Real-world Scheduling
Problems
For our second experiment, we evaluate GEQCA in a real-
world context by learning (temporal) constraints of the Re-
source Constrained Project Scheduling Problem (RCPSP)
(Hartmann and Briskorn 2010). We use the publicly avail-
able RCPSP instances3 and we consider the structure of the
problem with tasks duration, resource requirements, and re-
source capacities as background knowledge K, noted K1.
Note that K1 can be propagated at line 7 of GEQCA. Also,

3https://github.com/MiniZinc/minizinc-
benchmarks/tree/master/rcpsp

some constraints are already known by the user, like the cu-
mulative global constraint and deadline constraint. We call
K2 the background knowledge that includes the cumulative
and deadline constraint. Here, the information in K1 ∧ K2

can be propagated at line 10 of GEQCA.

In Table 2, we report the user effort on 5 scheduling
instances using GEQCA with PATH heuristic, cutoff =
3, 600s and K∈ {∅,K1,K1 ∧ K2}. We also report Tmax,
the maximum waiting time between two queries. A schedul-
ing instance is characterized by the number of tasks (e.g.,
sch 30 1 denotes instance 1 with 30 TI).

The first observation from Table 2 is that feeding
GEQCA with the structure of the problem K1, used in the
propagate procedure, reduces substantially the effort of the
user (38% of reduction on average corresponding to 30,528
queries). The second observation is that the effort is also
reduced when background knowledge is fed and especially
with known constraints like cumulative and deadline con-
straints. Using K1 ∧K2 in the solve procedure of GEQCA
(in addition to using K1 in the propagate procedure) brings
a small but not very significant improvement (reduction of
41% instead of 38% in average). In addition, in terms of
CPU time, the waiting time between two queries can reach
the cutoff of one hour underK= K1∧K2. This is explained
by the solve procedure, which can spend more than one hour
trying to prove that a relation is consistent with the network.
Note that with K= ∅, the waiting time exceeds 7sec. with
a PC call. The propagate procedure can also increase the
waiting time to more than 9sec. underK= K1. According to
(Lallemand and Gronier 2012), a cutoff of 2sec. corresponds

3695

Instance
K

∅ K1 K1 ∧K2

eF Tmax eF Tmax eF Tmax

sch 30 1 95% 0.79 55% 0.91 53% 1.18
sch 30 2 98% 0.62 52% 0.90 48% 393.08
sch 60 1 99% 4.80 65% 8.51 62% 13.00
sch 60 2 99% 7.72 64% 8.08 61% 12.55
sch 60 3 98% 5.94 59% 9.66 57% 3,600

Table 2: User effort eF using GEQCA acting on RCPSP
instances (with cutoff = 3, 600s, Tmax in seconds).

Instance
K

∅ K1 K1 ∧K2

eF Tmax eF Tmax eF Tmax

sch 30 1 95% 0.79 55% 0.91 53% 1.18
sch 30 2 98% 0.62 52% 0.90 49% 2
sch 60 1 99% 2 65% 2 62% 2
sch 60 2 99% 2 64% 2 61% 2
sch 60 3 98% 2 59% 2 58% 2

Table 3: User effort eF using GEQCA acting on RCPSP
instances (with cutoff = 2s, Tmax in seconds).

to an acceptable waiting time for a human user. Hence, we
conduct a new experiment by setting the cutoff time to 2sec.
Table 3 reports on the obtained results.

Like in Table 2, we report the user effort on 5 scheduling
instances using GEQCA with PATH heuristic, cutoff = 2s
and K∈ {∅,K1,K1 ∧K2}. Comparing to Table 2, the user
effort is exactly the same withK= ∅ but with a waiting time
not exceeding the cutoff time. This means that PC removes
inconsistent basic relations in less than 2sec. in the first iter-
ation. The same observation is drawn With K= K1, where
propagating the structure of the problem on the learned net-
work is realized in less than 2sec. Using K= K1 ∧K2, we
observe a very low decline on two instances (sch 30 2 and
sch 60 2). On sch 30 2 for example, GEQCA requires an
effort of only 48% but with a waiting time exceeding 6 min-
utes, whereas using a cutoff of 2sec. the effort is 49%.

The RCPSP instances are expressed using precedes and
meets relations. As a last point, we observe that GEQCA
learns two times more of precedes constraints than the ones
present in the benchmarks. Thanks to the PC procedure that
reduces an important number of full constraints to precedes.
As a direct consequence, we observe that finding the optimal
solution is faster using the learned network.

