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Abstract

Reinforcement learning is widely used in applications where
one needs to perform sequential decisions while interacting
with the environment. The problem becomes more challeng-
ing when the decision requirement includes satisfying some
safety constraints. The problem is mathematically formulated
as constrained Markov decision process (CMDP). In the liter-
ature, various algorithms are available to solve CMDP prob-
lems in a model-free manner to achieve ε-optimal cumulative
reward with ε feasible policies. An ε-feasible policy implies
that it suffers from constraint violation. An important ques-
tion here is whether we can achieve ε-optimal cumulative re-
ward with zero constraint violations or not. To achieve that,
we advocate the use of randomized primal-dual approach
to solve the CMDP problems and propose a conservative
stochastic primal-dual algorithm (CSPDA) which is shown to
exhibit Õ

(
1/ε2

)
sample complexity to achieve ε-optimal cu-

mulative reward with zero constraint violations . In the prior
works, the best available sample complexity for the ε-optimal
policy with zero constraint violation is Õ

(
1/ε5

)
. Hence, the

proposed algorithm provides a significant improvement as
compared to the state of the art.

Introduction
Reinforcement learning (RL) is a machine learning frame-
work which learns to perform a task by repeatedly interact-
ing with the environment. This framework is widely utilized
in a wide range of applications such as robotics, communi-
cations, computer vision, autonomous driving, etc. (Arulku-
maran et al. 2017; Kiran et al. 2021). The problem is mathe-
matically formulated as a Markov Decision Process (MDP)
which constitute of a state, action, and transition probabili-
ties of going from one state to the other after taking a partic-
ular action. On taking an action, a reward is achieved and the
overall objective is to maximize the sum of discounted re-
wards. However, in various realistic environments, the agent
needs to decide action where certain constraints need to be
satisfied (e.g., average power constraint in wireless sensor
networks (Buratti et al. 2009), queue stability constraints
(Xiang et al. 2015), safe exploration (Moldovan and Abbeel
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1The detailed proof can be found in Appendix in (Bai et al.
2021)

2012), etc.). The standard MDP equipped with the cost func-
tion for the constraints is called constrained Markov Deci-
sion process (CMDP) framework (Altman 1999). It is well
known by (Altman 1999) that the resulting CMDP problem
can be equivalently written as a linear program (LP) and
hence efficient algorithms are available in the literature. But
to solve the LP, one needs access to the transition proba-
bilities of the environment, which is not available in real-
istic environment, and thus efficient approaches to develop
model-free algorithms for CMDP are required.

Various algorithms are proposed in the literature to solve
the CMDP problem without apriori knowledge of the tran-
sition probability (See Table 1 for comparisons). The per-
formance of these algorithms is measured by the number of
samples (number of state-action-state transitions) required
to achieve ε-optimal (objective sub-optimality) ε-feasible
(constraint violations) policies. An ε-feasible policy means
that the constraints are not completely satisfied by the ob-
tained policy. However, in many applications, such as in
power systems (Vu et al. 2020) or autonomous vehicle con-
trol (Wen et al. 2020), violations of constraint could be catas-
trophic in practice. Hence, achieving optimal objective guar-
antees without constraint violation is an important problem
and is the focus of the paper. More precisely, we ask the
question, “Is it possible to achieve the optimal sublinear
convergence rate for the objective while achieving zero con-
straint violations for CMDP problem without apriori knowl-
edge of the transition probability?”

We answer the above question in affirmative in this work.
We remark that the sample complexity result in this work
exhibit tight dependencies on the cardinality of state and ac-
tion spaces (cf. Table 1 in Appendix). The key contributions
can be summarized as follows:
• To best of our knowledge, this work is the first attempt

to solve CMDPs to achieve optimal sample complexity
with zero constraint violation. There exist one exception
in the literature which achieves the zero constraint vio-
lation but at the cost of Õ

(
1/ε5

)
sample complexity to

achieve ε optimal policy (Wei, Liu, and Ying 2021). In
contrast, we are able to achieve zero constraint violation
with Õ

(
1/ε2

)
sample complexity1.

• We utilized the idea of conservative constraints in the dual
domain to derive the zero constraint violations. Conserva-
tive constrains were used recently for showing zero con-
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straint violations in online constrained convex optimiza-
tion in (Akhtar, Bedi, and Rajawat 2021), while the prob-
lem of CMDP is much more challenging than online con-
strained optimization. The dual constraint violations are
then used to derive the primal domain results utilizing the
novel analysis unique to this work (cf. Sec. ). We remark
that directly applying the conservative constraint idea in
the primal domain does not result in the optimal depen-
dence on the discount factor.

• The proposed algorithm utilizes adaptive state-action pair
sampling (cf. Eq. (12)), due to which the stochastic gradi-
ent estimates exhibit unbounded second order moments.
This makes the analysis challenging, and standard saddle
point algorithms cannot be used. This difficulty is handled
by using KL divergence as the performance metric for the
dual update similar to (Zhang et al. 2021).

• We have performed proof of concept experiments to sup-
port the theoretical findings.

Related Work
Unconstrained RL. In the recent years, reinforcement
learning has been well studied for unconstrained tabular set-
tings. Different algorithms are compared based upon the
sample complexity of the algorithm which describes the
number of samples T required to achieve an ε optimal pol-
icy. For the infinite horizon discounted reward setting, (Lat-
timore and Hutter 2012) modified the famous model-based
UCRL algorithm (Jaksch, Ortner, and Auer 2010) to achieve

the PAC upper bound of Õ
(
|S||A|

(1−γ)3ε2

)
on the sample com-

plexity. (Li et al. 2021) improved the model-free vanilla
Q-learning algorithm to achieve the sample Complexity

Õ

(
|S||A|

(1−γ)4ε2

)
. For the episodic setting with episode length

ofH , (Azar, Osband, and Munos 2017) proposed the model-
based UCBVI algorithm and achieved a sample complexity
of Õ

(
H3|S||A|

ε2

)
which is equivalent to the lower bound pro-

vided in the paper. Along the similar lines, (Jin et al. 2018)
proposed a model-free UCB Q-learning and achieved the
sample complexity of Õ(H

5|S||A|
ε2 ). Above all, there exists

a number of near-optimal algorithms (either model-based or
model-free) in the unconstrained tabular settings for RL.
Model-based Constrained RL. Once the estimated transi-
tion model is either given or estimated accurately enough,
it makes intuitive sense to utilize a model-based algorithm
to solve the constrained RL (CRL) problem because the
problem boils down to solving only a linear program (Alt-
man 1999). Under the model-based framework, the authors
(Efroni, Mannor, and Pirotta 2020) proposed 4 algorithms
namely OptCMDP & OptCMDP-bonus, OptDual, and Opt-
PrimalDual which solve the problem in the primal, dual,
and primal-dual domains, respectively. (Brantley et al. 2020)
proposed a modular algorithm, CONRL, which utilizes the
principle of optimism and can be applied to standard CRL
setting and also extended to the concave-convex and knap-
sack setting. (Kalagarla, Jain, and Nuzzo 2021) proposed the
UC-CFH algorithm which also works using the optimism

principle and provided a PAC analysis for their algorithm.
(Ding et al. 2021) considered a linear MDP with constraints
setting and proposed the OPDOP algorithm and extended it
to the tabular setting as well.
Model-free CRL. As compared to the model-based algo-
rithms, existing results for the model-free algorithms are
fewer. The authors of (Achiam et al. 2017) proposed a con-
strained policy optimization (CPO) algorithm and authors of
(Tessler, Mankowitz, and Mannor 2018) proposed a reward
constrained policy optimization (RCPO) algorithm. The au-
thors of (Gattami, Bai, and Aggarwal 2021) related CMDP
to zero-sum Markov-Bandit games, and provided efficient
solutions for CMDP. However, these works did not provide
any convergence rates for their algorithms. Furthermore, the
authors in (Ding et al. 2020) proposed a primal-dual natural
policy gradient algorithm both in tabular and general settings
and have provided a regret and constraint violation analy-
sis. A primal only constraint rectified policy optimization
(CRPO) algorithm is proposed in (Xu, Liang, and Lan 2021)
to achieve sublinear convergence rate to the global optimal
policy and sublinear convergence rate for the constraint vio-
lations as well. Most of the existing approaches with specific
sample complexity and constraint violation error bound are
summarized in Appendix. Recently, (Chen, Dong, and Wang
2021) translated the constrained RL problem into a saddle
point problem and proposed a primal-dual algorithm which
achieved Õ(1/ε2) sample complexity to obtain ε-optimal ε-
feasible solution. However, the policy is considered as the
primal variable in the algorithm and an estimation of Q-table
is required in the primal update, which introduces extra sam-
ple complexity and computation complexity.
Online Constrained Convex Optimization. In the field of
standard online convex optimization with constraints, the
problem of reducing the regret and constraint violation is
well investigated in the recent years (Mahdavi, Jin, and Yang
2012; Akhtar, Bedi, and Rajawat 2021). Recently, the au-
thors of (Akhtar, Bedi, and Rajawat 2021) utilized the idea
of conservative constraints to achieve ε-optimal solution
with Õ(1/ε2) sample complexity and zero constraint vio-
lations. We utilize the conservative idea in this work to more
complex setting of constrained RL problems to achieve zero
constraint violations.