Discussion & Limits
To wrap up, the results show the effectiveness of our ap-
proach, GEQCA, in learning qualitative constraints. The
number of queries asked to the user, stays in low bound-
aries on sparse and large instances, as compared to LQCN.
Indeed, in GEQCA, the PC propagation altogether with
heuristic PATH drastically reduces the number of queries on
these instances, while it does not bring significant improve-
ments on dense instances, as compared to LQCN. Also,
GEQCA provides a cutoff option to minimize the waiting
time between two queries and setting this cutoff time to 2sec.

is a respectful choice.
It is worth noticing that a large number of queries (e.g.,

thousands of queries) prevents using GEQCA in an interac-
tive process with a (single) human user in the loop. A con-
cept to learn can also be known by a non-CP representation
of the problem. For instance, some expert systems can eas-
ily check and respond queries, even though they are inca-
pable of solving problems.4 Also, the concept to learn can
be known by a human community (e.g., thousands of users)
sharing the same concept and able to classify a few queries
within a crowdsourcing/parallel context (Lazaar 2021). In
addition, one can inherit constraints from a past/obsolete
model that needs to be updated. GEQCA can easily be
adapted to handle such cases with its incremental calcula-
tion of L.

However, GEQCA can be improved by:

• Adaptive cutoff selection: Finding the best trade-of for
setting the cutoff value is a real dilemma. A small value
yields less waiting time between queries but compro-
mises the capabilities of the propagation (using propa-
gate, solve or PC) to filter enough. An approach could be
to dynamically adapt the cutoff value with the estimated
capabilities of the propagation.
• Filter positive queries: GEQCA does not provide a

mechanism to avoid asking positive queries. Hence, on
dense problems, the propagation does not help reducing
the effort (most queries are positive). Considering ways
to infer/avoid some queries may improve GEQCA.
• Constraint selection heuristic: Despite its effectiveness

in practice, PATH heuristic is not suitable for all types of
problems. Combining PATH with other dynamic entity-
selection heuristics can be further investigated.

Conclusion
In this paper, we propose GEQCA, a new generic and cor-
rect active CA algorithm, that learns any qualitative network
via qualitative queries. GEQCA exploits the JEPD property
of qualitative calculus to prove convergence in a polyno-
mial number of queries and path consistency over qualitative
constraints to minimize the number of queries. Our results
show that GEQCA asks a limited number of queries to the
user in a reasonable amount of time, making this approach
suitable for practical applications. In addition, GEQCA not
only generalizes but also outperforms the existing approach
LQCN by using a dedicated constraint selection heuristic.
Note also that, unlike LQCN, GEQCA can exploit extended
background knowledge to reduce the number of queries. Our
future work involves two directions. First, GEQCA can be
further refined via smarter heuristics for constraint selection.
For example, selecting first the next query to ask on the size
of remaining atomic relations between each pair of entities
may speed up the acquisition. Second, use GEQCA to learn
complex qualitative networks which combine both spatial
and temporal constraints.

4Some expert systems become Rube Goldberg machines after
having been updated too many times.

3696

Acknowledgments
This work has received funding from the Norwegian Re-
search Council T-LARGO project under grant agreement No
274786, the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 952215,
and University of Montpellier I-Site MUSE under CAR-
UM2020/2021 project.