Problem Formulation
Consider an infinite horizon discounted reward constrained
Markov Decision Process (CMDP) which is defined by tuple
(S,A,P, r,gi, I, γ,ρ). In this model, S denotes the finite
state space (with |S| number of states), A is the finite action
space (with |A| number of actions), and P : S ×A → ∆|S|

gives the transition dynamics of the CMDP (where ∆d de-
notes the probability simplex in d dimension). More specifi-
cally, P(·|s, a) describes the probability distribution of next
state conditioned on the current state s and action a. We de-
note P(s′|s, a) as Pa(s, s′) for simplicity. In the CMDP tu-
ple, r : S×A → [0, 1] is the reward function, gi : S×A →
[−1, 1] is the ith constraint cost function, and I denotes the
number of constraints. Further, γ is the discounted factor and
ρ is the initial distribution of the states.
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It is well known that there always exists a deterministic
optimal policy for unconstrained MDP problem. However,
the optimal policy for CMDP could be stochastic. Further-
more, (Altman 1999, Theorem 3.1) shows that it is enough
to consider stationary stochastic policies. Thus, let us define
the stationary stochastic policy as π : S → ∆|A|, which
maps a state to a distribution in the action space. The value
functions for both reward and constraint’s cost following
such policy π are given by (Chen, Dong, and Wang 2021)

V πr (s) = (1− γ)E

[∑∞

t=0
γtr(st, at)

]
,

V πgi(s) = (1− γ)E

[∑∞

t=0
γtgi(st, at)

]
, (1)

for all s ∈ S . At each instant t, for given state st and
action at ∼ π(·|st), the next state st+1 is distributed as
st+1 ∼ P(·|st, at). The expectation in (1) is with respect to
the transition dynamics of the environment and the stochas-
tic policy π. Let us denote Jπr and Jπgi as the expected value
function w.r.t. the initial distribution such as

Jr,ρ(π) =Es0∼ρ[V πr (s0)] ,

Jgi,ρ(π) =Es0∼ρ[V πgi(s0)], ∀i. (2)

The goal here is to maximize the expected value function for
reward Jr,ρ(π) with respect to policy π subject to satisfying
the constraints value function, formulated as

max
π

Jr,ρ(π)

s.t. Jgi,ρ(π) ≥ 0 ∀i ∈ [I],
(3)

where [I] denoted the index of constraints. We note that the
problem in Eq. (3) optimizes in the policy space. However,
the value function is a non-linear function with respect to
policy. It is well known that the problem in (3) can be equiv-
alently written in terms of a linear program in the occupancy
measure space (Altman 1999). Thus, we introduce the con-
cept of occupancy measure as follows. For a given policy π,
the occupancy measure is defined as

λ(s, a) = (1− γ)
(∑∞

t=0
γtP(st = s, at = a)

)
, (4)

where s0 ∼ ρ, at ∼ π(·|sT ), P(st = s, at = a) is the
probability of visiting state s and taking action a in step t.
By the definition in (4), the value functions in Eq. (3) can be
expressed as

Es∼ρ[V πr (s)] = 〈λ, r〉 , Es∼ρ[V πgi(s)] =
〈
λ,gi

〉
. (5)

Following the equivalence in (5), the original problem of (3)
in policy space is equivalent to the following Linear pro-
gram (LP) in the occupancy measure space given by (Alt-
man 1999, Theorem 3.3(a)(b))

max
λ≥0

〈λ, r〉

s.t.
〈
λ,gi

〉
≥ 0 ∀i ∈ [I],∑

a∈A
(I− γPTa )λa = (1− γ)ρ,

(6)

where λa = [λ(1, a), · · · ,λ(|S|, a)] ∈ R|S| is the ath col-
umn of λ. Notice that the equality constant in Eq. (6) sums

up to 1, which means λ is a valid probability measure and
we define Λ := {λ|

∑
s,a λ(s, a) = 1} as a probability sim-

plex. For a given occupancy measure λ, we can recover the
policy πλ as

πλ(a|s) =
λ(s, a)∑
a′ λ(s, a′)

. (7)

By (Altman 1999, Theorem 3.3(c)), it is known that if λ∗ is
the optimal solution for problem in Eq. (6), then πλ∗ will be
an optimal policy for problem in Eq. (3).

Algorithm Development
The problem in (3) is well studied in the literature and vari-
ous model-based algorithms are proposed (Ding et al. 2020;
Xu, Liang, and Lan 2021). All of the existing approaches are
able to achieve an objective optimality gap of Õ(1/ε2) with
constraint violations of Õ(ε) where ε is the accuracy pa-
rameter. Recently, the authors in (Wei, Liu, and Ying 2021)
proposed a triple-Q algorithm to achieve zero constraint vi-
olations at the cost of achieving objective optimality gap of
Õ(1/ε5). The goal here is to develop an algorithm to achieve
zero constraint violation without suffering for the objec-
tive optimality gap. To do so, we consider the conserva-
tive stochastic optimization framework presented in (Akhtar,
Bedi, and Rajawat 2021) and utilize it to propose a conser-
vative version of the constrained MDPs problem in (6) as

max
λ≥0

〈λ, r〉 (8a)

s.t.
〈
λ,gi

〉
≥ κ ∀i ∈ [I], (8b)∑

a∈A
(I− γPTa )λa = (1− γ)ρ, (8c)

where κ > 0 is tuning parameter which controls the con-
servative nature for the constraints. The idea is to consider
a tighter version (controlled by κ) of the original inequality
constraint in (6) which allows us to achieve zero constraint
violation for CMDPs which does not hold for any existing
algorithm. We will specify the specific value of the param-
eter κ later in the convergence analysis section (cf. Sec. ).
Note that the conservative version of the problem in Eq. (8)
is still a LP and hence the strong duality holds, which moti-
vates us to develop the primal-dual based algorithms to solve
the problem in (8). By the KKT theorem, the problem in
Eq. (8) is equivalent to the following a saddle point problem
which we obtain by writing the Lagrangian of (8) as

L(λ,u,v) = 〈λ, r〉+
∑

i∈[I]
ui
(
〈gi,λ〉 − κ

)
+ (1− γ) 〈ρ,v〉+

∑
a∈A

λTa (γPa − I)v (9)

= 〈λ, r〉+
〈
u,GTλ− κ1

〉
+ (1− γ) 〈ρ,v〉

+
∑
a∈A
〈λa, (γPa − I)v〉 , (10)

where u := [u1, u2, · · · , ui]T is a column vector of the
dual variable corresponding to constraints in (8b), v is the
dual variable corresponding to equality constraint in (8c),
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G := [g1, · · · ,gI ] ∈ RS×A×I collects all the gi’s corre-
sponding to I constraints in (8b), and 1 is the all one column
vector. From the Lagrangian in (10), the equivalent saddle
point problem is given by

max
λ≥0

min
u≥0,v

L(λ,u,v). (11)

Since the Lagrange function is linear w.r.t. both primal and
dual variable, it is known that the saddle point can be solved
by the primal-dual gradient descent (Nedić and Ozdaglar
2009). However, since we assume that the transition dynam-
ics Pa is unknown, then directly evaluating gradients of La-
grangian in (11) with respect to primal and dual variables
is not possible. To circumvent this issue, we resort to a ran-
domized primal dual approach proposed in (Wang 2020) to
solve the problem in a model-free stochastic manner. We as-
sume the presence of a generative model which is a com-
mon assumption in control/RL applications. The generative
model results the next state s′ for a given state s and action a
in the model and provides a reward r(s, a) to train the policy.
To this end, we consider a distribution ζ over S ×A to write
a stochastic approximation for the Lagrangian L(λ,u,v) in
(11) as

Lζ
(s,a,s′),s0

(λ,u,v) = (1− γ)v(s0)+ (12)

1ζ(s,a)>0 ·
λ(s, a)(Zsa −M)

ζ(s, a)
−
∑

i∈[I]
κui,

where

Zsa := r(s, a) + γv(s′)− v(s) +
∑
i∈[I]

uig
i(s, a), (13)

and s0 ∼ ρ, the current state action pair (s, a) ∼ ζ, and the
next state s′ ∼ P(·|s, a). We remark thatM in (14) is a shift
parameter which is used in the convergence analysis. We no-
tice that the stochastic approximation Lζ