References
Addi, H. A.; Bessiere, C.; Ezzahir, R.; and Lazaar, N. 2018. Time-
bounded query generator for constraint acquisition. In Integration
of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR 2018), volume 10848 of Lecture Notes in Com-
puter Science. Springer.
Allen, J. F. 1983. Maintaining Knowledge about Temporal Inter-
vals. Communications of the ACM, 26(11): 832–843.
Arcangioli, R.; Bessiere, C.; and Lazaar, N. 2016. Multiple con-
straint aquisition. In IJCAI: International Joint Conference on Ar-
tificial Intelligence, 698–704.
Barták, R.; Salido, M.; and Rossi, F. 2008. Constraint satisfaction
techniques in planning and scheduling. Journal of Intelligent Man-
ufacturing, 21: 5–15.
Beldiceanu, N.; and Simonis, H. 2012. A Model Seeker: Extracting
global constraint models from positive examples. In International
Conference on Principles and Practice of Constraint Programming
(CP 2012), 141–157. Springer.
Beldiceanu, N.; and Simonis, H. 2016. ModelSeeker: Extracting
Global Constraint Models from Positive Examples. In Bessiere,
C.; Raedt, L. D.; Kotthoff, L.; Nijssen, S.; O’Sullivan, B.; and Pe-
dreschi, D., eds., Data Mining and Constraint Programming, vol-
ume 10101 of Data Mining and Constraint Programming, 77–95.
Springer.
Belhadji, S.; and Isli, A. 1998. Temporal Constraint Satisfaction
Techniques in Job Shop Scheduling Problem Solving. Constraints,
3(2): 203–211.
Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.; Lazaar, N.;
Narodytska, N.; Quimper, C.-G.; and Walsh, T. 2013. Constraint
acquisition via partial queries. In Twenty-Third International Joint
Conference on Artificial Intelligence.
Bessiere, C.; Coletta, R.; Koriche, F.; and O’Sullivan, B. 2005. A
SAT-based version space algorithm for acquiring constraint satis-
faction problems. In European Conference on Machine Learning,
23–34. Springer.
Bessiere, C.; Coletta, R.; O’Sullivan, B.; and Paulin, M. 2007.
Query-Driven Constraint Acquisition. In IJCAI, volume 7, 50–55.
Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B. 2017. Con-
straint acquisition. Artificial Intelligence, 244: 315–342.
Bshouty, N. 2018. Exact learning from an honest teacher that an-
swers membership queries. Theoretical Computer Science, (733):
4––43.
Crainic, T. G.; Perboli, G.; and Tadei, R. 2012. Recent Advances in
Multi-dimensional Packing Problems. ISBN 978-953-51-0480-3.
De Raedt, L.; Passerini, A.; and Reso, S. 2018. Learning con-
straints from examples. In Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence, 7965––7970.
Hartmann, S.; and Briskorn, D. 2010. A survey of variants and
extensions of the resource-constrained project scheduling problem.
European Journal of operational research, 207(1): 1–14.
Krokhin, A.; Jeavons, P.; and Jonsson, P. 2003. Reasoning about
Temporal Relations: The Tractable Subalgebras of Allen’s Interval
Algebra. J. ACM, 50(5): 591–640.

Lallemand, C.; and Gronier, G. 2012. Enhancing User eXperience
during waiting time in HCI: contributions of cognitive psychology.
In Proceedings of the Designing Interactive Systems Conference,
751–760.
Lazaar, N. 2021. Parallel Constraint Acquisition. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI, 3860–3867.
AAAI Press.
Mackworth, A. K. 1977. Consistency in networks of relations. Ar-
tificial intelligence, 8(1): 99–118.
Maddux, R. D. 1994. Relation Algebras for Reasoning about Time
and Space. In Nivat, M.; Rattray, C.; Rus, T.; and Scollo, G., eds.,
Algebraic Methodology and Software Technology (AMAST’93),
27–44. London: Springer London. ISBN 978-1-4471-3227-1.
Mouhoub, M.; Marri, H. A.; and Alanazi, E. 2018. Learning Qual-
itative Constraint Networks. In Alechina, N.; Nørvåg, K.; and
Penczek, W., eds., 25th International Symposium on Temporal Rep-
resentation and Reasoning, TIME 2018, Warsaw, Poland, October
15-17, 2018, volume 120 of LIPIcs, 19:1–19:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.
Pawlak, T. P.; and Krawiec, K. 2017. Automatic synthesis of con-
straints from examples using mixed integer linear programming.
European Journal of Operational Research, 261(3): 1141–1157.
Prestwich, S. D.; Freuder, E. C.; O’Sullivan, B.; and Browne, D.
2021. Classifier-based constraint acquisition. Annals of Mathe-
matics and Artificial Intelligence, 1573–7470.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial logic
based on regions and connection. KR, 92: 165–176.
Tsouros, D. C.; Stergiou, K.; and Bessiere, C. 2019. Structure-
Driven Multiple Constraint Acquisition. In International Confer-
ence on Principles and Practice of Constraint Programming, 709–
725. Springer.
Tsouros, D. C.; Stergiou, K.; and Bessiere, C. 2020. Omissions in
Constraint Acquisition. In Simonis, H., ed., Principles and Prac-
tice of Constraint Programming, volume 12333 of Lecture Notes in
Computer Science, 935–951. Springer.
van Beek, P.; and Manchak, D. W. 1996. The Design and Exper-
imental Analysis of Algorithms for Temporal Reasoning. Journal
of Artificial Intelligence Research, 4.
Vilain, M.; and Kautz, H. 1986a. Constraint Propagation Algo-
rithms for Temporal Reasoning. In Proceedings of the Fifth AAAI
National Conference on Artificial Intelligence, AAAI’86, 377–382.
Vilain, M. B.; and Kautz, H. A. 1986b. Constraint propagation
algorithms for temporal reasoning. In Aaai, volume 86, 377–382.

3697