(s,a,s′),s0
(λ,u,v) in

(12) is an unbiased estimator for the Lagrangian function
in Eq. (10) which implies that Eζ×P(·|s,a),ρ[Lζ

(s,a,s′),s0
] =

L(λ,u,v) with supp(ζ) ⊂ supp(λ). We could see ζ as a
adaptive state-action pair distribution which helps to con-
trol the variance of the stochastic gradient estimator. The
stochastic gradients of the Lagrangian with respect to pri-
mal and dual variables are given by

∇̂λL(λ,u,v) = 1ζ(s,a)>0 ·
Zsa −M
ζ(s, a)

·Esa, (14)

∇̂uL(λ,u,v) = 1ζ(s,a)>0 ·
λ(s, a)g(s, a)

ζ(s, a)
− κ1, (15)

∇̂vL(λ,u,v)=e(s0
′)+1ζ(s,a)>0 ·

λ(s, a)(γe(s′)− e(s))

ζ(s, a)
,

(16)

where we define e(s0
′) = (1 − γ)e(s0) with e(s0) ∈ R|S|

being a column vector with all entries equal to 0 except only
the sth entry equal to 1, Esa ∈ R|S|×|A| is a matrix with
only the (s, a) entry equaling to 1 and all other entries being
0, and g(s, a) = [g1(s, a), · · · ,gi(s, a)]T .

Algorithm 1: Conservative Stochastic Primal-Dual
Algorithm (CSPDA) for constrained RL
Input: Sample size T. Initial distribution ρ. Discounted fac-
tor γ.
Parameter: Step-size α, β. Slater variable ϕ, Shift-
parameter M , Conservative variable κ and Constant δ ∈
(0, 1

2 )

Output: λ̄ = 1
T

∑T
t=1 λ

t, ū = 1
T

∑T
t=1 u

t and v̄ =
1
T

∑T
t=1 v

t

1: Initialize u1 ∈ U , v1 ∈ V and λ1 = 1
|S||A| · 1

2: for t = 1, 2, ..., T do
3: ζt := (1− δ)λt + δ

|S||A|1

4: Sample (st, at) ∼ ζt and s0 ∼ ρ
5: Sample s′t ∼ P(·|at, st) from the generative model

and observe reward rsa
6: Update value functions as u and v as

ut+1 = ΠU (ut − α∇̂uL(λt,ut,vt)) (17)

vt+1 = ΠV(vt − α∇̂vL(λt,ut,vt)) (18)
7: Update occupancy measure as

λt+
1
2 = arg max

λ

〈
∇̂λL(λt,ut,vt),λ− λt

〉
− 1

β
KL(λ‖λt) (19)

λt+1 =λt+
1
2 /‖λt+

1
2 ‖1 (20)

8: end for

With all the stochastic gradient definitions in place, we are
now ready to present the proposed novel algorithm called
Conservative Stochastic Primal-Dual Algorithm (CSPDA)
summarized in Algorithm 1. First, we initialize the primal
and dual variables in step 1. In step 4 and 5, we sample
(st, at, s0) and then obtain s′t from the generative model.
In step 6, we update the dual variables by the gradient de-
scent step and a projection opration (See Lemma 1 for the
definition of U and V). In step 7, we utilize the mirror ascent
update and utilize the KL divergence as the Bregman diver-
gence to obtain tight dependencies on the convergence rate
analysis similar to (Wang 2020). Then, the occupancy mea-
sure is normalized so that it remains a valid distribution.

Convergence Analysis
In this section, we study the convergence rate of the pro-
posed Algorithm 1 in detail. We start by analyzing the dual-
ity gap for the saddle point problem in (11). Then we show
that the output of Algorithm 1 given by λ̄ is ε-optimal for the
conservative version of the dual domain optimization prob-
lem in (8) of CMDPs. Finally, we perform the analysis in the
policy space and present the main results of this work. We
prove that the induced policy π̄ by the optimal occupancy
measure λ̄ is also ε-optimal and achieves zero constraint vi-
olation at the same time. Before discussing the convergence
analysis, we provide a detailed description of the assump-
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tions required for the work in this paper.

Assumption 1. (Strict feasibility) There exists a strictly fea-
sible occupancy measure λ̂ ≥ 0 to problem in (8) such that〈

λ̂,gi
〉
− ϕ ≥ 0 ∀i ∈ [I]

and
∑

a
(I− γPTa )λ̂a = (1− γ)ρ

(21)

for some ϕ > 0.

Assumption 1 is the stronger version of the popular
Slater’s condition which is often required in the analysis
of convex optimization problems. A similar assumption is
considered in the literature as well (Mahdavi, Jin, and Yang
2012; Akhtar, Bedi, and Rajawat 2021) and also helps to en-
sure the boundedness of dual variables (see Lemma 1). We
remark that Assumption 1 is unique to utilize the idea of
conservative constraints to obtain zero constraint violations
in the long term. To be specific, Assumption 1 plays a cru-
cial rule in proving that the optimal objective values of the
original problem in (6) and it’s conservative version in (8)
are O(κ) apart as mentioned in Lemma 3.

Convergence Analysis for Duality Gap

In order to bound the duality gap, we note that the standard
analysis of saddle point algorithms (Nedić and Ozdaglar
2009; Akhtar, Bedi, and Rajawat 2021) is not applicable be-
cause of the unbounded noise introduced into the updates
due to the use of adaptive sampling of the state-action pairs
(Wang 2020; Zhang et al. 2021). Therefore, it becomes nec-
essary to obtain explicit bounds on the gradient as well as
the variance of the stochastic estimates of the gradients. We
start the analysis by consider the form of Slater’s condition
in Assumption 1, and show that the dual variables u and v
are bounded (Note that the optimal dual variables now will
be function of conservative variable κ as well).

Lemma 1 (Bounded dual variable u and v). Under the
Assumption 1, the optimal dual variables u∗κ and v∗κ are
bounded. Formally, it holds that ‖u∗κ‖1 ≤ 2

ϕ and ‖v∗κ‖∞ ≤
1

1−γ + 2
(1−γ)ϕ .

The proof of Lemma 1 is provided in Appendix. As a
result, we define U :=

{
u | ‖u‖1 ≤ 4

ϕ

}
and V :={

v | ‖v‖∞ ≤ 2[ 1
1−γ + 2

(1−γ)ϕ ]
}

. Since we have mathemat-
ically defined the set U and V , now we rewrite the saddle
point formulation in (11) as

max
λ∈Λ

min
(u∈U ,v∈V)

L(λ,u,v). (22)

In the analysis presented next, we will work with the prob-
lem in (22). First, we decompose the duality gap in Lemma
2 as follows.

Lemma 2 (Duality gap). For any dual variables u,v, let us
define w = [uT ,vT ]T , and consider ū, v̄, λ̄ as defined in

Algorithm 1, the duality gap can be bounded as
L(ū, v̄,λ∗κ)− L(u,v, λ̄)

≤ 1

T

T∑
t=1

[ 〈
∇λL(wt,λt),λ∗κ − λt

〉︸ ︷︷ ︸
(I)

+
〈
∇wL(wt,λt),wt −w

〉︸ ︷︷ ︸
(II)

]
. (23)

The bound on terms I and II in the statement of Lemma
2 are provided in the Appendix. This helps to prove the main
result in Theorem 1, which establishes the final bound on the
duality gap as follows.
Theorem 1. Define (u†,v†) := arg minu,v L(u,v, λ̄). Re-
call λ∗κ is the best solution for the conservative Lagrange
problem. The duality gap of the Algorithm 1 is bounded as
E[L(ū, v̄,λ∗κ)− L(u†,v†, λ̄)]

≤ O
(√

I|S||A| log(|S||A|)
T

· 1

(1− γ)ϕ

)
. (24)

The proof of Theorem 1 is provided in Appendix. The
result in Theorem 1 describes a sublinear dependence of the
duality gap onto the state-action space cardinality upto a log-
arithmic factor. In the next subsection we utilize the duality
gap upper bound to derive a bound on the objective subopti-
mality and the constraint violation separately.

Dual Objective and Constraint Violation
Recall that the saddle point problem in Eq. (22) is an equiva-
lent problem to Eq. (6) where the main difference arises due
to the newly introduced conservativeness parameter κ. Thus,
a convergence analysis for duality gap should imply the con-
vergence in occupancy measure in Eq. (8). But before that,
we need to characterize the gap between the original prob-
lem (6) and its conservative version in (8). The following
Lemma 3 shows that the gap is of the order of parameter κ.
Lemma 3. Under Assumption 1, and condition κ ≤
min{ϕ2 , 1}, it holds that the difference of optimal values be-
tween original problem and conservative problem is O(κ).
Mathematically, it holds that 〈λ∗, r〉 − 〈λ∗κ, r〉 ≤ κ

ϕ .

The proof of Lemma 3 is provided in Appendix. Using
the statement of Lemma 3 and Theorem 1, we obtain the
convergence result in terms of output occupancy measure in
following Theorem 2.
Theorem 2. For any 0 < ε < 1, there exists a constant c̃1
such that if

T ≥ max

{
16, 4ϕ2,

1

ε2

}
· c̃21

I|S||A| log(|S||A|)
(1− γ)2ϕ2

(25)

set κ = 2c̃1
1−γ

√
I|S||A| log(|S||A|)

T and M = 4[ 1
ϕ + 1

1−γ +
2

(1−γ)ϕ ], then the constraints of the original problem in (6)
satisfy:
E
〈
λ̄,gi

〉
≥ εϕ ∀i ∈ [I], (26a)

E
∥∥∥∑

a

(γPTa − I)λ̄a + (1− γ)ρ
∥∥∥

1
≤ (1− γ)εϕ. (26b)

3686



Additionally, the objective sub-optimality of (6) is given by

E[〈λ∗, r〉 −
〈
λ̄, r

〉
] ≤ 3ε. (27)

The proof of Theorem 2 is provided in Appendix. Next,
we present the special case of Theorem 2 in the form of
Corollary 1 (see proof in Appendix), which shows the equiv-
alent results for the case without conservation parameter,
κ = 0.
Corollary 1 (Non Zero-Violation Case). Set κ = 0. For
any ε > 0, there exists a constant c̃1 such that if T ≥ c̃21 ·
I|S||A| log(|S||A|)

(1−γ)2ϕ2ε2 then λ̄ satisfies the constraint violation as

E
〈
λ̄,gi

〉
≥ −ε ∀i ∈ [I] (28a)

E
∥∥∥∑

a

(γPTa − I)λ̄a + (1− γ)ρ
∥∥∥

1
≤ (1− γ)εϕ, (28b)

and the sub-optimality is given by E[〈λ∗, r〉 −
〈
λ̄, r

〉
] ≤ ε.

The positive lower bound of εϕ in (26a) hints that λ̄ is
feasible (hence zero constraint violation). On the other hand,
the lower bound in (28a) is negative−ε which states that the
constraints in the dual space may not be satisfied for λ̄. Next,
we show that how the result in Theorem 2 helps to achieve
the zero constraint violation in the policy space.

Convergence Analysis in Policy Space
We have established the convergence in the occupancy mea-
sure space in Sec. and shown that λ̄ achieves an ε-optimal
ε-feasible solution but the claim of zero constraint violation
is still not clear. But a small violation in Eq. (26b) makes λ̄
to loose its physical meaning as discussed in (Zhang et al.
2021, Proposition 1). Thus, to make the idea clearer and ex-
plicitly show the benefit of the conservative idea utilized in
this work, we further present the results in the policy space.
The bound in Eq. (26b) provides an intuition that the output
occupancy measure is close to the optimal one and therefore,
the induced policy should also be close to the optimal policy.
Such a result is mathematically presented next in Theorem
3.
Theorem 3 (Zero-Violation). Under the condition in Theo-
rem 2 the induced policy π̄ by the output occupancy measure
λ̄ is an ε-optimal policy and achieves 0 constraint violation.
Mathematically, this implies that

Jr,ρ(π∗)− E[Jr,ρ(π̄)] ≤ ε (29a)
E[Jgi,ρ(π̄)] ≥ 0 ∀i ∈ [I]. (29b)

The proof of Theorem 3 is provided in Appendix. To get
better idea about the importance of result in Theorem 3, we
next present a Corollary 2 which is a special case of Theo-
rem 3 for κ = 0.
Corollary 2 (Non Zero-Violation Case). Under the condi-
tion in Corollary 1, the induced policy π̄ by the output occu-
pancy measure λ̄ is an ε-optimal policy w.r.t both objective
and constraints. More formally,

Jr,ρ(π∗)− E[Jr,ρ(π̄)] ≤ ε (30a)
E[Jgi,ρ(π̄)] ≥ −ε ∀i ∈ [I]. (30b)

The benefit of utilizing the conservation parameter κ be-
comes clear after comparing the results in (29b) and (30b).

Figure 1: Learning Process of the proposed algorithm for
objective with κ = 0 and κ > 0. The total reward is the
objective in (31).

Evaluations on a Queuing System
In this section, we evaluate the proposed Algorithm 1 on a
queuing system with a single server in discrete time (Alt-
man 1999)[Chapter 5]. In this model, we assume a buffer
of finite size L. A possible arrival is assumed to occur at
the beginning of the time slot. The state of the system is
the number of customers waiting in the queue at the be-
ginning of time slot such that the size of state space is
|S| = L + 1. We assume that there are two kinds of ac-
tions: service action and flow action. The service action is
selected from a finite finite subset A of [amin, amax] such
that 0 < amin ≤ amax < 1. With a service action a, we as-
sume that a service of a customer is successfully completed
with probability a. If the service succeeds, the length of the
queue will reduce by one, otherwise queue length remains
the same. The flow action is a finite subset B of [bmin, bmax]
such that 0 ≤ bmin ≤ bmax < 1. Given a flow action b, a
customer arrives with probability b. Let the state at time t
be xt, and we assume that no customer arrives when state
xt = L. Finally, the overall action space is the product of
service action space and flow action space, i.e.,A×B. Given
an action pair (a, b) and current state xt, the transition of this
system P (xt+1|xt, at = a, bt = b) is shown in Table 1.

Assuming γ = 0.5, we want to maximize the total dis-
counted cumulative reward while satisfying two constraints
with respect to service and flow, simultaneously. Thus, the
overall optimization problem is given as

min
πa,πb

E
[ ∞∑
t=0

γtc(st, π
a(st), π

b(st))

]
(31)

s.t. E
[ ∞∑
t=0

γtci(st, π
a(st), π

b(st))

]
≥ 0 i = 1, 2

where s0 ∼ ρ, πa and πb are the policies for the ser-
vice and flow, respectively. We note that the expectation in
(31) is with respect to both the stochastic policies and the
transition probability. For simulations, we choose L = 5,
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Current State P (xt+1 = xt − 1) P (xt+1 = xt) P (xt+1 = xt + 1)
1 ≤ xt ≤ L− 1 a(1− b) ab+ (1− a)(1− b) (1− a)b

xt = L a 1− a 0
xt = 0 0 1− b(1− a) b(1− a)

Table 1: Transition probability of the queue system

Figure 2: Learning Process of the proposed algorithm for
constraint value with κ = 0 and κ > 0. The constraint value
is the L.H.S. of the constraint in (31).

A = [0.2, 0.4, 0.6, 0.8], and B = [0.4, 0.5, 0.6, 0.7] for all
states besides the state s = L, Further, we select Slater vari-
able ϕ = 0.2, number of iteration T = 100000, c̃1 = 0.02
and conservative variable κ is selected as the statement of
Theorem 2. The initial distribution ρ is set as uniform distri-
bution. Moreover, the cost function is set to be c(s, a, b) =
−s + 5, the constraint function for the service is defined as
c1(s, a, b) = −10a + 3, and the constraint function for the
flow is c2(s, a, b) = −8(1− b)2 + 1.2. We run 200 indepen-
dent simulations and collect the mean value and standard
variance. In Fig. 1 and 2, we show the learning process of
cumulative reward and constraint value for κ = 0 and κ > 0
respectively. Note that the y-axis in Fig. 1 and 2 are cumula-
tive reward and constraint function defined in Eq. (31). It can
be seen that when κ > 0, the constraint values are strictly
larger than 0, which matches the result in theory. Further, the
rewards are similar for both κ = 0 and κ > 0, while the case
where κ > 0 helps to achieve zero constraint violation.

Conclusion
In this work, we considered the problem of learning optimal
policies for infinite-horizon constrained Markov Decision
Processes (CMDP) under finite state S and action A spaces
with I number of constraints. This problem is also called
as the constrained reinforcement learning (CRL) in the lit-
erature. To solve the problem in a model-free manner, we
proposed a novel Conservative Stochastic Primal-Dual Al-
gorithm (CSDPA) based upon the randomized primal-dual
saddle point approach proposed in (Wang 2020). We show

that to achieve an ε-optimal policy, it is sufficient to run the
proposed Algorithm 1 for Ω( I|S||A| log(|S||A|)

(1−γ)2ϕ2ε2 ) steps. Addi-
tionally, we proved that the proposed Algorithm 1 does not
violate any of the I constraints which is unique to this work
in the CRL literature. The idea is to consider a conserva-
tive version (controlled by parameter κ) of the original con-
straints and then a suitable choice of κ enables us to make
the constraint violation zero while still achieving the best
sample complexity for the objective suboptimality.
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